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Abstract
We study the complexity of representing polynomials by arithmetic circuits in both the commutative
and the non-commutative settings. To analyse circuits we count their number of parse trees, which
describe the non-associative computations realised by the circuit.

In the non-commutative setting a circuit computing a polynomial of degree d has at most 2O(d)

parse trees. Previous superpolynomial lower bounds were known for circuits with up to 2d1/3−ε

parse trees, for any ε > 0. Our main result is to reduce the gap by showing a superpolynomial lower
bound for circuits with just a small defect in the exponent for the total number of parse trees, that
is 2d1−ε

, for any ε > 0.
In the commutative setting a circuit computing a polynomial of degree d has at most 2O(d log d)

parse trees. We show a superpolynomial lower bound for circuits with up to 2d1/3−ε
parse trees, for

any ε > 0. When d is polylogarithmic in n, we push this further to up to 2d1−ε
parse trees.

While these two main results hold in the associative setting, our approach goes through a
precise understanding of the more restricted setting where multiplication is not associative, meaning
that we distinguish the polynomials (xy)z and x(yz). Our first and main conceptual result is
a characterization result: we show that the size of the smallest circuit computing a given non-
associative polynomial is exactly the rank of a matrix constructed from the polynomial and called
the Hankel matrix. This result applies to the class of all circuits in both commutative and non-
commutative settings, and can be seen as an extension of the seminal result of Nisan giving a similar
characterization for non-commutative algebraic branching programs. Our key technical contribution
is to provide generic lower bound theorems based on analyzing and decomposing the Hankel matrix,
from which we derive the results mentioned above.

The study of the Hankel matrix also provides a unifying approach for proving lower bounds for
polynomials in the (classical) associative setting. We demonstrate this by giving alternative proofs
of recent lower bounds as corollaries of our generic lower bound results.
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1 Introduction

The model of arithmetic circuits is the algebraic analogue of Boolean circuits: the latter
computes Boolean functions and the former computes polynomials, replacing OR gates by
addition and AND gates by multiplication. Computational complexity theory is concerned
with understanding the expressive power of such models. A rich theory investigates the
algebraic complexity classes VP and VNP introduced by Valiant [26]. A widely open
problem in this area of research is to explicitly construct hard polynomials, meaning for
which we can prove super polynomial lower bounds. To this day the best general lower bounds
for arithmetic circuits were given by Baur and Strassen [4] for the polynomial

∑n
i=1 x

d
i , which

requires Ω(n log d) operations.
The seminal paper of Nisan [20] initiated the study of non-commutative computation:

in this setting variables do not commute, and therefore xy and yx are considered as being
two distinct monomials. Non-commutative computations arise in different scenarios, the
most common mathematical examples being when working with algebras of matrices, group
algebras of non-commutative groups or the quaternion algebra. A second motivation for
studying the non-commutative setting is that it makes it easier to prove lower bounds which
can then provide powerful ideas for the commutative case. Indeed, commutativity allows a
circuit to rely on cancellations and to share calculations across different gates, making them
more complicated to analyze.

1.1 Nisan’s Characterization for ABP
The main result of Nisan [20] is to give a characterization of the smallest ABP computing a
given polynomial. As a corollary of this characterization Nisan obtains exponential lower
bounds for the non-commutative permanent against the subclass of circuits given by ABPs.

We sketch the main ideas behind Nisan’s characterization, since our first contribution
is to extend these ideas to the class of all non-associative circuits. An ABP is a layered
graph with two distinguished vertices, a source and a target. The edges are labelled by
affine functions in a given set of variables. An ABP computes a polynomial obtained by
summing over all paths from the source to the target, with the value of a path being the
multiplication of the affine functions along the traversed edges. Fix a polynomial f , and
define following Nisan a matrix Nf whose rows and columns are indexed by monomials: for
u, v two monomials, let Nf (u, v) denote the coefficient of the monomial u · v in f .

The beautiful and surprisingly simple characterization of Nisan states that for a ho-
mogeneous (i.e., all monomials have the same degree) non-commutative polynomial f , the
size of the smallest ABP computing f is exactly the rank of Nf . The key idea is that the
computation of the polynomial in an ABP can be split into two parts: let r be a vertex in
an ABP C computing the polynomial f , then we can split C into two ABPs, one with the
original source and target r and the other one with source r and the original target. We let
Lr and Rr denote the polynomials computed by these two ABPs. For u, v two monomials,
we observe that the coefficient of uv in f is equal to

∑
r Lr(u)Rr(v), where r ranges over all

vertices of C, Lr(u) is the coefficient of u in Lr, and Rr(v) is the coefficient of v in Rr. We
see this as a matrix equality: Nf =

∑
r Lr ·Rr, where Lr is seen as a column vector, and Rr

as a row vector. By subadditivity of the rank and since the product of a column vector by a
row vector is a matrix of rank at most 1, this implies that rank (Nf ) is bounded by the size
of the ABP, yielding the lower bound in Nisan’s result.

The crucial idea of splitting the computation of a monomial into two parts had been
independently developed by Fliess when studying so-called Hankel Matrices in [9] to derive
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20:2 Lower Bounds for Arithmetic Circuits via the Hankel Matrix

a very similar result in the field of weighted automata, which are finite state machines
recognising words series, i.e., functions from finite words into a field. Fliess’ theorem [9, Th.
2.1.1] states that the size of the smallest weighted automaton recognising a word series f is
exactly the rank of the Hankel matrix of f . The key insight to relate the two results is to
see a non-commutative monomial as a finite word over the alphabet whose letters are the
variables. Using this correspondence one can obtain Nisan’s theorem from Fliess’ theorem,
observing that the Hankel matrix coincides with the matrix Nf defined by Nisan and that
acyclic weighted automata correspond to ABPs. (We refer to an early technical report of
this work for more details on this correspondence [8].)

1.2 Non-Associative Computations

Hrubeš, Wigderson and Yehudayoff in [13] drop the associativity rule and show how to
define the complexity classes VP and VNP in the absence of either commutativity or
associativity (or both) and prove that these definitions are sound in particular by obtaining
the completeness of the permanent.

In the same way that a non-commutative monomial can be seen as a word, a non-
commutative and non-associative monomial such as (xy)(x(zy)) can be seen as a tree, and
more precisely as an ordered binary rooted tree whose leaves are labelled by variables. The
starting point of our work was to exploit this connection. The work of Bozapalidis and
Louscou-Bozapalidou [5] extends Fliess’ result to trees; although we do not technically rely
on their results they serve as a guide, in particular for understanding how to decompose
trees.

Let us return to the key idea in Nisan’s proof, which is to decompose the computation of
an ABP into two parts. The way a monomial, e.g., x1x2x3 · · ·xd, is evaluated in an ABP
is very constrained, namely from left to right, or if we make the implicit non-associative
structure explicit as w = (· · · (((x1x2)x3)x4) · · · )xd. The decompositions of w into two
monomials u, v are of the form u = (· · · ((x1x2)x3) · · · )xi−1) and v = (· · · ((�xi)xi+1) · · · )xd.
Here � is a new fresh variable (the hole) to be substituted by u. Moving to non-associative
polynomials, a monomial is a tree whose leaves are labelled by variables. A context is a
monomial over the set of variables extended with a new fresh one denoted � and occurring
exactly once. For instance the composition of the monomial t = z((xx)y) with the context
c = (xy)((z�)y) is the monomial c[t] = (xy)((z(z((xx)y)))y).

Figure 1 On the left hand side the monomial t, in the middle the context c, and on the right
hand side the monomial c[t].

Let f be a non-associative (possibly commutative) polynomial f , the Hankel matrix
Hf of f is defined as follows: the rows of Hf are indexed by contexts and the columns by
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monomials, the value of Hf (c, t) at row c and column t is the coefficient of the monomial c[t]
in f .

Extending Nisan’s proof to computations in a general circuit, which are done along trees,
we obtain a characterization in the non-associative setting.

I Theorem 1. Let f be a non-associative homogeneous polynomial and let Hf be its Hankel
matrix. Then, the size of the smallest circuit computing f is exactly rank (Hf ).

Note that this is a characterization result: the Hankel matrix exactly captures the size
of the smallest circuit computing f (upper and lower bounds), exactly as in Nisan’s result.
Hence, understanding the rank of the Hankel matrix is equivalent to studying circuits for f .
We recover and extend Nisan’s characterization as a special case of our result.

Parse Trees
At an intuitive level, parse trees can be used to explain in what way a circuit uses the
associativity rule. Consider the case of a circuit computing the (associative) monomial 2xyz.
Since this monomial corresponds to two non-associative monomials: (xy)z and x(yz), the
circuit may sum different computations, for instance 3(xy)z−x(yz), which up to associativity
is 2xyz. We say that such a circuit contains two parse trees, corresponding to the two
different ways of parenthesizing xyz.

The shape of a non-associative monomial is the tree obtained by forgetting the variables,
e.g., the shape of (z((xy)((xx)y))) is (_ ((_ _)((_ _) _))). The parse trees of a circuit C
are the shapes induced by computations in C.

Many interesting classes of circuits can be defined by restricting the set of allowed parse
trees, both in the commutative and the non-commutative setting. The simplest such class
is that of Algebraic Branching Programs (ABP) [20, 7, 22], whose only parse trees are
left-combs, that is, the variables are multiplied sequentially. Lagarde, Malod and Perifel
introduced in [17] the class of Unique Parse Tree circuits (UPT), which are circuits computing
non-commutative homogeneous (but associative) polynomials such that all monomials are
evaluated in the same non-associative way. The class of skew circuits [25, 2, 19, 18] and
its extension small non-skew depth circuits [18], together with the class of unambiguous
circuits [3] are all defined via parse tree restrictions. Last but not least, the class of k-PT
circuits [3, 16, 24] is simply the class of circuits having at most k parse trees.

Contributions and Outline
In this paper we prove lower bounds for classes of circuits with parse tree restrictions, both
in the commutative and non-commutative setting.

Our first and conceptually main contribution is the characterization result stated in
Theorem 5 and proved in Section 2, which gives an algebraic approach to understanding
circuits in the non-associative setting. All the subsequent results in this paper are based on
this approach.

