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Abstract

The objective of this work is to propose a spatio-temporal random field for as-

sessing the effect of spatial variability on the degradation process in structural

reliability assessment. Our model extends the classical Gamma process which

is usually developed for degradation temporal variability concerns to integrate

spatial variability and heterogeneity issues. A log-normal distributed spatial

random scale is then introduced in the Gamma process. Mathematical models

for a structure degradation in space and time and estimation procedures are

developed in this paper. Approximations and simulations are given to evaluate

the failure time distribution and to characterize the residual lifetime after in-

spection. Simulation results are performed using pseudo-random data based on

Monte-Carlo simulations to fit the model and the inference of their parameters.

The two proposed estimation method - Method of Moments and Pseudo Maxi-

mum Likelihood - are numerically compared according to statistical measures.

The accuracy of the methods are also discussed by numerical examples given

the approximations of quantities of interests.
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1. Introduction

In recent years, the scientific material and structural engineering community

pays a lot of attention to the elaboration of mathematical degradation models

for integrating spatial variability and uncertainty. It is obvious that the de-

terioration of structures exposed to environmental conditions is spatially and5

temporally varying. The variation along the space is caused by the inherent

uncertainty through the material at several positions on the structure and the

physical parameters involved in the deterioration mechanism. This material

non-homogeneity problem is well known for steel and concrete structures and

has been, e.g., studied in [1, 2, 3, 4, 5] through concrete diffusion property,10

concrete cover and chloride external concentration.

A common way to deal with such uncertainties is to use a probabilistic

framework by modeling the input data with random fields [2, 10, 19, 21, 34].

For instance, a randomized salty environment (de-icing of the sea natural salts)

can be integrated in the transport equation to compute the concentration of the15

chloride in concrete, in order to estimate the time until failure under uncertain-

ties. In [3, 5] the authors consider a two-dimensional Gaussian random field with

a Gaussian correlation to compute the likelihood of corrosion-induced cracking

in reinforcing steel bar. They provide an estimation of the time to first crack

and time to limit crack widths. In [1], authors propose a probabilistic model20

for steel corrosion in reinforced concrete structures considering crack effect on

the corrosion mechanism, in which an empirical model for the crack propagation

stage is developed by the standard gamma process and combines corrosion crack

width with steel-bar cross sectional loss. The main disadvantage of these ap-

proaches is the problem of larger dimension so called ”curse of dimensionality”25

in which the resolution of a large number of deterministic problems is involved.
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Meta-models are commonly used to tackle this problem of curse of dimen-

sionality for degradation prediction in structural engineering. The time-dependent

deterioration processes are modeled by a stochastic model where only the varia-

tion in time is studied. In particular a standard Gamma process is an appropri-30

ate mathematical model for predicting deterioration encountered in civil engi-

neering [6, 35]; such as corrosion and crack of reinforced concrete. The authors

in [17, 18] developed a probabilistic framework in which interaction between

shocks and gradual process are combined in view to describe the deterioration

process. They proposed a semi-analytic computation model to estimate with35

less cost the time to failure. The work in [9] describes the degradation by a

Gamma process and includes other dependent-parameters as covariate in the

shape function. In [26], a Gamma process with a random scale following a

gamma law is considered to model heterogeneity in the degradation data and

obtained analytic results for reliability assessment. Markov chain is another40

widely used approach to model cumulative damage. It is seen as a discrete

Markov process where the deterioration is assumed to be a single step function.

The estimation of the one-step transition matrix requires a large number of

transitions to estimate all its elements [16, 28]. The drawback of this approach

is that time variability is difficult to capture.45

In [15], the authors propose the construction of the state-dependent degra-

dation model based on the Gamma process, where the cracking of a submerged

concrete structure subjected to corrosion is described by the proposed bi-variate

model with a suitable parameters. In the same time, the authors in [23] intro-

duce a state-dependent Gamma process for the degradation, the dependency50

is modelled in the scale function instead of the shape function as proposed in

[15]. The authors in [24] introduce a bi-variate spatio-temporal field to model

the action induced by the walking of a small group of persons. Based on the

spectral and coherence functions of the forces, they proposed an evaluation of

vertical and transversal accelerations at nodes of a finite element.55

All models based on temporal variability assume a uniform degradation and

do not integrate the spatial variability through degradation process. Neverthe-
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less, recent studies have shown that this spatial correlation has an important and

direct impact on the level of structural reliability estimates [32, 3, 4]. Therefore,

incorporating these uncertainties in the degradation processes through mathe-60

matical modelling improves their prediction and versatility in term of mainte-

nance and decision. On the other hand, to construct an accurate model of the

degradation, a large amount of data using destructive or nondestructive testing

is required from a large amount of structures [31, 32]. Therefore, one way of

obtaining accurate and reliable information is to embed the spatial variability in65

the models. This allows to increase the relevance of the Meta-Model approach

where the uncertainties are reduced, improving the accuracy of the inference

and extending the use of the non-destructive testing.

Therefore, the major contribution of this paper is a new spatio-temporal

random model based on Gamma process for predicting a single degradation70

measure which takes into account both temporal and spatial variability. Under

the stationary assumption, the spatial monitoring data of the structure con-

tributes in the parameters estimate to increase the accuracy of the meta-model

approach. Our model requires only few parameters and is thus very suitable for

inference when only few components are inspected: that is the case for on-site75

inspection of civil engineering structures or marine structures where the cost of

inspection is high.

The spatio-temporal degradation model is assumed to be an observable pro-

cess in space and time with limited observations (Non Destructive Testing, dis-

tributed sensors). However, such kind of database that considers both hazard80

time and space of the degradation are not available in the literature. In order

to validate the proposed inference framework, we construct a synthetic discrete

degradation model through Monte Carlo simulations. Therefore, numerical ex-

periments will be conducted and compared for identifying preliminary properties

and advantages of our model in terms of statistical inference and computation85

of quantities of interest for reliability and maintenance.

The article is organized as follows: Section 2 introduces the classical Gamma

process for temporal variability, the Gaussian random field with its simulation

4



method and the construction of degradation model is detailed. Section 3 devel-

ops quantities of interest which are useful in the reliability analysis, namely the90

distribution of the failure time and the distribution of the remaining lifetime of

the unit. Section 4 compares approaches for identifying properties of the model

in terms of statistical inference. Finally, Section 5 presents a numerical example

illustrating the proposed methodology for model validation.

2. Degradation Processes and Random field variability95

2.1. Standard time variant Gamma Process modeling

The standard Gamma process (GP) is an appropriate mathematical model

for modeling the degradation evolution in structural engineering, such as corro-

sion and cracks of materials, which are the common causes of structural failure.

The deterioration is supposed to take place gradually over time in a sequence of100

tiny increments. Consider α(·) to be a non-decreasing, right-continuous, real-

valued function for t ≥ 0 and vanishing at t = 0.