Our most technical developments are discussed in Section 3. We prove generic lower
bound results by further analyzing and decomposing the Hankel matrix, with the following
proof scheme. We consider a polynomial f in the associative setting. Let C be a circuit
computing f . Forgetting about associativity we can see C as computing a non-associative
polynomial f̃ , which projects onto f , meaning is equal to f assuming associativity. This
induces a set of linear constraints: for instance if the monomial xyz has coefficient 3 in f ,
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20:4 Lower Bounds for Arithmetic Circuits via the Hankel Matrix

then we know that f̃((xy)z) + f̃(x(yz)) = 3. We make use of the linear constraints to derive
lower bounds on the rank of the Hankel matrix Hf̃ , yielding a lower bound on the size of C.

Sections 3.1 and 3.2 are devoted to the definition of parse trees and a classical tool for
proving lower bounds, partial derivative matrices. We can already show at this point how
Theorem 5 can be specialized to give a characterization result for UPT circuits, extending
Nisan’s result. (We note that a characterization result for UPT circuits was already known [17],
we slightly improve on it.) As a corollary we obtain exponential lower bounds on the size of
the smallest UPT circuit computing the permanent.

The final section is devoted to applications of our results, where we obtain superpolynomial
and exponential lower bounds for various classes. In the results mentioned below, n is the
number of variables, d is the degree of the polynomial, and k the number of parse trees. We
note that the lower bounds hold for any (prime) n, any d, and any field.

We obtain alternative proofs of some known lower bounds: unambiguous circuits [3], skew
circuits [18] and small non-skew depth circuits (obtaining a much shorter proof than [18]).

Our novel results are:

Slightly unbalanced circuits. We extend the exponential lower bound from [18] on 1
5 -

unbalanced circuits to
( 1

2 − ε
)
-unbalanced circuits.

Slightly balanced circuits. We derive a new exponential lower bound for ε-balanced
circuits.
Circuits with k parse trees in the non-commutative setting. We extend the superpolynomial
lower bound of [16] from k = 2d1/3−ε to k = 2d1−ε , the total number of possible non-
commutative parse trees being 2O(d).
Circuits with k parse trees in the commutative setting. We substantially extend the
superpolynomial lower bound from [3] from k = d1/2−ε to k = 2d1/3−ε , and even to
k = 2d1−ε when d is polylogarithmic in n.

Related Work
We argued that proving lower bounds in the non-commutative setting is easier, but this
has not yet materialized since the best lower bound for general circuits in this setting is
the same as in the commutative setting (by Baur and Strassen, already mentionned above).
Indeed, recent impressive results suggest that this may be hard: Carmosino, Impagliazzo,
Lovett, and Mihajlin [6] (essentially) proved that a lower bound in the non-commutative
setting which would be slightly stronger than superlinear can be amplified to get strong lower
bounds (even exponential, in some cases).

Most approaches for proving lower bounds rely on algebraic techniques and the rank of
some matrix. A different and beautiful approach was investigated by Hrubeš, Wigderson and
Yehudayoff [13] in the non-commutative setting through the study of the so-called sum-of-
squares problem. Roughly speaking, the goal is to decompose (x2

1 + · · ·+ x2
k) · (y2

1 + · · ·+ y2
k)

into a sum of n squared bilinear forms in the variables xi and yj . They show that almost any
superlinear bound on n implies non-trivial lower bounds on the size of any non-commutative
circuit computing the permanent.

The quest of finding lower bounds is deeply connected to another problem called polyno-
mial identity testing (PIT) for which the goal is to decide whether a given circuit computes
the formal zero polynomial. The connection was shown in [14], in which it is proved that
providing an efficient deterministic algorithm to solve the problem implies strong lower bounds
either in the arithmetic or boolean setting. PIT was widely investigated in the commutative
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and non-commutative settings for classes of circuits based on parse trees restrictions, see
e.g., [23, 10, 1, 11, 24].

2 Characterizing Non-Associative Circuits

2.1 Basic Definitions

For an integer d ∈ N, we let [d] denote the integer interval {1, . . . , d}.

Polynomials.

Let K be a field and let X be a set of variables. Following [13] we consider that unless
otherwise stated multiplication is neither commutative nor associative. We assume however
that addition is commutative and associative, and that multiplication distributes over addition.
A monomial is a product of variables in X and a polynomial f is a formal finite sum

∑
i cimi

where mi is a monomial and ci ∈ K is a non-zero element called the coefficient of mi in f .
We let f(mi) denote the coefficient of mi in f , so that f =

∑
i f(mi)mi.

The degree of a monomial is defined in the usual way, i.e., deg(x) = 1 when x ∈ X
and deg(m1m2) = deg(m1) + deg(m2); the degree of a polynomial f is the maximal degree
of a monomial in f . A polynomial is homogeneous if all its monomials have the same
degree. Depending on whether we include the relations u · v = v · u (commutativity) and
u · (v · w) = (u · v) · w (associativity) we obtain four classes of polynomials.

Unless otherwise specified, for a polynomial f we use n for the number of variables and d
for the degree.

Trees and Contexts.

The trees we consider have a single root and binary branching (every internal node has
exactly two children). To account for the commutative and for the non-commutative setting
we use either unordered trees or ordered trees, the only difference being that in the case
of ordered trees we distinguish the left child from the right child. We let Tree denote the set
of trees (it will be clear from the context whether they are ordered or not). The size of a
tree is defined as its number of leaves.

A non-associative monomial m is a tree with leaves labelled by variables. If m is non-
commutative then it is an ordered tree, and if m is commutative then it is an unordered
tree. We let Tree(X) denote the set of trees whose leaves are labelled by variables in X and
Treei(X) denote the subset of such trees with i leaves, which are monomials of degree i.

In this paper we see a non-associative polynomial as a mapping from monomials to K,
i.e., an element f : Tree(X)→ K. To avoid possible confusion, let us insist that the notation
f(m) refers to the coefficient of the monomial m in the polynomial f , not to be confused with
the evaluation of f at a given point. Similarly, a non-commutative associative homogeneous
polynomial of degree d is seen as a mapping f : Xd → K.

A (ordered or unordered) context is a tree with a distinguished leaf labelled by a special
symbol called the hole and written �. We let Context(X) denote the set of contexts whose
leaves are labelled by variables in X. Given a context c and a tree t we construct a new
tree c[t] by substituting the hole of c by t. This operation is defined in both ordered and
unordered settings.
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20:6 Lower Bounds for Arithmetic Circuits via the Hankel Matrix

Hankel Matrices.

Let f be a non-associative polynomial. The Hankel matrix Hf of f is the matrix whose
rows are indexed by contexts and columns by monomials and such that the value of Hf at
row c and column t is the coefficient of the monomial c[t] in f .

Arithmetic Circuits.

An (arithmetic) circuit is a directed acyclic graph such that the vertices are of three types:
input gates: they have in-degree 0 and are labelled by variables in X,
addition gates: they have arbitrary in-degree, an output value in K, and a weight
w(a) ∈ K on each incoming arc a,
multiplication gates: they have in-degree 2, and we distinguish between the left child and
the right child.

Each gate v in the circuit computes a polynomial fv which we define by induction.
An input gate labelled by a variable x ∈ X computes the polynomial x.
An addition gate v with n arcs incoming from gates v1, . . . , vn and with weights α1, . . . , αn,
computes the polynomial α1fv1 + · · ·+ αnfvn .
A multiplication gate with left child u and right child v computes the polynomial fufv.

The circuit itself computes a polynomial given by the sum over all addition gates of the
output value times the polynomial computed by the gate. Note that it is slightly unusual
that all addition gates contribute to the circuit; one can easily reduce to the classical case
where there is a unique output addition gate by adding an extra gate.

To define the size of a circuit we make a syntactic assumption: each arc is either coming
from, or going to (but not both), an addition gate. This is a small assumption which can be
lifted at the price of a linear blow-up. The size of a circuit C is denoted |C| and defined to
be its number of addition gates. Note that this is how the size of ABPs is defined, it will be
a convenient definition here since our characterization result captures the exact size of the
smallest circuit computing a given polynomial.

Note that the definitions we gave above do not depend on which of the four settings we
consider: commutative or non-commutative, associative or non-assocative.

Consider the circuit on the left hand side of Figure 2: it computes the polynomial
7y2 + 2xy + yx, which in the commutative setting is equal to 7y2 + 3xy.

Figure 2 On the left hand side a circuit computing the polynomial 7y2 + 2xy + yx, which in the
commutative setting is equal to 7y2 + 3xy. The only addition gate with a non-zero output value is at
the bottom, its output value is 1. On the right hand side the monomial xy, seen as non-associative.
The dashed red arrow show one run of the circuit over this monomial.
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2.2 The Characterization
This section aims at proving the characterization stated in Theorem 5. It extends Nisan’s
characterization of non-commutative ABPs to general circuits in the non-associative setting.
The result holds for both commutative and non-commutative settings, the proof being the
same up to cosmetic changes.

The key step to go from ABPs to general circuits is the following: the polynomial
computed by an ABP is the sum over the paths of the underlying graph, whereas in a general
circuit the sum is over trees. We formalize this in the next definition by introducing runs of
a circuit. The definition is given in the non-commutative setting but easily adapts to the
commutative setting as explained in Remark 3.

I Definition 2. Let C be a circuit and V⊕ denote its set of addition gates. Let t ∈ Tree(X)
be a monomial. A run of C over t is a map ρ from nodes of t to V⊕ such that

(i) A leaf of t with label x ∈ X is mapped to a gate with a non-zero edge incoming from an
input gate labelled by x.

(ii) If n is a node of t with left child n1 and right child n2, then ρ(n) has a non-zero edge
incoming from a multiplication gate with left child ρ(n1) and right child ρ(n2).

(iii) The root of t is mapped to a gate with non-zero output value.
The value val(ρ) of ρ is a non-zero element in K defined as the product of the weights of the
edges mentioned in items (i) and (ii) together with the output value of ρ(r), r being the root
of t.

We write by a small abuse of notation ρ : t→ V⊕ for runs of C over t.

We refer to Figure 2 for an example of a run over the monomial xy. The value of the run
is 2.
I Remark 3. In the commutative setting we simply replace item (ii) by: “if n is a node of t
with children n1, n2, then ρ(n) has a non-zero edge incoming from a multiplication gate with
children ρ(n1), ρ(n2)”.

A run of C over a monomial t additively contributes to the coefficient of t in the polynomial
computed by C, leading to the following lemma.

I Lemma 4. Let C be a circuit computing the non-associative polynomial f : Tree(X)→ K.
Then the coefficient f(t) of a monomial t ∈ Tree(X) in f is equal to∑

ρ:t→V⊕

val(ρ).