Definition 2.1.

A stochastic process (Xt)t≥0 is said to be a GP with shape function α(t) and

identical scale parameter β > 0 if the process satisfies the following properties:105

• X0 = 0 with probability one,

• The increment Xt+s−Xt has a Gamma distribution Ga(α(t+s)−α(t), β),

• Xt has independent positive increments,

where the Gamma distribution Ga(α, β) is defined by the density function:

fGa(x) =
βα

Γ(α)
xα−1e−βx, for each x > 0, (1)

and Γ is the classical Gamma function. The process Xt is said to be stationary if

α(·) is a linear function and Xt is non-stationary if α(·) is a non-linear function.

The mean and variance of Xt are E[Xt] =
α(t)
β , var[Xt] =

α(t)
β2 , respectively.

The process Xt satisfies the scaling property,

γXt = Ga(α, β/γ), for each γ > 0, (2)
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and its logarithm log(Xt) has the following two first moments:

E[log(Xt)] = ψ(α(t))− log(β), (3)

var[log(Xt)] = ψ1(α(t)), (4)

where the function ψ is digamma function which is defined as the logarithmic110

derivative of Γ, and ψ1 is the trigamma function defined as the derivative of ψ.

2.2. Gaussian Spatial random field modeling

Spatial variability of material properties is classically modeled by a second-

order stationary random field (RF) given by a non-linear transformation T (·)
of a Gaussian random field (GRF) T (Y ) [8, 31]. For example, in the transport115

equation, the diffusivity coefficient is modeled by a log-normal RF [1, 2, 19],

where its distribution is obtained as a limit of physical positive quantities.

We consider Y (z, ω) to be a spatial GRF in the set D×Ω, where D is a set

in Rd with d = 1, 2, 3 and Ω is an abstract set of events. The GRF Y is assumed

to be homogenous and then totally defined by its mean µ ∈ R and its covariance120

function cov(r) [7, 36]. The cov(r) function models the correlation between two

spatial random variables on any two points separated by the distance r.

In order to simulate Y on {z0, z1, . . . , zN} ⊂ D a set of equidistant points,

we choose the circulant embedding matrix approach [14] (also named by DSM

discrete spectral method in [11]). This method is a very versatile approach for125

generating GRF, the discretized RF has the same spatial correlation on the grid

points. In [30] the authors develop a continuous spectral method to simulate

Y where the spectral density is discretized on a uniform grid, then a Discrete

Fourier Transform (DFT) is used to generate an approximation of Y . The pro-

posed simulated GRF is asymptotically Gaussian where its correlation structure130

is an approximation of the target correlation and its accuracy is strongly related

to the regularity of Y (see [22]). Another widely used approach to generate Y

is the Karhunen-Loève expansion. However, it gives only an approximation of

Y by a truncation of an infinite series, where its accuracy depends strongly on

the smoothness of Y and its correlation length, [20, 21, 31].135
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The DSM is based on the matrix factorization approach of the convenient

positive definite circulant correlation matrix R using DFT. It has a Toeplitz

structure and defined by its first row r = (r0, r1, . . . , rN−1, rN , rN−1, . . . , r1)

where each rl = cov(zl), for l = 0 . . . , N . For instance, in one-dimensional

uniform grid z0 = 0, . . . , zN , a realization of the random field Y is simulated by

the following components:

YN (zl) =
1√
2N

2N−1
∑

k=0

√

λk

(

ζk cos 2π
kl

2N
+ ζk sin 2π

kl

2N

)

, (5)

where λk are positive and given by the DFT of the circulant vector r. The set

{ζk}2N−1
k=0 are independent random variables with standard normal distribution

N(0, 1). The random vector (YN (z0), . . . , YN (zN )) given in (5) has the same

correlation structure of Y on the grid (zl)
N
l=0. The Fast Fourier Transform is

used to construct exact simulation of Y with O

(

N log(N)

)

operations.140

2.3. Matérn-Whittle model

The Matérn covariance functions are commonly used for GRF. There are

defined by:

cov(r) =
21−ν

Γ(ν)

(
√
2νr

lc

)ν

Kν

(
√
2νr

lc

)

(6)

where ν and lc are non-negative real numbers, lc is the correlation length, r

is the Euclidean distance between two points, Kν denotes the modified Bessel

function of the second kind. The regularity parameter ν tackles different models:

a large value of ν implies that Y is ([ν]− 1)-times differentiable and small value

of ν implies that Y is rough. When ν = 1
2 , cov coincides with the exponential

covariance,

c(r) := e−r/lc , (7)

Y are only continuous. When ν −→ ∞, it tends to the gaussian model,

c(r) := e−r2/(2l2c), (8)

which is an analytic function and so for the samples paths of Y . Both models

are the most used in structural engineering applications [1, 3, 19].
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2.4. Spatial random field scale for Gamma process

We look for modeling a degradation process by a convenient spatio-temporal145

RF to consider its aleatory evolution in time and space. A separable model

is one simple spatio-temporal model obtained through the tensorial product

between a merely stochastic process (Xt)t≥0 and a spatial RF Z(z), where z

is the spatial variable. This class of separable RF is extensively used even in

situations in which they are not always physically justifiable since separability150

gives important computational benefits.

We are interested herein to model the deterioration in structural engineering

under the presence of spatial variability in the model. The evolution in time

models the intrinsic aleatory while the spatial RF models the variability and

uncertainty through the structure. Thus, for simplicity of the model, we as-

sume that randomness in time and in space are independent. In the classical

approach for modeling the deterioration over time, the GP is ideally suited to

model gradual deterioration which monotonically accumulates over time. This

process can be extended spatially to obtain a spatio-temporal random field by

considering its parameters to be spatial random fields, i.e the shape function

α(·) or the scale parameter β. The scaling property of the GP in (2) motivates

to model the scale parameter with a spatial RF and then to obtain a separable

spatio-random RF,

Gt(z) := Xtβ(z)
−1, (9)

where Xt is the GP with a shape function α(t) and unit scale parameter

Ga(α(t), 1). The positive spatial RF β(·) is assumed to be independent of Xt.

The scaling property satisfied by Xt in (2) motivates us to take the spatio-

random field Gt(z) as GP with spatial random scale β(·).155

In practice, it is difficult to find a convenient positive distribution for the

spatial RF. However, some several reasons (detailed above) suggest to choose a

Log-normal distribution for the random scale coefficient,

β(z) = eσY (z)+µ, (10)
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where Y is a GRF with zero mean, unit variance and defined by the correlation

function in (6). The constant eµ is seeing as the deterministic contribution of

the scale parameter β(·).
The Log-normal distribution appears naturally as a limit law of physical

processes. The Central Limit Theorem applied to the product of positive inde-160

pendent random variables (number of measures greater than 30) ensures that the

log-normal distribution occurs. Further, a Log-normal RF is completely defined

by its covariance. The maximum likelihood method is a commonly used infer-

ence procedure for such field. Another remarkable properties is that eσY and

e−σY have the same finite-dimensional law, which implies that Ga(α, eσY+µ)165

and Ga(α, eµ)eσY have the same finite-dimensional law. However, since in this

work, we use only the method of moments to perform the inference procedure;

we can consider any choice of positive RF.

3. Failure time and reliability evaluation

3.1. Marginal density approximation170

The marginal distribution noted by ft(·) of the model is approximated in

order to compute some quantities of interest which are used in structural relia-

bility and maintenance. The GRF Y (z) considered in this work for the spatial

variability is homogeneous, thus ft(·) does not depend on the position z but

only on the time t. Let ξ(y) be the density of the standard Gaussian random

variable N(0, 1) and setting η = eµ, the marginal density of Gt|y is a gamma

distribution with the shape parameter α(t) and a scale parameter ηeσy for each

t > 0. Then, the pdf ft is given for all v > 0 by the following form:

ft(v) =
ηα(t)v(α(t)−1)

Γ(α(t))

∫

R

exp

(

−vηeσy + α(t)σy

)

ξ(y)dy. (11)

The integral in (11) has a transcendental form, thus we use Gauss-Hermite

quadrature formula to approximate this marginal density ft. We consider m

roots {yj}mj=1 of the Hermite polynomial and their associated weights {wj}mj=1.
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Thus, an approximation of ft writes:

fmt (v) :=
ηα(t)v(α(t)−1)

Γ(α(t))

m
∑

j=1

exp

(

−vη exp(σyj) + α(t)σyj

)

. (12)

The convergence of the sequence fmt (v) for a fixed v > 0 is relatively fast.

However, the norm of any m-derivative of the integrand depends on the value

of the parameters α(t), σ and η. A large value of these parameters requires a

large order m of the approximation in (12), in particular for large time t. Then,

the order m is built by the following stop criterion,

|fmt − fm−1
t | ≤ ǫ, (13)

where ǫ > 0 is a convenient threshold value.

3.2. Failure Time Distribution

The failure time TF for a component is defined as the time at which the

degradation path Gt first crosses a critical level gF for any spatial location,

TF = inf

{

t;Gt(·) ≥ gF

}

, (14)

In what follows, the critical level gF is assumed to be deterministic. For

some simple path models, the distribution FT (t) := P (TF < t) of TF can be

expressed in a closed form. However, this is not always possible and it can175

be numerically computed with Monte Carlo simulations by generating multiple

paths of Gt(z).

For the spatio-temporal random model considered here, sample paths are

monotonic. Thus the failure time cumulative distribution FT (T ) satisfies:

FT (t) = 1− P (TF > t) = 1− P (Gt ≤ gF )

= 1−
∫ gF

0

ft(z)dz, (15)

where ft is the marginal probability density function of the degradation

process Gt given in (11). Therefore, we can approximate the distribution FT by

using an approximation fmt of the density function ft with a suitable order m:

Fm
T (t) = 1−

∫ gF

0

fmt (v)dv, (16)
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The integral (16) can be computed accurately by Legendre-Gauss quadrature180

formula. The derivative of (15) and (16) with respect to the time variable t pro-

vides the probability density function of TF and its approximation, respectively.

The approximation of fmt can be inaccurate when the time t or the variance

become large. And the computation of the cdf (16) will require a huge cost. In

this case, an estimation of FT is provided using Monte-Carlo (MC) simulations185

where a sufficiently large number of sample paths of Gt(z) are conducted.

Let Nt be the desired times, Nz the desired locations andM the realizations

of the spatio-temporal paths {Gm
ti (zj)} for i = 1 . . . , Nt, j = 1 . . . , Nz and

m = 1, . . . ,M . The estimate F̃T of FT is given by:

F̃T (ti) :=

∑Nz,M
j,m I{Gm

ti
(xj)≥gF }

MNz
, (17)

where IA represents the characteristic function of the set A, i.e IA(z) = 1 if

z ∈ A and zero otherwise. Note that since Gt(z) is homogeneous with respect

to the spatial variable, the estimate F̃T can be computed also using realizations

of Gt(zp) fixed at any position zp,

F̃T (ti) ≈
∑M

m I{Gm
ti
(zp)≥gF }

M
. (18)

However, estimation (18) requires more MC simulations of Gt(z) than (17)

since the spatial average contributes in the convergence of F̃T to FT (ergodic

property).

3.3. Remaining Lifetime after inspection190

In reliability analysis and survival studies, residual lifetime after inspection

is a key indicator. In the maintenance decision analysis, the current measured

degradation is used to predict the remaining lifetime (RL) of the structure [33].

If t is the current time of inspection, the residual lifetime is defined by the

random variable:

RLt := inf

{

τ > 0, Gt+τ ≥ gF |Gt = gt

}

, (19)
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where gF is the critical level and gt is the measured degradation at a given time

t. We have implicitly gt < gF . The Markov property of the model ensures that,

from any current state, future states can be predicted. However, if we suppose

that a component has survived to a given time t and we have no information or

measure about the current degradation path Gt, then a conditional reliability195

function gives an evaluation of the remaining lifetime:

R(τ |TF > t) := P (TF ≥ τ + t|TF > t)

=
P (Gτ+t(·) ≤ gF )

P (Gt(·) ≤ gF )

=

∫ gF

0

fτ+t(y)dy
∫ gF

0

ft(y)dy

. (20)

When the current degradation measure path of Gt is available. The proba-

bility that the unit survival after time t + τ given its current state Gt = gt at

time t is:

P (RLt > τ) = P (Gt+τ < gF |Gt = gt)

= P (δτGt < gF − gt|Gt = gt), (21)

where δτGt := Gt+τ − Gt is the associated degradation increment. Let200

denote fδτGt|Gt
the conditional marginal density of the process δτGt given the

event {Gt = gt}. The cdf FRL := P (RLt ≤ τ) of the residual lifetime becomes:

P (RLt ≤ τ) = 1− P (δGt < gF − gt|Gt = gt)

= 1−
∫ gF−gt

0

fδτGt|Gt
(y)dy. (22)

Increments of the model are independent given a realization of the random

field eσY . The marginal density of the bivariate variable (δGt, Gt) given y

denoted πy(u, v) for any u, v > 0 can thus be defined as the product of the

density function of δGt given y and that of Gt given y:

πy(u, v) = Ψ(u, v) exp

(

−(u+ v)ηeσy + α(t+ τ)σu+ α(t)σv

)

, (23)
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where Ψ(u, v) :=
uδτα−1vα(t)−1

Γ(δτα)Γ(α(t))
ηα(t+τ) the increment δτα := α(t + τ) − α(t)

and η = eµ.