We may now state and prove our cornerstone result, which holds in both the commutative
and non-commutative settings.

I Theorem 5. Let f : Tree(X) → K be a non-associative polynomial, Hf be its Hankel
matrix, and C be a circuit computing f . Then |C| ≥ rank (Hf ). Moreover, if f is homogeneous
this bound is tight, meaning there exists a circuit C computing f of size rank (Hf ).

An interesting feature of this theorem is that the upper bound is effective: given a
homogenous polynomial one can construct a circuit computing this polynomial of size
rank (Hf ).

We only prove the lower bound as the upper bound is not used in the rest of the paper
(we refer to Appendix A for the latter). The proof of the lower bound follows the same lines
as Nisan’s original proof for non-commutative ABPs [20].
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20:8 Lower Bounds for Arithmetic Circuits via the Hankel Matrix

Proof. Let C be a circuit computing the non-associative polynomial f : Tree(X)→ K. Let
V⊕ denote the set of addition gates of C. To bound the rank of the Hankel matrix Hf by
|C| = |V⊕| we show that Hf can be written as the sum of |V⊕| matrices each of rank at most
1.

For each v ∈ V⊕ we define two circuits which decompose the computations around v. Let
Cv1 be the restriction of C to descendants of v, and Cv2 be a copy of C with just an extra input
gate labelled by a fresh variable � /∈ X with a single outgoing edge with weight 1 going to v.

We let fv : Tree(X)→ K denote the polynomial computed by Cv1 and gv : Context(X)→
K denote the restriction of the polynomial computed by Cv2 to Context(X) ⊆ Tree(X t{�}).

We show the equality

Hf (c, t) =
∑
v∈V⊕

fv(t)gv(c).

Fix a monomial t ∈ Tree(X) and a context c ∈ Context(X). We let n� denote the leaf
of c labelled by �, which is also the root of t and the node to which t is substituted with in
c[t]. Relying on Lemma 4, we calculate the coefficient f(c[t]) of c[t] in f .

f(c[t]) =
∑

ρ:c[t]→V⊕

val(ρ) =
∑
v∈V⊕

∑
ρ:c[t]→V⊕
ρ(n�)=v

val(ρ) =
∑
v∈V⊕

∑
ρv1 :t→V⊕
ρv1 (n�)=v

∑
ρv2 :c→V⊕
ρv2 (n�)=v

val(ρv1)val(ρv2)

=
∑
v∈V⊕

∑
ρv1 :t→V⊕
ρv1 (n�)=v

val(ρv1)
∑

ρv2 :c→V⊕
ρv2 (n�)=v

val(ρv2) =
∑
v∈V⊕

fv(t)gv(c).

Let Mv ∈ KTree(X)×Context(X) be the matrix given by Mv(t, c) = fv(t)gv(c): its rank is at
most one as Mv is the product of a column vector by a row vector. The previous equality
reads in matrix form Hf =

∑
v∈V⊕Mv. Hence, we obtain the announced lower bound using

rank subadditivity:

rank (Hf ) = rank

∑
v∈V⊕

Mv

 ≤ ∑
v∈V⊕

rank (Mv) ≤ |V⊕| = |C|.

J

The remainder of this paper consists in applying Theorem 5 to obtain lower bounds in
various cases. To this end we need a better understanding of the Hankel matrix: in Section 3
we introduce a few concepts and develop decomposition theorems for the Hankel matrix.

Before digging any deeper we can already give applications of Theorem 5, yielding
simple proofs of non-trivial results from the literature. The first lower bound we obtain is
a separation of VP and VNP in the commutative non-associative setting. It was already
obtained in [12, Theorem 6], and is detailed in Appendix B.

Another early result is an alternative proof of [3, Theorem 26], which gives an exponential
lower bound for the permanent and the determinant against unambiguous circuits in the
associative setting. See Appendix C for full details.

3 Decomposing the Hankel Matrix

Our decomposition of the Hankel matrix relies on the notion of parse trees and partial
derivative matrices, which we formally introduce now.
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3.1 Parse Trees
With any monomial t ∈ Tree(X) we associate its shape shape(t) ∈ Tree as the tree obtained
from t by removing the labels at the leaves.

I Definition 6. Let C be a circuit computing a non-commutative non-associative polynomial
f . A parse tree of C is any shape s ∈ Tree for which there exists a monomial t ∈
Tree(X) whose coefficient in f is non-zero and such that s = shape(t). We let PT (C) =
{shape(t) | f(t) non-zero}.

3.2 Partial Derivative Matrices
We now introduce a well known tool for proving circuit lower bounds, namely, partial
derivative matrices. For A ⊆ [d] of size i , u ∈ Xd−i, and v ∈ Xi, we define the monomial
u⊗A v ∈ Xd: it is obtained by interleaving u and v with u taking the positions indexed by
[d] \A and v the positions indexed by A. For instance x1x2 ⊗{2,4} y1y2 = x1y1x2y2.

I Definition 7. Let f be a homogeneous non-commutative associative polynomial. Let A ⊆ [d]
be a set of positions of size i.

The partial derivative matrix MA (f) of f with respect to A is defined as follows: the
rows are indexed by u ∈ Xd−i and the columns by v ∈ Xi, and the value of MA (f) (u, v) is
the coefficient of the monomial u⊗A v in f .

I Example 8. Let f = xyxy + 3xxyy + 2xxxy + 5yyyy and A = {2, 4}. Then MA (f) is
given below.

_x_x _x_ y _ y_x _ y_ y
x_x_ 0 2 0 1
y_x_ 0 0 0 0
x_ y_ 0 3 0 0
y_ y_ 0 0 0 5

We define a distance dist : P([d]) × P([d]) → N on subsets of [d] by letting dist(A,B)
be the minimal number of additions and deletions of elements of [d] to go from A to B,
assuming that complementing is for free. Formally, dist(A,B) = min{|∆(A,B)|, |∆(Ac, B)|},
where ∆(A,B) = (A \B) ∪ (B \A) is the symmetric difference between A and B.

The following lemma (see e.g., [18]) informally says that, if A and B are close to each
other, then the ranks of the corresponding partial derivative matrices are close to each other
as well. A proof is given in Appendix E.

I Lemma 9. Let f be a homogeneous non-commutative associative polynomial of degree d
with n variables. Then, for any subsets A,B ⊆ [d], rank (MA (f)) ≤ ndist(A,B)rank (MB (f)).

At this point, we have the material in hands to describe a precise characterization of the
size of the smallest Unique Parse Tree circuit which computes a given polynomial. We take
this short detour before moving on to our core lower bound results.

3.3 Characterization of smallest Unique Parse Tree Circuit
Unique Parse Tree (UPT) circuits are non-commutative associative circuits with a unique
parse tree. They were first introduced in [17]. Our techniques allow a slight improvement and
a better understanding of their results. We obtain a small improvement since the original
result requires a normal form which can lead to an exponential blow-up.
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Given a shape s ∈ Tree of size d, i.e., with d leaves and a node v of s, we let sv denote
the subtree of s rooted in v, and Iv ⊆ [d] denote the interval of positions of the leaves of sv
in s. We say that s′ ∈ Tree is a subshape of s if s′ = sv for some v, and that I is spanned by
s if I = Iv for some v.

Let f : Xd → K be a homogeneous non-commutative associative polynomial of degree d,
let s ∈ Tree be a shape of size d, and let s′ be a subshape of s such that v1, . . . , vp are all
the nodes v of s such that s′ = sv. We define

Ms′ =


MIv1

(f)
MIv2

(f)
...

MIvp
(f)

 .

I Theorem 10. Let f : Xd → K be a homogeneous non-commutative associative polynomial
and let s ∈ Tree be a shape of size d. Then the smallest UPT circuit with shape s computing
f has size exactly∑

s′ subshape of s
rank (Ms′) .

Proof. Let C be a UPT circuit with shape s computing f . We let f̃ denote the non-associative
polynomial computed by C. Since C is UPT with shape s, f̃ is the unique non-associative
polynomial which is non-zero only on trees with shape s and projects to f , i.e., f̃(t) = f(u)
if shape(t) = s and t is labelled by u, and f̃(t) = 0 otherwise.

In particular, the size of the smallest UPT circuit with shape s computing f is the same
as the size of the smallest circuit computing f̃ , which thanks to Theorem 5 is equal to the
rank of the Hankel matrix Hf̃ .

The Hankel matrix of f̃ may be non-zero only on columns indexed by trees whose shapes
s′ are subshapes of s, and on such columns, non-zero values are on rows corresponding to a
context obtained from s by replacing an occurrence of s′ by �. The corresponding blocks are
precisely the matrices Ms′ , and are placed in a diagonal fashion, hence the lower bound. J

Theorem 10 can be applied to concrete polynomials, for instance to the permanent of
degree d.

I Corollary 11. Let s ∈ Tree be a shape. The smallest UPT circuit with shape s computing
the permanent has size

∑
v node of s

(
d

|Iv|

)
,

where Iv is the set of leaves in the subtree rooted at v in s. In particular, this is always larger
than

(
d
d/3
)
.

The proof of Corollary 11 is presented in Appendix D. Applied to s being a left-comb,
Corollary 11 yields that the smallest ABP computing the permanent has size 2d + d. Applied
to s being a complete binary tree of depth k = log d, the size of the smallest UPT is Θ

(
2d
d

)
,

showing that this circuit is more efficient than any ABP.
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3.4 General Roadmap
We now get to the technical core of the paper where we establish generic lower bounds
theorems through a decomposition of the Hankel matrix, that we will later instantiate in
Section 4 to concrete classes of circuits. We first restrict ourselves to the non-commutative
setting. Our first decomposition, Theorem 12, seems to capture mostly previously known
techniques. However, the second, more powerful decomposition, Theorem 13, takes advantage
of the global shape of the Hankel matrix. Doing so allows to go beyond previous results only
hinging around considering partial derivatives matrices which only turn out to be isolate
slices of the Hankel matrix.

We later explain in Section 3.6 how to extend the study to the commutative case.
Let f be a (commutative or non-commutative) polynomial for which we want to prove

lower bounds. Consider a circuit C which computes f , and let f̃ be the non-associative
polynomial computed by C. Our aim is, following Theorem 5, to give lower bounds on the
rank of the Hankel matrix Hf̃ . We know that the f̃ and f are equal up to associativity,
which provides linear relations among the coefficients of Hf̃ .