The joint probability density of the bivariate variable (δτGt, Gt) is,

π(u, v) =

∫

R

πy(u, v)ξ(y)dy. (24)

Therefore, the conditional density of δτGt given the event {Gt = gt} is,

fδτGt|Gt
(u) =

π(u, gt)

ft(gt)
, (25)

where ft is the marginal density of Gt given in (11). When gt > 0 and t > 0,

this conditional probability density is given by the formula:

fδτGt|Gt
(u) =

uδτα−1g
α(t)−1
t

B(δτα, α(t))(u+ gt)(α(τ+t)−1)

fτ+t(u+ gt)

ft(gt)
(26)

where B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
is the beta function. Given the approximations of

fmt+τ (u+ gt) and f
m
t (gt), f

m
δτGt|Gt

(u) is a good approximation of the conditional

probability density in (26). It follows that FRL(τ) is given by,

FRL(τ) ≈ 1−
∫ gF−gt

0

fmδτGt|Gt
(u)du. (27)

Note that when t = 0 and gt = 0, equation (26) is not definite and the205

cumulative probability function FRL is the function FT given in (15). The

derivative of (22) with respect to the variable h provides the probability density

function of the Residual lifetime RL.

4. Parameters inference of the model

The estimation parameters for spatio-time fields is not so thoroughly devel-210

oped in the literature. The Maximum likelihood Method (MLE) is considered

as the best method for this purpose. However, it assumes Gaussian or Log-

normal distribution [25] unlike the Method of Least Squares (MLS). The MLE

is promoted due to its ease of implementation (see, [13, 29]) where it only re-

quires a preliminary step to obtain a nonparametric estimate of the variogram215

or covariance by the method of moments.
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Our degradation model is a separable random-field given by a tensorial prod-

uct of Gamma process and a Log-normal RF. The estimation process is in two

phases: the space parameters estimation for GRF is firts performed, and then

the temporal parameters of GP.220

A typical data set consists of inspection points in different increasing times

tj for j = 0, . . . , Nt, with the same period τ . For each time tj , the inspection

positions are given in uniform positions zl for l = 1, . . . , Nz with step size h.

For shake of simplicity, α(·) is assumed here to be the power law:

α(t) = atb, (28)

for some unknown a > 0 and a known power b > 0.

4.1. Method of Moments (MOM)225

4.1.1. Spatial parameters estimation

The spatial parameters are the parameters of the second order stationary RF

Y , i.e. the variance σ2, the correlation length lc and the regularity parameter ν

of the correlation function in (6). The correlation length lc is the main parameter

which quantifies the spatial uncertainty. Recent reliability studies in structural

engineering have shown that this length plays an important role in the level

of structural reliability [32, 3, 4]. The following nonparametric estimate of the

semi-variogram based on the method of moments (MOM) from realizations of

Y is proposed:

Υ̂Y (hl) =
1

2Nhl

∑

zi,zj∈Shl

(Y (zi)− Y (zj))
2, (29)

where Shl
is the set of the points separated with distance hl and Nhl

its cardinal.

The variogram is invariant by translation with any random variable. Then, the

empirical variogram Υ̂Y is provided by computing the variogram of the random

field log(Gt). At any fixed time t, we get:230

Υlog(Gt)(hl) =
1

2Nhl

∑

zi,zj∈Shl

(

log(Gt(zi))− log(Gt(zj))

)2

=
1

2Nhl

∑

zi,zj∈Shl

(

Y (zj)− Y (zi)

)2

= Υ̂Y (hl).
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Note that the estimation of Υ̂Y (hl) can be improved by the empirical average

when M realizations of the model Gt(z) are available. The RF Y is stationary.

So the theoretical variogram is given by,

ΥY (hl) = σ2 − σ2cov(hl), (30)

where the correlation function cov(h) is given by (6). Therefore, the spatial pa-

rameters are estimated by minimizing the quadratic error (Least square method)

between the theoretical and the experimental variograms. Thus, σ2, lc and ν

are deduced by the following minimization problem:

min
σ,lc,ν>0

Nz
∑

l=1

(

Υ̂Y (hl) + σ2cov(hl)− σ2

)2

(31)

The classical least square method is sometimes not efficient, in particular

when the length of the space and the number of positions are not large enough,

because the set {Υ̂Y (hl)
2}Nz

l=1 are not independent and with various variance.

The generalized least squares method should be preferred:

min
σ,lc,ν>0

Nz
∑

l=1

(

Υ̂Y (hl)−ΥY (hl)

)

Rl,k

(

Υ̂Y (hk)−ΥY (hl)

)

, (32)

where ΥY (hl) is given in (30) and the matrix R is the correlation matrix of

the set {Υ̂Y (hl)}Nz

l=1 (see [29], for more details). A simplified approach is the

weighted method where R is restricted at the diagonal matrix defined by entries

Rl =
2ΥY (hl)

Nhl

as suggested in [13] assuming a Gaussian law and no correlation

among {Υ̂Y (hl)}Nz

l=1.235

Comments 4.1. Note that the space positions will differ from one path to

another. In this case, estimation (29) is slightly modified for non-uniform grid

to compute the experimental variogram of Y from the logarithm of Gt(·). The
spatial average is computed on all pairs of points whose distances are between h

and h+δh. Then, MOM can be extended for non-equidistant spatial inspections240

to estimate both spatial and temporal parameters.

Moreover, the proposed variogram of such fields depends only on the distance

between positions. And finally, the MOM given by the least square method in
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(31) can be used for some non-stationary RFs Y , such that a trend-stationary

field with a linear trend or with stationary increments.245

The temporal parameters are the parameters of the process Xt, i.e. the shape

function α(t) defined in (28) and the deterministic contribution η = eµ of the

scale RF β . Since we assume that the power b is known, a and η can be esti-

mated. Note that η contains the contribution of the spatial mean of the random

field Y . From now, {Gi
tj (zl)} is assumed to be a sequence of independent and250

identically distributed (i.i.d.) simulations of the degradation model described

in the previous section. Each i-th degradation process is observed at time tj

among Nt times and on location zl among Nz locations.