The bulk of the technical work is to reorganize the rows and columns of Hf̃ in order to
decompose it into blocks which may be identified as partial derivative matrices with respect
to some subsets A1, A2, · · · ⊆ [d], of some associative polynomials which depend on f̃ and
sum to f . The number and choice of these subsets depend on the parse trees of the circuit C.

Now, assume there exists a subset A ⊆ [d] which is at distance at most δ to each Ai.
Losing a factor of nδ on the rank through the use of Lemma 9 we reduce the aforementioned
blocks of Hf̃ to partial derivatives with respect to A. Such matrices can then be summed to
recover the partial derivative matrix of f with respect to A, yielding in the lower bound a
(dominating) factor of rank (MA (f)).

3.5 Generic Lower Bounds in the Non-commutative Setting
Following the general roadmap described above, we obtain a first generic lower bound result.

I Theorem 12. Let f : Xd → K be a non-commutative homogeneous polynomial computed
by a circuit C. Let A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at
distance at most δ from A. Then C has size at least rank (MA (f))n−δ|PT (C) |−1.

The crux to prove Theorem 12 is to identify for each parse tree s of C a block in Hf̃

containing the partial derivative matrix MI(s) (fs) where fs is the polynomial corresponding
to the contribution of the parse tree s in the computation of f and I(s) is an interval spanned
by s.

However, we do not consider in this analysis how these blocks are located relative to
each other. A more careful analysis of Hf̃ consists in grouping together all parse trees that
lead to the same spanned interval. Aligning and then summing these blocks we remove the
dependence in |PT (C) | and instead use d2 which is the total number of possibly spanned
intervals of [d]. This yields Theorem 13.

I Theorem 13. Let f be a non-commutative homogeneous polynomial computed by a circuit
C. Let A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at distance at most
δ from A. Then C has size at least rank (MA (f))n−δd−2.

As we shall see in Section 4 the lower bounds we obtain using Theorem 12 match known
results, while using Theorem 13 yields substantial improvements.
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3.6 Extending to the Commutative Setting
We explain how to extend the notions of parse trees and the generic lower bound theorems
to the commutative setting.

Let X = X1 tX2 t · · · tXd be a partition of the variable set X. A monomial is set-
multilinear with respect to the partition if it is the product of exactly one variable from
each set Xi, and a polynomial is set-multilinear if all its monomials are.

The permanent and the determinant of degree d are set-multilinear with respect to the
partitionX = X1tX2t· · ·tXd whereXi = {xi,j , j ∈ [d]}. The iterated matrix multiplication
polynomial is another example of an important and well-studied set-multilinear polynomial.
The partial derivative matrix also make sense in the realm of set-multilinear polynomials.

I Definition 14. Let X = X1 tX2 t · · · tXd, f be a set-multilinear polynomial of degree d,
and A ⊆ [d] be a set of indices. The partial derivative matrix MA (f) of f with respect
to A is defined as follows: the rows are indexed by set-multilinear monomials g with respect
to the partition

⊔
i/∈AXi and the columns are indexed by set-multilinear monomials h with

respect to the partition
⊔
i∈AXi. The value of MA (f) (g, h) is the coefficient of the monomial

g · h in f .

The notion of shape was defined by [3], and it slightly differs from the non-commutative
case because we need to keep track of the indices of the variable sets given by the partition
from which the variables belong. More precisely, given a partition of X = X1 tX2 t · · · tXd,
we associate to any monomial t ∈ Tree(X) of degree d its shape shape(t) ∈ Tree([d]) defined
as the tree obtained from t by replacing each label by its index in the partition. We let
Td ⊆ Tree([d]) denote the set of trees such that all elements of [d] appear as a label of a leaf.

Let C be a commutative circuit. We let f̃ denote the commutative non-associative
polynomial computed by C when it is seen as non-associative. A parse tree of C is any
shape s ∈ Td for which there exists a monomial t ∈ Tree(X) whose coefficient in f̃ is non-zero
and such that s = shape(t). Hence, we let PT (C) =

{
shape(t) | f̃(t) non-zero

}
∩ Td.

Given a shape s ∈ Tree([d]) with d leaves and a node v of s, we let sv denote the subtree
rooted at v and Av ⊆ [d] denote the set of labels appearing on the leaves of sv.

Following the same roadmap as in the non-commutative setting we obtain the following
counterpart of Theorem 12. We assume that the set of variables is partitioned into d parts of
equal size n (this is a natural setting for polynomials such as the determinant, the permanent
or the iterated matrix multiplication). In particular, it means that the polynomials we
consider are of degree d and over nd variables.

I Theorem 15. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d]
and δ ∈ N such that all parse trees of C span a subset at distance at most δ from A. Then C
has size at least rank (MA (f))n−δ|PT (C) |−1.

A notable difference with the non-commutative setting is that now parse trees no longer
span intervals of [d] but subsets of [d]. As a consequence, the technique used to prove
Theorem 13 groups together blocks corresponding to the same subset of [d] and therefore the
multiplicative factor is now 2−d as there are 2d such subsets.

I Theorem 16. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d]
and δ ∈ N such that all parse trees of C span a subset at distance at most δ from A. Then C
has size at least rank (MA (f))n−δ2−d.

While in the non-commutative setting, Theorem 13 strengthens Theorem 12 (when d2 is
small), this is no longer the case in the commutative setting. Indeed, the maximal number
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of commutative parse trees being roughly d! (the exact asymptotic is
√

2−
√

2dd−1

ed(
√

2−1)d+1 , see e.g.,
https://oeis.org/A036774), Theorem 15 and Theorem 16 are incomparable.

4 Applications

In this section we instantiate our generic lower bound theorems on concrete classes of circuits.
We first show how the weaker version (Theorem 12) yields the best lower bounds to date for
skew and small non-skew depth circuits. Extending these ideas we obtain exponential lower
bounds for

( 1
2 − ε

)
-unbalanced circuits, an extension of skew circuits which are just slightly

unbalanced. We also adapt the proof to ε-balanced circuits, which are slightly balanced, then
move on to our main results, which concern circuits with many parse trees.

High-ranked polynomials
The lower bounds we state below hold for any polynomial whose partial derivative matrices
with respect to either a fixed subset A or all subsets have large rank. Such polynomials exist
for all fields in both the commutative and non-commutative settings, and can be explicitly
constructed. For instance the so-called Nisan-Wigderson polynomial given in [15] (inspired
by the notion of designs by Nisan and Wigderson [21]) has this property. It are given by

NWn,d =
∑

h∈Fn[z]
deg(h)≤d/2

d∏
i=1

xi,h(i),

where Fn[z] denotes univariate polynomials with coefficients in the finite field of prime order
n. The fact that there exists a unique polynomial h ∈ Fn[z] of degree at most d/2 which takes
d/2 given values at d/2 given positions exactly implies that the partial derivative matrix of
NWn,d with respect to any A ⊆ [d] of size d/2 is a permutation matrix. This is then easily
extended to any A ⊆ [d].

4.1 Skew, Slightly Unbalanced, Slightly Balanced and Small Non-Skew
Depth Circuits

We show how using Theorem 12 yields exponential lower bounds for four classes of circuits
in the non-commutative setting.

Skew Circuits
A circuit C is skew if all its parse trees are skew, meaning that each node has at least one of
its children which is a leaf. As a direct application of Theorem 12, we obtain the following
result.

I Theorem 17. Let f be a homogeneous non-commutative polynomial such thatM[d/4+1,3d/4] (f)
has full rank nd/2. Then any skew circuit computing f has size at least 2−dnd/4.

Slightly unbalanced circuits
A circuit C computing a homogeneous non-commutative polynomial of degree d is said to be
α-unbalanced if every multiplication gate has at least one of its children which computes a
polynomial of degree at most αd.
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I Theorem 18. Let f be a homogeneous non-commutative polynomial such thatM[d/4+1,3d/4] (f)
has full rank nd/2. Then any

( 1
2 − ε

)
-unbalanced circuit computing f has size at least 4−dnεd.

This result improves over a previously known exponential lower bound on
( 1

5
)
-unbalanced

circuits [18].

Slightly balanced circuits
A circuit C computing a homogeneous non-commutative polynomial of degree d is said to be
α-balanced if every multiplication gate which computes a polynomial of degree k has both
of its children which compute a polynomial of degree at least αk.

I Theorem 19. Let f be a homogeneous non-commutative polynomial such that M[1,d/2] (f)
has full rank nd/2. Then any ε-balanced circuit computing f has size at least 4−dnεd.

Small Non-skew Depth Circuits
A circuit C has non-skew depth k if all its parse trees are such that each path from the
root to a leaf goes through at most k non-skew nodes, i.e., nodes for which the two children
are inner nodes.

We obtain an alternative proof of the exponential lower bound of [18] on non-skew depth
k circuits as an application of Theorem 12. In the statement below A refers to an explicit
subset of [d] that we do not define here (see Appendix M for more details).

I Theorem 20. Let f be a homogeneous non-commutative polynomial of degree d = 12kp
such that MA (f) has full rank nd/2. Then any circuit of non-skew depth k computing f has
size at least 4−dnp/3 = 4−dnd/36k.

4.2 Circuits with Many Parse Trees
We focus on k-PT circuits which are circuits with at most k different parse trees.

The Non-commutative Setting
Lagarde, Limaye, and Srinivasan [16] obtained a superpolynomial lower bound for super-
polynomial k (up to k = 2d

1
3−ε). We first show how to obtain the same result using

Theorem 12.
For s ∈ Treed and A ⊆ [d], we define dist(A, s) = min {dist(A, I) | I spanned by s}. The

following lemma is a subtle probabilistic analysis ensuring the existence of a subset which is
close enough to all k parse trees.

I Lemma 21 (adapted from Claim 15 in [16]). Let s ∈ Treed be a shape with d leaves, and
δ ≤
√
d. Then

Pr
A∼U

(
( [d]
d/2)
) [dist(A, s) > d/2− δ

]
≤ 2−αd/δ

2
,

where α is some positive constant and U
(( [d]
d/2
))

the uniform distribution of subsets of d of
size d/2.

Proof sketch. Following [16], we find a sequence of r = Ω(d/δ2) nodes of s which all span
distant enough subtrees. We then obtain the bound by splitting the previous event into r
essentially independent events. J
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From there, the lower bound is obtained using Theorem 12 and a fine tuning of the
parameters.

I Theorem 22. Let f be a homogeneous non-commutative polynomial such that for all
A ⊆ [d] MA (f) has full rank. Let k = 2d1/3−ε and ε > 0. Then for large enough d, any k-PT
circuit computing f has size at least 2d1/3(logn−d−ε).

Proof. Let C be a k-PT circuit computing f , and δ = d1/3 ≤
√
d. We first show that there

exists a subset A ⊆ [d] which is close to all parse trees in C. Indeed, a union bound and
Lemma 21 yield

Pr
A∼U

(
( [d]
d/2)
) [∃s ∈ PT (C) ,dist(A, s) > d/2− δ

]
≤

∑
s∈PT(C)

Pr
A∼U

(
( [d]
d/2)
) [dist(A, s) > d/2− δ

]
≤ k2−αd/δ

2
= 2d

1/3−ε−αd1/3
< 1,

for large enough d. We now pick a subset A ⊆ [d] of size d/2 such that for all s ∈
PT (C) ,dist(A, s) ≤ d/2 − δ, that is, any s ∈ PT (C) spans an interval I(s) at distance at
most d/2− δ from A. Finally, we apply Theorem 12 to obtain

|C| ≥ rank (MA (f))n−(d/2−δ)k−1 = nd/2n−(d/2−d1/3)2−d
1/3−ε

= 2d
1/3(logn−d−ε). J

We may improve the previous bound by applying Theorem 13 instead of Theorem 12.
Indeed, since Theorem 13 gets rid of the factor k−1 in the lower bound, picking a much
smaller δ (δ = dε/3 instead of d1/3) still leads to a superpolynomial lower bound, while
allowing for more parse trees.

I Theorem 23. Let f be a homogeneous non-commutative polynomial such that for all
A ⊆ [d] MA (f) has full rank. Let k = 2d1−ε and ε > 0. Then for large enough d, any k-PT
circuit computing f has size at least ndε/4

d−2.

The bound 2d1−ε on the number of parse trees is to be compared to the total number of
shapes of size d which is 1

d

(2(d−1)
d−1

)
∼ 4d

d3/2√π ≤ 22d. As explained in the introduction this
means that we obtain superpolynomial lower bounds for any class of circuits which has a
small defect in the exponent of the total number of parse trees.

The Commutative Setting
Arvind and Raja [3] showed a superpolynomial lower bound for sublinear k (up to k = d1/2−ε).
We improve this to superpolynomial k (up to k = 2d1−ε).

Indeed, in the commutative setting, Lemma 21 holds as such (with a shape being an
element of Td, that is, a commutative parse tree of size d). However, the generic lower bound
theorems, namely Theorem 15 and Theorem 16, are not exactly the same, so we obtain
slightly different results. In particular, the two results we obtain are incomparable. Applying
Theorem 15 leads to Theorem 24, whereas Theorem 16 leads to Theorem 25.

I Theorem 24. Let f be a set-multilinear commutative polynomial such that for all A ⊆ [d],
the matrix MA (f) has full rank. Let k = 2d1/3−ε and ε > 0. Then for large enough d, any
k-PT circuit computing f has size at least 2d1/3(logn−d−ε).

I Theorem 25. Let f be a set-multilinear commutative polynomial such that for all A ⊆ [d],
the matrix MA (f) has full rank. Let k = 2d1−ε and ε > 0. Then for large enough d, any
k-PT circuit computing f has size at least ndε/42−d.
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TECHNICAL APPENDIX

The permanent and determinant are the two most studied polynomials in this area,
they are homogeneous polynomials of degree d over the d2 variables {xi,j | 1 ≤ i, j ≤ d}
defined by

Per =
∑
σSd

d∏
i=1

xi,σ(i) Det =
∑
σSd

(−1)sig(σ)
d∏
i=1

xi,σ(i)

where σ ranges over permutations of [d].

A Proof of the Upper Bound in Theorem 5

We prove the upper bound in Theorem 5 that we recall below.

Theorem 5 (Upper bound). Let f be a non-associative homogeneous polynomial and
let Hf be its Hankel matrix. Then, the size of the smallest circuit computing f is exactly
rank (Hf ).

We first give a construction of a circuit, then provide and prove by induction a strong
invariant which implies that the circuit does indeed compute f . For every t ∈ Tree(X), we
let Ht denote the corresponding column in the Hankel matrix, i.e. Ht : c 7→ c[t].

Let T ⊆ Tree(X) be such that (Ht)t∈T is a basis of {Ht | t ∈ Tree(X)}. In particular
T has size rank (Hf ). For any t′ ∈ Tree(X), we let αt′t denote the coefficient of Ht in the
decomposition of Ht′ on (Ht)t∈T , that is,∑

t∈T
αt
′

t Ht = Ht′ . (1)

We may now explicitly define circuit C:
The addition gates are (identified with) elements of T . The output value of t ∈ T is f(t).
The input gates are given by elements of X (and the matching label). The input gate
x ∈ X has an outgoing arc to the addition gate t ∈ T with weight αxt .
The multiplication gates are given by elements (t0, t1, t) ∈ T 3. Such a multiplication gate
has an incoming arc from t0 on the left, an incoming arc from t1 on the right, and an
outgoing arc to t, with weight αt1·t2t .

Note that the size of C is |T | = rank (Hf ).
For C to be well-defined as a circuit, it remains to show that its underlying graph is acyclic.

This is implied by the fact that αt1·t2t may only be non-zero if deg(t) = deg(t1) + deg(t2),
which we now prove. Since f is homogeneous of degree d, Ht may be non-zero only on
contexts c such that deg(c[t]) = d, that is, deg(c) = d−deg(t) + 1. Hence, the set {Ht, t ∈ T}
may be partitioned according to the degree of t into parts with disjoint support, so for the
decomposition (1) to hold, it must be that αt′t 6= 0 implies deg(t) = deg(t′).

For t ∈ T , we let gt : Tree(X)→ K denote the polynomial computed at gate t in C. We
will now show, by induction on the size of t′ ∈ Tree(X), that

gt(t′) = αt
′

t .
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If t′ = x ∈ X, then gt(t′) = αxt , so the base case is clear. We now assume that t′ = t′1 · t′2 ∈
Tree(X), and show that

∑
t∈T gt(t′)Ht = Ht′ , which is enough to conclude by uniqueness

of the decomposition in (1). For that we will show that the previous equality holds for any
context c ∈ Context(X).

We first remark the following

∑
t∈T

gt(t′)Ht =
∑
t∈T

 ∑
t1,t2∈T

αt1·t2t gt1(t′1)gt2(t′2)

Ht

=
∑
t∈T

 ∑
t1,t2∈T

αt1·t2t α
t′1
t1α

t′2
t2

Ht

=
∑

t1,t2∈T
α
t′1
t1α

t′2
t2

(∑
t∈T

αt1·t2t Ht

)

=
∑

t1,t2∈T
α
t′1
t1α

t′2
t2Ht1·t2 .

Now, let c ∈ Context(X). For any tree t ∈ Tree(X), we define c1
t = c[� · t] ∈ Context(X),

and c2
t = c[t ·�] ∈ Context(X) (see Figure 3). Then for any t1, t2, c[t1 · t2] = c1

t2 [t1] = c2
t1 [t2].

Figure 3 A context c, and the contexts c1
t2 and c2

t1 .

Evaluating at c, we now obtain∑
t∈T

gt(t′)Ht(c) =
∑

t1,t2∈T
α
t′1
t1α

t′2
t2Ht1·t2(c) =

∑
t1,t2∈T

α
t′1
t1α

t′2
t2f(c[t1 · t2])

=
∑

t1,t2∈T
α
t′1
t1α

t′2
t2f(c1

t2 [t1]) =
∑

t1,t2∈T
α
t′2
t2Ht1(c1

t2)

=
∑
t2∈T

α
t′2
t2Ht′1

(c1
t2) =

∑
t2∈T

α
t′2
t2Ht′1·t2(c)

=
∑
t2∈T

α
t′2
t2f(c2

t′1
[t2]) =

∑
t2∈T

α
t′2
t2Ht2(c2

t′1
) = Ht′2

(c2
t′1

)

= Ht(c),

which proves the wanted invariant, namely gt(t′) = αt
′

t . Hence, the value computed by the
circuit for monomial t′ is precisely∑

t∈T
gt(t′)f(t) =

∑
t∈T

αt
′

t Ht(�) = Ht′(�) = f(t′),

which concludes the proof.
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B Separation of commutative non-associative VP and VNP

We now give an alternative separation argument of the classes VP and VNP in the
commutative non-associative setting. The original proof is due to [12, Theorem 6], it exhibits
a polynomial which requires a superpolynomial circuit to be computed. We give a different
polynomial but our bounds are very similar.

I Corollary 26. Let f be the commutative non-associative polynomial of degree 2d and over
two variables x0 and x1 defined by

f =
∑

ε1,...,εd∈{0,1}

(((· · · (xε1xε2)xε3) · · · )xεd)2.

Any circuit computing f has size at least 2d−1.

Proof. We give a lower bound on the rank of the Hankel matrix. We look at the submatrix
restricted to contexts with (d+ 1) leaves of the form (((· · · (((xε1 · xε2) xε3) xε4) · · · ) xεd)�)
and to rows with d leaves of the form ((· · · (((xε′1 · xε′2) xε′3) xε′4) · · · ) xε′

d
). This matrix is

(almost) a permutation matrix of size 2d, the only difference being the symmetry between
the two leaves at the top of the comb, hence it has rank 2d−1. J

C Lower bound against associative unambiguous circuits

We give a lower bound for unambiguous circuits computing the associative permanent or
determinant. A circuit is said unambiguous, if for each (associative) monomial m, there is
at most one tree t labelled by m such that C has a run over t. Note that this notion makes
sense in both the commutative and the non-commutative settings. Our lower bounds hold in
both settings.

I Corollary 27. Any unambiguous circuit computing the determinant or the permanent has
size at least

(
n
n/3
)
.

Proof. Consider an unambiguous circuit computing the permanent (the proof is easily
adapted to a circuit computing the determinant) of degree n on variablesX = {xi,j | i, j ∈ [n]}.
For any permutation σ, let tσ ∈ Tree(X) be the (non-associative) monomial along which
there is a run computing the (associative) monomial x1,σ(1)x2,σ(2) · · ·xn,σ(n). Then, the
non-associative polynomial f̃ computed by C when it is seen as a non-associative circuit is
precisely f̃ =

∑
σ tσ. According to Theorem 5, it suffices to lower bound the rank of Hf̃ .