Case of time-stationary model

255

Let consider the time-stationary case where α(t) = at. Let ζij,l := log(δGi
tj (zl))

be the logarithm of the increments of Gt(z). Using the scaling property, each

variable writes the following equation,

ζij,l := log(Gi
tj (zl)−Gi

tj−1
(zl)) = log(Xi

tj −Xi
tj−1

) + Y i(zl), (33)

where Y i(zl) is the i-th sample of Y at position zl. Since the process Xt and Y

are independent, the first two moments of ζij,l write from equation (3):

m1 := E[ζij,l] = ψ(aτ)− log(η) (34)

m2 := var[ζij,l] = ψ1(aτ) + σ2, (35)

where τ := (tj−tj−1) is constant. The increments (Xi
tj −Xi

tj−1
)Nt

j=1 are indepen-

dent and identically distributed. So, from MNt realizations of these increments

combined with a spatial average, m1 and m2 can be estimated by;260

m̂1 := (MNzNt)
−1

M
∑

i=1

Nt
∑

j=1

Nz
∑

l=1

ζij,l, (36)

m̂2 := (MNzNt)
−1

M
∑

i=1

Nt
∑

j=1

Nz
∑

l=1

(ζij,l)
2 − m̂2

1 (37)
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Hence, an estimation of parameters a and η is given by:





a

η



 = f−1





m̂1

m̂2



 , (38)

where f is given by f





u

v



 =





ψ(uτ)− log(v)

ψ1(uτ) + σ̂2



 , with τ = (tj) − (tj−1) and

σ̂2 the estimate of σ2 given by (31).

Case of non-stationary model in time

Let consider now α(t) = atb where b 6= 1 is known. The non-stationarity of

GP can be transformed to a stationary GP by performing a monotonic trans-265

formation of the operational time [12]. However, the transformed inspection

times are not equidistant to perform estimates given in (38). Let define the

transformed times by νj = tbj− tbj−1, and introduce the increments of ith sample

of Gi
t(zl) denoted D

i
j,l := δGi

tj (zl). These increments are conditionally gamma

distributed and conditionally independent. Therefore, according to [12], the270

following estimates hold true conditionally to the parameter β,

a

β
≈

∑Nt

j=1D
i
j,l

∑Nt

j=1 νj

∣

∣

∣

∣

β

(39)

a

β2

( Nt
∑

j=1

νj −
∑Nt

j=1 ν
2
j

∑Nt

j=1 νj

)

≈
Nt
∑

j=1

(

Di
j,l −

∑Nt

j=1D
i
j,l

∑Nt

j=1 νj
νj

)2∣
∣

∣

∣

β

(40)

By considering the empirical mean on the right side, knowing that E[β−1] =

η−1eσ
2/2 and E[β−2] = η−2e2σ

2

; estimation of a and η are provided as solution

of the following system,

â

η̂
=

e−σ̂2/2

MNztbNt

M
∑

i=1

Nz
∑

l=1

Nt
∑

j=1

Di
j,l (41)

â

η̂2
=

tbNt
e−2σ̂2

MNz

(

t2bNt
−∑Nt

j=1 ν
2
j

)

M
∑

i=1

Nz
∑

l=1

Nt
∑

j=1

(

Di
j,l −

∑Nt

j=1D
i
j,l

tbNt

νj

)2

(42)

where σ̂2 is the estimate of σ2 given by (31).275
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4.2. Maximum Likelihood (MLM) and Pseudo Maximum Likelihood (PML)

The classical Maximum-Likelihood Estimate for the spatio-temporal field is

performed when the RF is Gaussian or log-normal distributed. The model Gt(·)
is given by the product of two independent process, the Gamma process and

the spatial log-normal field. Because it is not obvious to compute the likeli-

hood of any spatio-temporal increments of G, we introduce a method which

considers only the model at the final time of inspection. It consists of maximiz-

ing the likelihood of the observed deterioration (GT (z1), . . . , GT (zNz
)) spatially

distributed at the final observed time T which contains the most information.

The probability density function of (GT (z1), . . . , GT (zN )) given a realization of

XT = x is defined by:

̺(v|x) = φ(v) exp

{

− 1

2σ2
(log(v/x)− µ)′R−1(log(v/x)− µ)

}

, (43)

where φ(v) :=

Nz
∏

l=1

1

v−1
l

√

(2π)NzσNz |R|
, |R| the determinant of R the R is the

correlation matrix of the Gaussian vector (Y (z1), . . . , Y (zNz
)), v a real vector

with length Nz and log(v) the logarithm of each component of v. Then, the

joint probability function of (GT (z1), . . . , GT (zN )) writes:

̺(v) =

∫
∞

0

ℓ(v|x)
xα(t)−1e−x

Γ(α(t))
dx, (44)

The likelihood ̺(v) can be accurately computed through the Gauss-Laguerre

quadrature or the Gauss-Hermite quadrature after transforming the integral on

R with the transformation y = log(z).

Therefore, from M copies of the vector degradation (Gi
T (z1), . . . , G

i
T (zNz

)),

for i = 1 . . . ,M , the likelihood of these observed data is given by

L(V ) =

M
∏

i=1

̺(vi); (45)

where V is the matrix of M vectors degradation vi = (Gi
T (z1), . . . , G

i
T (zNz

)).280

Therefore, the maximum-likelihood estimates of the parameters a, ν, lc σ
2 and

µ are provided by maximizing the logarithm of the likelihood log(L(V )).
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The likelihood in (45) depends on both spatial and temporal parameters. An

acceptable estimate of those parameters is reached only with large independent

copies of degradation samples. A bad estimation of α affects spatial parameters285

estimates. MOM provides spatial parameters independently of the temporal

ones, this makes the method more flexible. However, it is efficient only for the

stationary model.

Another approach which can be combined with MOM for non-stationary

temporal variability is the pseudo maximum-likelihood method (PML). It con-

sists of maximizing the likelihood of the increments (δ1G, . . . , δtNG) on a given

fixed spatial position z. These increments (δtjG = Gtj − Gtj−1
)Nt

j=1 are condi-

tionally independent and their likelihood is given by the product of the marginal

density of each increment, which is similarly computed as in (11),

ℓ(v) =

Nt
∏

j=1

ηδtjαv
(δtjα−1)

j

Γ(δtjα)

∫

R

exp

(

−vjηeσy + δtjασy

)

ξ(y)dy, (46)

where δtjα := α(tj) − α(tj−1) and v is the observed vector of the increment

(δ1G, . . . , δtNG) on a given position z. When b is unknown, we can use this290

latter approach of PML given by the maximum of (46) to estimate temporal

parameters. The value of σ comes from problem (31). Then, by using an

appropriate approximation of each integral as given in (12), PML estimators of

temporal parameters are given by maximizing log(ℓ(v)).

5. Numerical simulations295

The deterioration model is assumed to be an observable process in space and

time with limited information. However, such kinds of database which vary in

space and time are not available in the literature. Therefore, a synthetic discrete

degradation model is constructed through MC simulations. The purpose of this

section is to validate the inference methodology and the approximation of the300

quantities of interest which depend on the estimated parameters.

We considerM = 1, 10, 100 sample paths of the field (Gj)Mj=1, each trajectory

Gj being simulated at Nt equidistant periods on the interval time [0, 30] (in
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years) and Nz equidistant locations in one- and two-dimensional space. The

model in time (its temporal increments are time-independent), i.e the shape305

parameter is linear α(t) = at. The deterministic contribution of the scale RF is

given by η = eµ where µ = 2/3, σ2 = 0.6, lc = 1 (correlation length) and ν = 2

(smoothness parameter of Y ).

5.1. Simulation of discrete degradation model

In this subsection, the steps for generating a path of the degradation model310

Gt(·) on a uniform discrete time-space partition is presented. Let consider Nt

periods of uniform discrete-time partition t0 = 0, t1, . . . , tNt
on the time interval

[0, T ] and Nz equidistant positions z1, . . . zNz
of the spatial interval.

Firstly, let generate the GRF on the grid z1, . . . zNz
using the circulant em-

bedding matrix approach defined in Section 2, see ([27]) for more details of the315

method for two or three spatial dimensions. The Gaussian vector (Y (z1), . . . , Y (zNz
))

has an exact covariance matrix given by the continuous covariance model of Y .

Secondly, the degradation model is progressively generated in each time for all

positions. For each zj the increments of the model are independently generated

with identical gamma distribution. This näıve simulation approach is called320

Spatial Gamma Sequential Sampling (SGSS). Note that in the one-dimensional

variability, the discrete model G is given by a matrix with size (Nt + 1) ×Nz.

A pseudo-code to simulate one path of the model in one-dimensional variability

is given:

G0(:) = 0;325

τ = T
Nt+1 ;

For i = 1 to Nz

For j = 1 to Nt

Generate Q ∼ Ga(aτ, eσY (zi)+µ);

Gtj (e
σY (zi)+µ) = Gtj−1

(eσY (zi)+µ) +Q;330

Next j

Next i
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This algorithm is running M -times to get M samples of discrete time-

space paths of the degradation process. Similarly, the pseudo-code for a two-

dimensional variability case can be performed where the discrete model G is335

given by three-dimensional array.

5.2. One-dimensional variability

The Gaussian random field is defined on the interval [0, L] where L = 100

and discretized in Nz equidistant spatial positions. From now and for a shake of

simplicity, a fixed value of the smoothness parameter ν = 2 is selected (i.e the340

paths of G are differentiable in quadratic norm). Figure 1 (left) gives one real-

ization of Gt(z). The surface is discontinuous with respect to z because infinite

jumps of the Gamma process Xt. Further, the surface shows a strong spatial

variability since lc << L. The graphic compares (right) the experimental and

the exact variograms of the GRF Y . The experimental variogram is computed345

using the spatial trajectory of the logarithm log(Gt(z)) at time t = 30.

Figure 1: Left: example of one realization of Gt(·), right: variogram (lc = 1, ν = 2, σ2 = 0.6).

Method of moments (MOM) Step 1

The first step of the method of moment consists in estimating spatial pa-

rameters, variance σ2 and correlation length lc. The quality of the estimation

is measured by the mean absolute error. This error is given by the average of350

the absolute differences between the exact parameter and 10 estimated values
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calculated across MOM. Table 1 gives estimates of those parameters obtained

by MOM where we minimize equation (31) with ν = 2 and three values of M .

(Mean absolute errors in brackets).

Nz = 40

M σ2 lc

1 0.714(0.114) 0.21(0.791)

10 0.5720 (0.028) 0.81(0.19)

100 0.6048(0.0048) 0.890(0.1024)

Nz = 100

M σ2 lc

1 0.546(0.053) 1.186(0.186)

10 0.584(0.015) 0.934(0.065)

100 0.6009(0.009) 1.024(0.024)

Table 1: Parameters estimation of one dimensional spatial variability by MOM.

From Table 1, the estimation of the correlation length lc depends strongly355

on the number of spatial positions Nz, obviously because lc is very small with

respect to the length L = 100. In contrast to lc, the estimate of the variance

σ2 is largely acceptable even with small number of positions for one realization

of Gt(·) (M = 1, Nz = 40). However, the estimation of quantities of interest

depends strongly on the variance σ2, so an accurate estimate of σ2 is needed to360

forecast reliable predictions.

Method of moments Step 2

Once spatial parameters are estimated, the second step of the MOM consists

in estimating the temporal parameters given by (38). An estimation of σ2 is

inserted in (38) for each case of M and Nz. Table 2 summarizes estimations365

of temporal parameters a and η. Results show that their accuracy depends

strongly on the total inspection times Nt and on the total number of positions

Nz. An acceptable accuracy is reached for small number of realizations M

(M = 10) when Nt and Nz are significantly large (Nt = 60, Nz = 40). In

particular, estimate of η depends significantly on the number of locations Nz370

since it contains the stochastic contribution of the random field Y .

Figures 2 illustrate the convergence of the MOM for temporal parameters

α and η, with a simulated (M ×Nz ×Nt) database. The mean absolute error

on a and η is a function of the product Nz × Nt where Nz = 10, 40, 80, 100
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Nz = 40, Nt = 30

M a η

1 0.79(0.21) 1.487(0.46)

10 0.947(0.053) 2.157(0.21)

100 1.012(0.012) 1.986(0.038)

Nz = 40, Nt = 60

M a η

1 0.902(0.098) 1.617(0.33)

10 1.027(0.027) 2.087(0.14)

100 1.01(0.009) 1.97(0.022)

Nz = 100, Nt = 30

M a η

1 0.817(0.18) 2.377(0.43)

10 1.057(0.057) 1.837(0.11)

100 1.012(0.012) 2.015(0.068)

Nz = 100, Nt = 60

M a η

1 1.01(0.1) 1.567(0.38)

10 1.029(0.029) 1.817(0.13)

100 1.01(0.009) 2.973(0.026)

Table 2: Parameters estimation of temporal variability using MOM

Figure 2: Mean absolute error on a and η

and Nt = 10, 30, 40, 60. Let remark a strong improvement of the quality of375

the estimation for M > 1, Nz > 10 and Nt > 10. Estimate accuracy of a is

nearly independent of the spatial positions unlike η which it depends on Nz and

strongly on Nt. Let note that in the range 4800 < Nz ·Nt < 6000 the error is

monotonically decreasing since Nt = 60 and Nt <= 40 outside of this range.

An acceptable accuracy is reached with one component M = 1 when Nt and380

Nz are quite large (Nt = 60, Nz = 40).
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Figure 3: Errors on a and η with respect to Nz and Nt

Figures 3 sketches the means of absolute error on a and η with respect of

Nt or Nz, which is computed from 500 estimates through MC simulations. The

temporal estimates are conducted by fixing Nz = 40 and Nt = (5 : 5 : 100).385

Similarly to the spatial estimation, let fix Nt = 30 and Nz = (5 : 5 : 100). The

figures shows that the accuracy on η depends on Nz and strongly on Nt, unlike

of the parameter a which is nearly independent of the spatial positions.