Let (A,S) ⊆ [n]2 be a pair of subsets. We let TA→S ⊆ Tree(X) be the subset of trees
t such that the set of first (resp. second) indices of the labels of t is precisely A (resp. S).
Symmetrically, let CA→S ⊆ Context(X) be the subset of contexts c such that the set of
first (resp. second) indices of the labels (except for the �) of c is precisely [n] \ A (resp.
[n] \ S). If (A,S) 6= (A′, S′), then TA→S and TA′→S′ are disjoint, as is the case for CA→S
and CA′→S′ . Moreover, if t ∈ TA→S and c ∈ CA′→S′ , it must be that f̃(c[t]) = 0. Hence,
Hf̃ is a block-diagonal matrix, with blocks HA,S being given by restricting the columns to
some TA→S and the rows to CA→S . Note that if |A| 6= |S| then HA,S = 0. In particular,
rank

(
Hf̃

)
=
∑
A,S⊆[n]
|A|=|S|

rank (HA,S). We now show using a counting argument that an

exponential number of such blocks are non-zero and hence, have rank at least 1.
For all permutations σ, we choose a subtree t′σ of tσ which has size in [n/3, 2n/3], and let

(Aσ, Sσ) be such that t′σ ∈ TAσ→Sσ . Note that n/3 ≤ |Aσ| = |Sσ| = |t′σ| ≤ 2n/3, and that
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HAσ,Sσ 6= 0. Moreover, it must be that σ(Aσ) = Sσ. Hence, if A,S ⊆ [n] are fixed such that
n/3 ≤ |A| = |S| ≤ 2n/3,

|{σ | Aσ = A and Sσ = S}| ≤ |{σ | σ(A) = S}| ≤
(n

3

)
!
(

2n
3

)
!

Hence, the number of non-zero blocks HA,S is at least

n!(
n
3
)
!
( 2n

3
)
!

=
(
n

n/3

)
which concludes the proof. J

This proof goes beyond the case of unambiguous circuits. It is actually sufficient to
assume that all non-associative monomials t such that f̃(t) 6= 0 are labelled by a monomial
of the form x1,σ(1)x2,σ(2) · · ·xn,σ(n) for some permutation σ.

D Proof of Corollary 11

We now give a formal proof of Corollary 11.

Corollary 11. Let s ∈ Tree be a shape. The smallest UPT circuit with shape s computing
the permanent has size∑

v node of s

(
d

|Iv|

)
,

where Iv is the set of leaves in the subtree rooted at v in s. In particular, this is always larger
than

(
d
d/3
)
.

Proof. Let s′ be a sub-shape of s, and v1, ..., vp be all the nodes of s such that svi = s′. Let
` = |Ivi | which does not depend on i. There are no i 6= j such that vi is a descendant of
vj , so the Ivi are pairwise disjoint. Let Ivi = [ai, ai + ` − 1]. The coefficient of MIvi

(Per)
in (u,w) ∈ Xd−` × X`, namely, Per(u ⊗Ivi w), may be non-zero only if w is of the form
xai,b1xai+1,b2 · · ·xai+`−1,b` for some b1, . . . , b` ∈ [d]. In particular, the MIvi

(Per) have
non-zero columns with disjoint supports, so rank (Ms′) =

∑
i rank

(
MIvi

(Per)
)
.

We claim now that rank
(
MIvi

(Per)
)

=
(
d
`

)
, which leads to the announced formula.

Indeed, any subset A of [d] of size ` corresponds to a block full of 1 in the matrix MIvi
(Per)

in the following way: Per(u⊗Ivi w) = 1 whenever u is a monomial whose first indices are
[d] \ Ivi and the second indices are any permutation of [d] \A, and w is a monomial whose
first indices are Ivi and the second indices are any permutation of A. Two such blocks have
disjoint rows and columns, and these are the only 1’s in MIvi

(Per). Moreover, there are
(
d
`

)
such sets A.

J

E Proof of Lemma 9

For the sake of completeness, this appendix contains the proof of Lemma 9 that can be found
in [16].

Lemma 9. Let f be a homogeneous non-commutative associative polynomial. Then, for
any subsets A,B ⊆ [d], rank (MA (f)) ≤ ndist(A,B)rank (MB (f)).
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Without loss of generality, we can assume that dist(A,B) = |∆(A,B)| (by transposing
the matrix MA (f) if necessary).

We prove the statement by induction on d = |∆(A,B)|. If d = 0, this is trivial since
A and B are identical in this case. For the case d = 1, let us suppose that A = B ∪ {i}
(the other case being very similar). We divide MA (f) into horizontal blocks that we call
MA (f)x, corresponding to the monomials for which the position i is occupied by the variable
x. Therefore the rank of MA (f) is upper bounded by

∑
x rank (MA (f)x), but each MA (f)x

is a submatrix of MB (f) so that rank (MA (f)x) ≤ rank (MB (f)), hence the result.
If d > 1, we first find a set C such that |∆(A,C)| = 1 and |∆(C,B)| = d − 1, and we

conclude by applying the induction hypothesis and using the case d = 1.

F Proof of Theorem 12

This appendix is devoted to the proof of Theorem 12 that we recall below.

Theorem 12. Let f : Xd → K be a non-commutative homogeneous polynomial computed
by a circuit C. Let A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at
distance at most δ from A. Then C has size at least rank (MA (f))n−δ|PT (C) |−1.

The proof relies on a better understanding of the structure of the Hankel matrix H = Hf̃

of a general non-associative polynomial f̃ : Tree(X)→ K.

More precisely, we organize the columns and rows ofH in order to write it as a block matrix
in which we can identify and understand the blocks in terms of partial derivative matrices of
some non-commutative (but associative) polynomials which will eventually correspond to
parse trees. In the following we refer to Figure 4 for illustration of the decompositions.

Figure 4 Decomposing H as blocks Hp
i,j , which further decompose into partial derivative matrices.

Here, I denotes the interval [p, p + i− 1].

Recall that Treek(X) ⊆ Tree(X) denotes the set of trees with k leaves, and let Contextk(X) ⊆
Context(X) denote the set of contexts with k leaves (among which one is labelled by
�). Note that any tree t ∈ Treed(X) decomposes into 2d − 1 different couples (t′, c) ∈
Treek(X)×Contextd−k+1(X) for some k, such that c[t′] = t, which correspond to the 2d− 1
nodes in t. We further partition Contextk(X) =

⋃k
p=1 Context

p
k (X), with Contextpk (X)

being the set of contexts where � is on the p-th leaf.



N. Fijalkow, G. Lagarde, P. Ohlmann and O. Serre 20:21

Using these partitions for trees and contexts, we may write H as a block matrix with
blocks Hi,j = H|Treei(X)×Contextj(X) . Using the finer refinement of contexts, we write block
Hi,j as a tower1 of sub-blocks Hp

i,j , for p ∈ j, where H
p
i,j = H|Treei(X)×Contextp

j
(X)

. We now

focus on Hp
i,j , which we will decompose into blocks that are partial derivative matrices of

some homogeneous non-commutative polynomials on the interval [p, p+ i− 1].
As Treei(X) is the set of trees with i leaves, it can be seen as all possible labeling of shapes

with i leaves by variables in X. Hence, Treei(X) ' Treei×Xi ' Treei×X [p,p+i−1]. Likewise,
Contextpj (X) is the set of contexts with j leaves and � on the p-th leave, which can be seen
as Contextpj (X) ' Contextpj × Xj−1 ' Contextpj × X [1,i+j−1]\[p,p+i−1], where Contextpj
is the set of contexts of size j with no labels, except for a unique � on the p-th leaf. We
now let, for any shape s ∈ Treei+j−1, the non-commutative (but associative) homogeneous
polynomial fs of degree i+ j − 1 be defined by

fs : Xi+j−1 → K

u 7→ f̃(s labelled by u)

Now, grouping the columns t ∈ Treei(X) of Hp
i,j which correspond to the same shape

s ∈ Treei, and the rows c ∈ Contextpj (X) which correspond to the same shape (of context)
r ∈ Contextpj , we obtain a block matrix, in which the block indexed by (s, r) is precisely the
partial derivative matrix M[p,p+i−1]

(
fr[s]

)
.

In the following, we will be interested in non-associative polynomials f̃ : Tree(X)→ K

which project to a given associative f : X∗ → K, meaning that for each u ∈ X∗,

∑
t∈Tree(X)
label(t)=u

f̃(t) = f(u).

In this setting, one can see the decomposition f =
∑
s∈Tree fs as a decomposition over parse

trees of a circuit computing f , fs being the contribution of the parse tree s in the computation
of f . We have seen that if I = [p, p+ i−1] is an interval such that s decomposes into s = r[s′]
for (s′, r) ∈ Treei ×Contextpj , which means that I is spanned by s, then MI (fs) appears as
a sub-matrix of H. Hence,

rank (H) ≥ max
s∈Tree

I spanned by s

MI (fs) . (2)

Now, we have all the necessary tools to prove Theorem 12. Let f̃ : Tree(X)→ K be the
non-associative polynomial computed by C when it is seen as a non-associative circuit. For any
shape s ∈ Treed, let fs : Xd → K be defined as previously. In particular,

∑
s∈PT(C) fs = f.

With a shape s ∈ PT (C), we associate an interval I(s) spanned by s and such that
dist(A, I(s)) ≤ δ. Then we have

1 Recall that contexts label the rows of H.
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rank (MA (f)) = rank

 ∑
s∈PT(C)

MA (fs)


≤

∑
s∈PT(C)

rank (MA (fs)) by rank subadditivity

≤
∑

s∈PT(C)

nδrank
(
MI(s) (fs)

)
by Lemma 9

≤ |PT (C) |nδrank (H) by equation (2)

Since, by Theorem 5, rank (H) ≥ rank (MA (f))n−δ|PT (C) |−1 is a lower bound on |C|,
we obtain the announced result.

G Proof of Theorem 13

This appendix is devoted to the proof of Theorem 13, which is a refinement of the proof of
Theorem 12, given in Appendix F. In particular, we will use, without re-introducing them,
some notations used in Appendix F.

Theorem 13. Let f be a non-commutative homogeneous polynomial computed by a circuit
C. Let A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at distance at most
δ from A. Then C has size at least rank (MA (f))n−δd−2.

Before going on to the formal proof, we start by giving a high-level interpretation of the
techniques used to go from Theorem 12 to Theorem 13. Our aim is still to lower bound the
rank of the Hankel matrix H = Hf̃ of some (unknown) non-associative polynomial f̃ , under
the constraints that, for each u ∈ X∗,∑

t∈Tree(X)
label(t)=u

f̃(t) = f(u),

for some non-commutative (but associative) polynomial f : X∗ → K that we control. Given
the form of our constraints, a natural strategy would be to sum some well chosen sub-matrices
of H in order to obtain a matrix that depends only on f , which we could choose to have
high rank.

As exposed earlier when proving Theorem 12, it is possible to decompose f as the sum
of some fs’s, where s ranges over the shapes used by f̃ , and then obtain partial derivative
matrices of the fs’s with respect to interval spanned by s, as sub-matrices of H. If one can
find a subset A ⊆ [d] such that each s spans an interval I(s) that is δ-close to A for some
small δ, then one obtains a lower bound for polynomials f with high rank with respect to A.

This first method leads to Theorem 12 as exposed in Appendix F, and it is already
strong enough to prove several lower bounds. We believe that in many occurrences in the
literature, when obtaining lower bounds involving a circuit decomposition and a partial
derivative matrix with respect to a given partition of the set of positions [d], this is somehow
the underlying method.

However, this method poorly makes use of the structure of H, since it may happen that
some of the chosen sub-blocks are face to face with one another. A short illustration of this
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phenomenon is the following. Let

M =


A1,1 A1,2
A2,1 A2,2

C1

C2
B1,1 B1,2
B2,1 B2,2


be a block matrix, for which one wants to obtain a lower bound on the rank, knowing a lower
bound on rank

(∑
i,j Ai,j +Bi,j

)
, and with no assumption on the Ci’s.

The previous method would go as follows:

rank (M) ≥ max
[
max
i,j

rank (Ai,j),max
i,j

rank (Bi,j)
]
≥ 1

8
∑
i,j

rank (Ai,j) + rank (Bi,j)

≥ 1
8 rank

∑
i,j

Ai,j +Bi,j

 .

Note that we have lost a factor of 8, which is the number of small blocks that we wish to
sum.

A more efficient method would consist in first summing rows and columns of M in order
to put together the A’s and the B’s. This would go as follows, for some matrices C ′1 and C ′2,

rank (M) ≥ rank
([∑

i,j Ai,j C ′1
C ′2

∑
i,j Bi,j

])
≥ max

rank
∑

i,j

Ai,j

 , rank

∑
i,j

Bi,j


≥ 1

2 rank

∑
i,j

Ai,j +Bi,j

 .

By doing so, we have decreased the factor 8 to 2, which is the number of larger blocks.
Going back to the matrix H, this corresponds to putting together the polynomials fs

for which we have chosen the same spanned interval (this corresponds to d2 larger blocks)
instead of considering them separately (which corresponds to |PT (C) | smaller blocks). We
now formalize this idea, using a total order to model the choice of intervals for convenience.

I Lemma 28. Let f̃ : Tree(X)→ K be a non-associative non-commutative polynomial and
let ≤int be a total order on intervals of [d]. For any shape s, we let I(s) be the smallest (with
respect to ≤int) interval spanned by s. For any interval I, we define a non-commutative
associative polynomial by

fI : X∗ → K

u 7→
∑

t∈Tree(X)
label(t)=u

I(shape(t))=I

f̃(t).

Then,

rank
(
Hf̃

)
≥ max

I
rank (MI (fI)) .

Proof. Our aim is to obtain MI (fI) from Hf̃ , by first taking a sub-matrix, then adequately
summing its rows and columns. The proof is summarized in Figure 5.
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Figure 5 Decomposition of the Hankel matrix used in the proof of Lemma 28. Here, I = [p, p+i−1].

Let I = [p, p+i−1] be some fixed interval and j = d−i+1. The proof relies on the fact that
for any shape s ∈ Treed, I = I(s) if and only if s = r[s′] for some (s′, r) ∈ Treei × Contextpj
such that I is the smallest interval spanned by r, and also the smallest interval spanned by s′
(when it is assumed that all intervals are shifted by p), these two conditions being somehow
independent.

Now, for any node v of shape of a context r ∈ Contextpj , we define the interval I ′v by

I ′v =


[a, b] if b < p

[a, b+ i− 1] if a ≤ p ≤ b
[a+ i− 1, b+ i− 1] if a > p,

where [a, b] is the interval of positions in r of the leaves that are descendants of v in r. The
interval I ′v is to be seen as the interval of positions of the leaves that are descendants of v in
some r[s′] where s′ is any element of Treei. In particular, if v is the leaf labelled by � in r,
then I ′v = I.

Likewise, for a node v of a (sub)shape s′ ∈ Treei, we define I ′v by I ′v = [a+p−1, b+p−1],
where [a, b] is the interval of positions of descendants of v in s′. Note that if v is the root of
s′ then Iv = I. We may now define

CI = {r ∈ Contextpj | I = min
v node in r

I ′v},

and

TI = {s′ ∈ Treei | I = min
v node in s′

I ′v}.

We extend these subsets to labelled trees and context in a straightforward fashion by
defining C̃I = {c ∈ Contextpj (X) | shape(c) ∈ CI} and T̃I = {t ∈ Treei(X) | shape(t) ∈ TI}.
We now consider the submatrix H̃I of Hp

i,j where the rows are restricted to C̃I and the
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columns to T̃I . In this matrix, we now sum the rows which have the same label, and the
columns which have the same label, to obtain matrix HI . Clearly, rank (HI) ≤ rank

(
Hf̃

)
.

We finally prove that HI = MI (fI) . Indeed, let g ∈ XI ' Xi and h ∈ Xd\A ' Xj . Then

MI (fI) (g, h) =
∑

t∈Tree(X)
label(t)=g⊗Ih
I(shape(t))=I

f̃(t) =
∑
s∈TI
c∈CI

label(s)=g
label(c)=h

f̃(c[s]) = HI(g, h),

which concludes the proof of Lemma 28. J

With Lemma 28 in hands, we may now prove Theorem 13. Let f̃ : Tree(X)→ K be the
non-associative polynomial computed by C when seen as non-associative. Let ≤int be a total
order on intervals of d such that I 7→ dist(I, A) is non-decreasing. In other words, I1 <int I2
if and only if d(I1, A) < d(I2, A). Let fI : Xd → K be given by

fI(u) =
∑

t∈Tree(X)
label(t)=u

I(shape(t))=I

f̃(t).

Then any interval I such that d(I, A) > δ is such that for every parse tree s ∈ PT (C), one
has I 6= I(s), so fI = 0. Hence, we obtain

rank (MA (f)) = rank

MA

 ∑
I interval of [d]

fI



= rank

MA

 ∑
I interval of [d]
dist(A,I)≤δ

fI




≤
∑

I interval of [d]
dist(A,I)≤δ

rank (MA (fI)) by rank subadditivity

≤
∑

I interval of [d]
dist(A,I)≤δ

nδrank (MI (fI)) by Lemma 9

≤ d2nδrank
(
Hf̃

)
by Lemma 28

which yields the announced lower bound.

H Proof of Theorem 15

We now give the proof of Theorem 15 which is the following. As this proof is an adaptation to
the commutative setting of the proof of Theorem 12 given in Appendix F, we only highlight
the changes.

Theorem 15. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d]
and δ ∈ N such that all parse trees of C span a subset at distance at most δ from A. Then C
has size at least rank (MA (f))n−δ|PT (C) |−1.
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Let X1 tX2 t · · · tXd = X denote the underlying partition. Previously, we grouped
together (sub-)trees and (sub-)contexts which correspond to a given interval of positions. In
the commutative setting, we instead group together the (sub-)trees and (sub-)contexts which
correspond to a given subset of positions, where a position is now being given by its index in
the partition. Formally, for A ⊆ [d], we let

TreeA(X) = {t ∈ Tree(X) | the set of indices of variables labeling t is A},

and likewise,

ContextA(X) = {c ∈ Context(X) | the set of indices of variables
(different from �) labeling c is A},

and finally HA = H|TreeA(X)×ContextAc (X) .
Now, grouping together the columns of HA which correspond to trees which have a given

fixed shape s′ (recall that a commutative shape contains the index in the partition of each
leaf), and the rows which correspond to contexts which have a given fixed shape of context
r yields the partial derivative matrix MA

(
fr[s′]

)
, where the (commutative, associative)

polynomial fs is defined, for any commutative shape s, by

fs(u) = f̃(s labelled by u),

where the labeling respects the partition of X. Hence, rank (H) ≥ rank (MA (fs)) whenever
A is spanned by s. The remainder of the proof exactly follows Appendix F.

I Proof of Theorem 16

We now give the proof of Theorem 16 which is the following.

Theorem 16. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d]
and δ ∈ N such that all parse trees of C span a subset at distance at most δ from A. Then C
has size at least rank (MA (f))n−δ2−d.

Again, we extend the ideas for the non-commutative setting (see Appendix G) to the
commutative setting, and we reuse the notations of Appendix H. As for proving Theorem 13,
we start with a Lemma.

I Lemma 29. Let f̃ : Tree(X) → K be a non-associative commutative polynomial and
let ≤int be a total order on subsets of [d]. For any commutative shape s, we let A(s) be
the smallest (with respect to ≤int) subset spanned by s. For any subset A, we define a
commutative associative polynomial by

fA(u) =
∑

t∈Tree(X)
label(t)=u

A(shape(t))=A

f̃(t).

Then,

rank
(
Hf̃

)
≥ max

A
rank (MA (fA)) .

The proof of Lemma 29 is very similar, yet (surprisingly!) a bit more pleasant than that
of Lemma 28, since we no longer need to shift any interval. Formally, for A ⊆ [d] we define

TA = {t ∈ TreeA(X) | A is the smallest interval spanned by shape(t)},
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and likewise,

CA = {c ∈ ContextA(X) | A is the smallest interval spanned by shape(c)}.

Now, the lemma follows from the fact that MA (fA) is obtained by summing rows from TA

and columns from CA in H.
The remainder of the proof is a very straightforward adaptation of the end of the proof

of Theorem 13 from Appendix G.

J Proof of Theorem 17

We now give the proof of Theorem 17 which is the following.

Theorem 17. Let f be a homogeneous non-commutative polynomial such thatM[d/4+1,3d/4] (f)
has full rank nd/2. Then any skew circuit computing f has size at least 2−dnd/4.