Pseudo-maximum-likelihood (PML) estimates

Table 3 gives estimates of a and η using PML which consists of maximizing390

(46), the logarithm of the marginal density of the increments of Gt(z̃) at an

arbitrary fixed location z̃. Here we choose Nz = 40 and the increments of Gt(z̃)

are considered at the position z̃ = L
2 . The likelihood in (46) depends on σ2,

so let choose its estimate according to M and Nz in Table 1. For each case,

estimations show that the accuracy of PML method depends strongly on M395

independent copies of Nt increments of Gt. Further, the PML method provides

several estimates where each one depends on the position z̃ of the increments.

One may consider the mean of the estimates computed at different positions.

The method of moments looks to be more attractive for inference procedure

since it gives the parameter estimates on two separable stages. First, the spatial400
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Nz = 40, Nt = 30

M a η

1 1.54(0.54) 1.009(0.94)

10 1.269(0.269) 2.41(0.465)

100 1.163(0.163) 2.32(0.381)

Nz = 40, Nt = 60

M a η

1 0.84(0.16) 2.75(0.8)

10 1.05(0.05) 2.09(0.14)

100 0.965(0.034) 1.794(0.153)

Table 3: Parameters estimate of temporal variability by PML

parameter estimates are provided then the temporal ones. Further, by using the

spatial data at both stages, the spatial uncertainties are reduced yielding to an

improvement of the inference by exploiting inspection results.

Figure 4: Left: estimate of the failure time distribution FT , right: marginal density by

sampling and quadrature approach.

Once the model parameter estimation is performed, a 103 MC simulations

of the discretized G is done at Nt = 100 times and Nz = 100 positions in order405

to estimate the marginal cumulative distribution FT of the failure time TF by

sampling method (17), Figure 4 (left) plots the cdf FT computed by sampling

approach with exact and estimated parameters and by the quadrature rule (16)

with m = 30 Gaussian knots. Figure 4 (right) compares marginal density of Gt

by the quadrature method (12) at several times t with a convergence criterion410

ǫ ≈ 10−3. Let note that the required order of the quadrature rule increases with

time t. Figure 5 (left) sketches the effect of conditioning the current state on the
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Figure 5: Left: distribution of predictive time of inspection to failure, right: reliability evalu-

ation and remaining lifetime function.

failure prediction at the current time of inspection ti = 10 for several measured

degradation levels from 0.75 to 1.6 . The survival function depends on the

current state unlike the reliability function (gti is unknown, blue curve) which415

is computed given that the component is in service. The curves highlight that,

depending on the current state, the reliability function (blue curve) gives an

underestimate or overestimate of the time to failure compared with the survival

function. Hence, this latter quantity gives more accurate prediction about time

to failure than the reliability function.420

Figure 5 (right) draws several failure curves of the remaining lifetime FRLti
(τ)

with several times of inspection ti with the same degradation state gti = 1.25

. These figures highlight an obvious result: later is the observation of a given

degradation state, longer is the residual lifetime.

parameters a η σ lc

Gt 1.32 (0.31) 2.44 (0.84) 0.62 (0.21) 2.37 (1.41)

Xt 0.74 (0.36) 0.34 (0.28)

Table 4: Parameter estimates by MOM for one sample path Gt and Xt without spatial data

and standard deviation of each estimate is in the brackets.

In order to illustrate the impact of dealing with the spatial variability in425
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Figure 6: Comparison of Remaining lifetime function, gmax = 25, gti = 6, ti = 2.

the degradation analysis, let consider one sample path (M = 1) of the model

Gt(z) discretized on Nz = 30 positions and Nt = 30 periods. Further, for each

instant ti, let Xti the important observed states from Gti(z) (maximum value)

among all positions. Thus, (Xti)
N
i=1 can be modeled with a sample path of the

standard GP Ga(α(t), η). The classical MOM is used to compute parameters430

of Xt and the MOM for Gt(z). Both are illustrated in Table4.

Figure 6 compares the cdf of the remaining lifetime for both models Gt

and Xt (without spatial variability). This cdf is computed using the estimate

parameters given in Table 4, critical level gmax = 25 and observed degradation

gti = 6 at time ti = 2. Let remind that the cdf FRLXt
(τ) of the remaining435

lifetime function for Xt is given by the formula FRLXt
(τ) = 1− P(Xt+τ −Xt <

gmax − xt), where xt is the state at time t. From the result of Table 4 and

Figure 6, we can conclude that considering the spatial variability yields to an

accurate model and more predictions for reliability analysis.

5.3. Two dimensions variability440

The GRF Y (z) is herein defined on the rectangle [0, L1] × [0, L2] where

L1 = 100, L2 = 40 discretized on N = Nz1 × Nz2 equidistant spatial positions

with Nz1 = 40, 100 and Nz2 = 20, 40. The field Y (z) is assumed to be isotropic

where lc = 1 is the same in both directions. Figure 7 (left) gives four slices from

a realization of Gt(z) at times t = 0, 10, 20, 30; and plots (right) the surface of445
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the experimental variogram of Y which is computed using the spatial trajectory

log(Gt(z)) at time t = 30.

Figure 7: Left: one realization of Gt(·), right: experimental variogram of Y .

MOM. Step 1: estimation of spatial parameters

Table 5 summarizes estimates of σ2 and lc obtained by the MOM with the450

minimization of the standard least square in (31). The smoothness parameter

is fixed ν = 2 for three values of M (M = 1, 10, 100), (mean absolute errors in

brackets).

Nz1 = 40, Nz2 = 20

M σ2 lc

1 0.638(0.038) 0.913(0.087)

10 0.583(0.017) 1.06(0.06)

100 0.6008(0.008) 1.016(0.016)

Nz1 = 100, Nz2 = 40

M σ2 lc

1 0.58(0.02) 0.949(0.051)

10 0.606(0.006) 1.007(0.007)

100 0.597(0.003) 1.0028(0.0028)

Table 5: Parameters estimation of two-dimensional spatial variability by MOM.

In two-dimensional variability, parameters estimation (Table 5) is more ac-

curate than the one-dimensional estimation (even with poor realizations of Gt).455

This accuracy is explained by the use of large spatial locations in the inference

(Nz1 ×Nz2).
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Table 6 provides the estimations of the spatial parameters with total num-

ber positions N = 100 where Nz1 = 20, Nz2 = 5 and Nz1 = 50, Nz2 = 2.

Results show that the accuracy is closed to the one-dimensional case, in partic-460

ular estimation using the discretization Nz1 = 50, Nz2 = 2. Therefore, when

the model is isotropic, estimations using data on a single direction lead to the

same accuracy as one-dimensional model.

Nz1 = 20, Nz2 = 5

M σ2 lc

1 0.714(0.114) 1.967(0.967)

10 0.669(0.069) 1.685(0.685)

100 0.619(0.019) 1.518(0.518)

Nz1 = 50, Nz2 = 2

M σ2 lc

1 0.662(0.062) 1.776(0.776)

10 0.565(0.035) 0.759(0.241)

100 0.592(0.007) 0.942(0.058)

Table 6: Parameters estimation of two-dimensional spatial variability by MOM.