The proof relies on the following easy observations.
Any skew tree spans intervals of each possible size, and in particular, an interval of size
3d/4.
Any interval of size 3d/4 is at distance at most (in fact, equal to) d/4 from Imid =
[d/4 + 1, 3d/4] (see Figure 6).

Figure 6 Any interval I of size 3d
d

is at distance d
4 from Imid.

A skew circuit has only skew parse trees, which all span an interval of size 3d/4. Such an
interval is at distance d/4 from Imid, so the announced lower bound follows directly from
Theorem 12, together with the fact that there are 2d skew trees.

I Remark 30. Note that the factor 2−d is easily replaced by d−2 by applying Theorem 13
instead, but we find it remarkable that simply using a decomposition of H into blocks is
enough to obtain such an exponential lower bound.

K Proof of Theorem 18

We now give the details for the exponential lower bound on
( 1

2 − ε
)
-unbalanced circuits.

This is really the same idea as for skew circuits. Note that we use Theorem 12 with δ being
really close to d/2, which will also be the case for k-PT circuits.

Theorem 18. Let f be a homogeneous non-commutative polynomial such thatM[d/4+1,3d/4] (f)
has full rank nd/2. Then any

( 1
2 − ε

)
-unbalanced circuit computing f has size at least 4−dnεd.

We now rely on these two observations:
Any ( 1

2 − ε)-unbalanced shape spans an interval of size between 3d/4− ( 1
2 − ε)d/2 and

3d/4 + ( 1
2 − ε)d/2, that is, between d/2 + dε/2 and d− dε/2.

Any such interval is at distance at most d/2− ε/2 from [d/4, 3d/4].
We finally conclude by applying Theorem 12, just as for skew circuits.
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L Proof of Theorem 19

We now give the details for the exponential lower bound on ε-balanced circuits.
Theorem 19. Let f be a homogeneous non-commutative polynomial such that M[1,d/2] (f)
has full rank nd/2. Then any ε-balanced circuit computing f has size at least 4−dnεd.

Let s be an ε-balanced shape, and r be the root of s. Let I = [1, b] be the interval spanned
by the left child of r. Since s is ε-balanced, εd ≤ |I| = b ≤ (1− ε)d. Hence, I is at a distance
of atmost d/2− ε from [1, d/2], which allows us to conclude using Theorem 12. Note that it
is sufficient to just restrict the last multiplication in the circuit to be ε-balanced.

M Proof of Theorem 20

This appendix is devoted to the proof of Theorem 20 that we recall below. We will make
extended use of the subset A ⊆ [d] introduced in [18],

A = [1, 3kp] ∪
3k⋃
i=1

[3(k + i)p+ 2p+ 1, 3(k + i+ 1)p] ⊆ [d],

of size d/2 which is better understood in Figure 7.

Figure 7 Subset A ⊆ [d].

Theorem 20. Let f be a homogeneous non-commutative polynomial of degree d = 12kp
such that MA (f) has full rank nd/2. Then any circuit of non-skew depth k computing f has
size at least 4−dnp/3 = 4−dnd/36k.

We shall prove that any s ∈ Treed with non-skew depth k spans an interval I(s) at
distance ≤ d/2− p/3 from A. Then, the result follows by applying Theorem 12.

Assume towards contradiction that a non-skew depth k shape s ∈ Treed spans only
interval at distance > d/2− p/3 from A. We consider (see Figure 8) the path v1 · · · vr in s
from its root to the leaf with position 3kp, and write ui for i ∈ r − 1, to refer to the child
node of vi which is not vi+1 (see Figure 8). Since s has non-skew depth k, at least r − k
nodes among v1, . . . , vr−1 are leaves.

We now state and prove some facts which then lead to a contradiction:

Fact 1. For every i ∈ [r], if vi is the left child of ui then |Ivi | < p/3.
Indeed, vi being at the left of the path to the leaf at position 3kp, Ivi ⊆ [1, 3kp] ⊆ A. But
dist(Ivi , A) > d/2− p/3, so it must be that |Ivi | < p/3.

Fact 2. For every i ∈ [r], if vi is the right child of ui then |Ivi | < 5p.
Likewise, we now have Ivi ⊆ [3kp+1, d]. Intuitively, a large interval in this zone must contain
roughly twice as much elements from Ac than from A, so they cannot be at distance close to
the maximum d/2. Formally, each block of the form [3(k + i)p+ 2p+ 1, 3(k + i+ 1)p] ⊆ A
which intersects Ivi , apart possibly from the rightmost one, is such that [3(k + i+ 1)p, 3(k +
i + 1)p + 2p] ⊆ Ac is contained in Ivi . Now, if l is the number of such blocks, it follows
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Figure 8 The path from the root v1 to vr, the leaf with position 3kp.

that |Ivi ∩ A| ≤ lp + p and |Ivi ∩ Ac| ≥ 2lp. If |Ivi | > 5p, then either l ≥ 2 which implies
d(A, Ivi) = d/2− (|Ac ∩ Ivi | − |A ∩ Ivi |) ≤ d/2− 2lp+ lp− p ≤ d/2− p, a contradiction, or
l = 1, in which case |Ivi ∩ Ac| = |Ivi | − |Ivi ∩ A| ≥ 5p − 2p = 3p which leads to the same
contradiction.

Fact 3. It must be that r ≥ 7kp.
Indeed, since [1, d] \ {3kp} = [1, 12kp] \ {3kp} is covered by the Ivi , which have size bounded
by 5p and among which all but k may have size > 1, there must be at least 12kp− 5kp = 7kp
of them.

Fact 4. There is some index i0 such that vi0 , vi0+1, . . . , vi0+7p−1 are all leaves in s.
Indeed, only k among the 7kp vi’s may not be leaves, so there must be 7p successive indexes
i such that vi is a leaf.

We now consider the decreasing sequence Ivi0 ⊇ Ivi0+1 ⊇ · · · ⊇ Ivi0+7p−1 of intervals
(where the nodes vi0 , vi0+1, . . . , vi0+7p−1 are those given by Fact 4), which we simply denote
I1 ⊇ I2 ⊇ · · · ⊇ I7p. Each Ii = [ai, bi] contains 3kp, and |Ii+1| = |Ii| + 1. We put
ni = |Ii ∩A| and mi = |Ii ∩Ac|. Fact 1 stating that d(A, Ii) > d/2− p/3 can be rewritten as
|ni −mi| ≤ p/3. We now prove that there must be i1 ≤ 6p such that bi1 is a multiple of 3p.

Indeed, otherwise b1−b6p ≤ 3p−1 so a6p−a1 ≥ 3p+1, hence n6p−n1 ≥ a6p−a1 ≥ 3p+1,
but since m6p −m1 ≤ 2p,

p/3 ≥ n6p −m6p ≥ 3p+ 1 + n1 −m6p ≥ 3p+ 1 + n1 −m1 − 2p ≥ p+ n1 −m1,

so n1 −m1 ≤ −2p/3, a contradiction.
Since bi1 is a multiple of 3p, both intervals [ai1 , ai1 + p − 1] and [bi1 − p + 1, bi1 ] are

contained in A. Hence, ni1+p = ni1 + p, whereas mi1+p = mi1 , which contradicts the fact
that |ni1 −mi1 | ≤ p/3 and |ni1+p −mi1+p| ≤ p/3.

N Proof of Lemma 21

We now prove the main technical result to obtain a lower bound on k-PT, which is adapted
from [16] in our vocabulary. It holds in both the commutative and the non-commutative
settings (even though it was originally proved only in the non-commutative setting).
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Lemma 21 (adapted from Claim 15 in [16]]). Let s ∈ Treed be a shape with d leaves, and
δ ≤
√
d. Then

Pr
A∼U

(
( [d]
d/2)
) [dist(A, s) > d/2− δ

]
≤ 2−αd/δ

2
,

where α is some positive constant and U
(( [d]
d/2
))

the uniform distribution of subsets of d of
size d/2.

We shall use an intermediate result from the aforementioned paper. Their proof can be
read just as such in the commutative setting.

I Lemma 31 (Subclaim 21 in [16]). Let s ∈ Treed, and r, t be integers such that rt ≤ d/4.
Then there exists a sequence v1, ..., vr of nodes of s such that for all i ∈ [r],∣∣∣∣∣∣Ivi \

i−1⋃
j=1

Iuj

∣∣∣∣∣∣ ≥ t.
In the commutative setting, replace the spanned intervals of the form Iv by spanned subsets
of the form Av in the statement above as well as in the proof below. We now prove Lemma 21.
We pick t = δ2 and r = d

4δ2 , and apply Lemma 31 to obtain sequence v1, ..., vr of nodes of s.
We first note that if X and Y are two sets and X has size d/2 then dist(X,Y ) rewrites as
dist(X,Y ) = d/2− ||X ∩ Y | − |Xc ∩ Y ||. As dist(A, s) = min {dist(A, I) | I spanned by s},
the previous remark leads the first equality below.

Pr
A∼U

(
( [d]
d/2)
) [dist(A, s) > d/2− δ

]
= Pr
A∼U

(
( [d]
d/2)
) [for all node v of s,

∣∣|A ∩ Iv| − |Ac ∩ Iv|
∣∣ ≤ δ]

≤ d Pr
A∼U(2[d])

[
for all node v of s,

∣∣|A ∩ Iv| − |Ac ∩ Iv|
∣∣ ≤ δ] as

(
d
d/2
)
/2d ≤ d

≤ d Pr
A∼U(2[d])

[
∀i ∈ [r],

∣∣|A ∩ Ivi | − |Ac ∩ Ivi |
∣∣ ≤ δ]

≤ d
r∏
i=1

Pr
A∼U(2[d])

∣∣|A ∩ Ivi | − |Ac ∩ Ivi |
∣∣ ≤ δ

∣∣∣∣∣∣A ∩
⋃
j<i

Iuj


If A is sampled uniformly among [d] and A ∩

(⋃
j<i Iuj

)
is fixed, realizing the event∣∣|A ∩ Ivi | − |Ac ∩ Ivi |

∣∣ ≤ δ amounts to having a random variable following an unbiased
binomial law of size at least t = δ2 sit in a certain interval of size at most δ, which is bounded
by a constant β < 1. Hence,

Pr
A∼U

(
( [d]
d/2)
) [dist(A, s) > d/2− δ

]
≤ dβr = dβ

d
4δ2 ≤ 2−αd/δ

2

for some positive constant α.
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