MOM. Step 2: estimation of temporal parameters

Table 7 summarizes estimations of a and η. Results show that accuracy465

depends more on Nt than Nz1 × Nz2 . An acceptable accuracy is reached with

few realizations M when Nt and Nz1 , Nz2 are significantly large. Estimation of

η depends strongly on the number of positions since each position contains a

stochastic contribution of the RF Y given by its mean µ.

In Table 8, as in one-dimensional case, we estimate temporal parameters with470

total number positions N = 100 where Nz1 = 20 and Nz2 = 5 or (Nz1 = 50

and Nz2 = 2. Estimation provides nearly the same accuracy as in the one-

dimensional case (Table 2), since it depends strongly on Nt and significantly on

the total number of positions. Therefore, these results combined with Table 6

suggest that when the model is isotropic, the spatio-temporal variability can be475

appropriately modeled by one-dimensional model.

Figure 8 compares the failure distribution FT which is computed using real-

izations of the field Gt(z) with exact and estimate parameters. Figure 8 (left)

uses the estimation obtained with Nz1 = 40, Nz2 = 20 and M = 1, 10 com-

ponents. The distribution FT is computed using 1000 MC simulations of the480
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Nz1 = 40, Nz2 = 20, Nt = 30

M a η

1 1.613(0.613) 2.660(0.71)

10 0.934(0.06) 1.833(0.134)

100 0.991(0.009) 1.968(0.02)

Nz1 = 40, Nz2 = 20, Nt = 60

M a η

1 1.224(0.224) 2.447(0.49)

10 1.034(0.034) 2.084(0.136)

100 1.011(0.011) 1.971(0.023)

Nz1 = 100, Nz2 = 40, Nt = 30

M a η

1 0.801(0.198) 2.184(0.236)

10 1.072(0.07) 2.123(0.175)

100 1.09(0.009) 2.024(0.07)

Nz1 = 100, Nz2 = 40, Nt = 60

M a η

1 0.872(0.127) 1.722(0.225)

10 1.018(0.018) 2.068(0.121)

100 1.014(0.014) 2.017(0.069)

Table 7: Parameters estimation of the temporal variability using MOM.

Nz1 = 20, Nz2 = 5, Nt = 30

M a η

1 1.861(0.861) 1.146(0.801)

10 0.915(0.085) 1.578(0.369)

100 0.968(0.031) 1.858(0.089)

Nz1 = 20, Nz2 = 5, Nt = 60

M a η

1 1.287(0.287) 2.503(0.555)

10 1.087(0.087) 2.368(0.420)

100 0.962(0.037) 2.031(0.084)

Nz1 = 50, Nz2 = 2, Nt = 30

M a η

1 1.651(0.651) 2.734(0.787)

10 0.913(0.086) 1.836(0.112)

100 0.968(0.031) 1.871(0.076)

Nz1 = 50, Nz2 = 2, Nt = 60

M a η

1 0.814(0.186) 1.563(0.384)

10 0.971(0.029) 2.071(0.124)

100 1.029(0.029) 2.034(0.086)

Table 8: Parameters estimation of the temporal variability using MOM.

field Gt(z). Figure 8 (right) uses 500 MC simulations of Gt(z) with parameters

estimate given in the case Nz1 = 100, Nz2 = 40 and M = 1, 10. This latter

shows an accurate estimation of the failure time distribution FT , since it uses

more positions and accurate parameters estimation.

PML method485

The PML method consists of maximizing (46), the marginal density of the
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Figure 8: Failure time distribution FT . Left 1000 MC simulations, Nz1
= 40, Nz2

= 20. Right

M = 500 MC simulations, Nz1
= 100, Nz2

= 40

increments of Gt(z̃) in an arbitrary position z̃. Table 9 gives estimates of a and

η by PML, where Gt(·) is simulated with Nz1 = 40, Nz2 = 20. The increments

of Gt(z̃) are computed in the middle position of the physical domain. sigma in

the likelihood (46) is replaced by its estimations for each case of M , Nz1 and490

Nz2 in ( Table 5). Results of these estimates show that the PML estimators

depend strongly on M independent copies of Nt increments of Gt(z).

Nz1 = 40, Nz2 = 20, Nt = 30

M a η

1 1.449(0.449) 2.411(0.463)

10 1.045(0.045) 2.117(0.169)

100 0.972(0.027) 2.065(0.118)

Nz1 = 40, Nz2 = 20, Nt = 60

M a η

1 1.283(0.283) 2.544(0.597)

10 0.968(0.032) 1.797(0.15)

100 1.011(0.011) 2.007(0.06)

Table 9: Parameters estimation of temporal variability by PML

Discussion

The comparison between estimates given by MOM and by PMLmethod leads

to highlight the interest of MOM. The PML providesonly the temporal parame-495

ters by using the increments of the model in any fixed position, yieldingto a set

of acceptable estimations. MOM makes the inference procedureon two stages.
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First, it determines the spatial parameters and then the temporal ones. Un-

der the property ofspatial ergodicity , the use by MOMof the spatial data in

both stages leads to improve the inference accuracy by exploiting inspection500

results. When the temporal variability is characterized by a non-homogeneous

GP, MOM requires some additional transformations in the time step to ob-

tain a stationary process. This transformation is not clear when the non-linear

shape function is defined by unknown parameters. Thus,MOM and PML can

be combined for more practical inference procedure in such case. This combi-505

nation consists in, first, estimatingthe spatial parameters with MOM, second,

computing compute the temporal parameters for the non-homogenous GP with

PML.

6. Conclusion

We have developed a spatio-temporal degradation model that tackles both510

the inert spatial uncertainty and heterogeneity across structural component. It

is based on the classical gamma process and non-negative spatial random field.

The temporal paths of the process are monotonic with conditionally indepen-

dent increments, the random field scale follows a log-normal distribution. The

marginal probability density and cumulative function of the model has found515

to have a transcendental form and the Gauss quadrature formula was applied

to compute these probabilities. The quantities of interest in reliability analysis

and maintenance; namely the distribution of failure time and the distribution

of remaining useful lifetime are computed. A comparison between the method

of moments and a maximum pseudo-likelihood method is carried out to derive520

the parameters of the model. The advantage of the model is highlighted with

Monte Carlo simulations. It shows how incorporating spatial variability both

reduces uncertainties and improves accuracy of the inference by exploiting with

batter manner the spatial data. An interesting extension of the model that in-

corporates the spatial variability can consider the multi-variate modeling based525

on the state dependent Gamma process. Such spatio-temporal field is not sep-
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arable when the spatial aleatory is considered in the shape function, it seems

computationally more difficult and is still a challenge.
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