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Abstract

Convex bodies play a fundamental role in geometric computation, and approximating such
bodies is often a key ingredient in the design of efficient algorithms. We consider the question of
how to succinctly approximate a multidimensional convex body by a polytope. We are given a
convex body K of unit diameter in Euclidean d-dimensional space (where d is a constant) along
with an error parameter ε > 0. The objective is to determine a polytope of low combinatorial
complexity whose Hausdorff distance from K is at most ε. By combinatorial complexity we
mean the total number of faces of all dimensions of the polytope. In the mid-1970’s, a result
by Dudley showed that O(1/ε(d−1)/2) facets suffice, and Bronshteyn and Ivanov presented a
similar bound on the number of vertices. While both results match known worst-case lower
bounds, obtaining a similar upper bound on the total combinatorial complexity has been open
for over 40 years. Recently, we made a first step forward towards this objective, obtaining a
suboptimal bound. In this paper, we settle this problem with an asymptotically optimal bound
of O(1/ε(d−1)/2).

Our result is based on a new relationship between ε-width caps of a convex body and its
polar. Using this relationship, we are able to obtain a volume-sensitive bound on the number
of approximating caps that are “essentially different.” We achieve our result by combining this
with a variant of the witness-collector method and a novel variable-width layered construction.

∗Research supported by the Research Grants Council of Hong Kong, China under project number 16214518. The
work of David Mount was supported by NSF grant CCF–1618866.
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1 Introduction

Convex objects are of central importance in numerous areas of geometric computation. Efficiently
approximating a multi-dimensional convex body by a convex polytope is a natural and fundamental
problem. Given a closed, convex set K of unit diameter in Euclidean d-dimensional space and an
error parameter ε > 0, the objective is to produce a convex polytope of low combinatorial complexity
whose Hausdorff distance1 from K is at most ε. The combinatorial complexity of a polytope is the
total number of faces of all dimensions. Throughout, we assume that the dimension d is a constant.

Dudley showed that, for ε ≤ 1, any convex body K of unit diameter can be ε-approximated by a
convex polytope P with O(1/ε(d−1)/2) facets [20]. This bound is known to be tight in the worst case
and is achieved when K is a Euclidean ball [16]. Alternatively, Bronshteyn and Ivanov showed the
same bound holds for the number of vertices, which is also the best possible [15]. Similar bounds
are widely used in algorithms based on ε-kernels to approximate the diameter, width, minimum
enclosing cylinder, and bichromatic closest pair, among others (see [1, 5, 17]). Unfortunately, no
construction is known that matches both bounds simultaneously. This issue has been noted by
Clarkson [18], where he cites communications with Jeff Erickson showing that both bounds can be
attained but at the cost of sacrificing convexity.

McMullen’s Upper-bound Theorem [27] implies that a polytope with n facets (resp., vertices)
has O(nbd/2c) vertices (resp., facets), and this bound is attained by cyclic polytopes. Applying
this to Dudley’s or Bronshteyn and Ivanov’s constructions yields a very weak upper bound of
roughly O

(
1/ε(d

2−d)/4) on the combinatorial complexity of ε-approximating polytopes. (Alternative
constructions are known that yield a complexity of roughly O(1/εd−2) [2, 12], but this is nearly
quadratic in the lower bound.)

Because it is often useful to convert between vertex-based and facet-based representations of
convex polytopes (as the convex hull of points and the intersection of halfspaces, respectively), this
blowup has been a major impediment to the application of fundamental polytopal structures such
as convex hulls, Delaunay triangulations, and Voronoi diagrams in dimensions d > 3. Efficiently
representing the combinatorial structure of a polytope’s faces is of great practical importance to
several algorithms [13]. However, the high combinatorial complexity of existing polytope approxi-
mations severely limits the efficiency of such data structures.

In this paper we achieve a major breakthrough by resolving this decades-old problem. We
present a construction for approximating a convex body that not only simultaneously achieves the
bound of O(1/ε(d−1)/2) on the number of vertices and facets, but in fact establishes this bound on
the total combinatorial complexity (sum of faces of all dimensions).

Theorem 1.1. Let K ⊂ Rd be a convex body of unit diameter, where d is a fixed constant. For all
sufficiently small positive ε (independent of K) there exists an ε-approximating convex polytope P
to K of combinatorial complexity O(1/ε(d−1)/2).

We considered this problem earlier [6], obtaining a result that was suboptimal. That paper
introduced two useful techniques: a width-based variant of Bárány’s [11] economical cap cover based
on Macbeath regions and a multi-layered approach to the witness-collector method [19]. That result
fell short, however, due in part to a weak understanding of the distribution of Macbeath region

1The Hausdorff distance between any two sets is the maximum Euclidean distance between any point in one set
and its closest point in the other set. While there are other metrics for polytope similarity (see, e.g. [16]), Hausdorff is
the measure most often used in computational geometry. Approximations sensitive to the diameter and the directional
width can be obtained by applying an affine transformation to K.
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volumes in the cap cover. In this paper, we introduce an important new result, a volume-sensitive
bound on the number of Macbeath regions (in Theorem 4.2). This new bound comes about by
establishing a correspondence between Macbeath regions in the original convex body and its polar
body, and demonstrating a reciprocal relationship in the volumes of corresponding regions. A
classical result in the theory of convex bodies states that the volume of a convex body and its polar
dual have a reciprocal relationship. The dimensionless product of these two quantities is called the
Mahler volume [26]. Our correspondence can be viewed as a “local” extension of the Mahler-volume
concept, and it allows this reciprocal relationship to be applied in the context of approximation.
This enables a more sophisticated application of the witness-collector method. We believe that this
primal-polar approach is an important new technique, which will be useful in other optimization
problems involving convex approximation.

Overview of Methods

Before delving into technical matters, let us survey the broader context behind our work and give
a high-level view of our approach. Convex approximation by polytopes is in essence a covering
problem. Given a convex body K of unit diameter, an ε-width cap is the intersection of K with a
halfspace that cuts off a slice of width ε from K. Clearly, any collection of ε-width caps that covers
all of K’s boundary yields an ε-approximation of K having (at most) as many facets. Clarkson [18]
observed that, as ε tends to zero, computing such a cover involves sampling the boundary of K
according to a metric that is sensitive to K’s shape, with proportionately more samples in areas of
higher curvature. Intuitively, such a metric should capture the notion of the “local feature size” at
any point of K.

In recent works, we have demonstrated that shape-sensitive sampling can be achieved through
the use of Macbeath regions. Given a point x ∈ K, the Macbeath region M(x) is a maximal centrally
symmetric convex shape centered at x and contained within K. (Formal definitions and properties
are provided in Section 2.1.) Macbeath regions enjoy many useful properties. They can be computed
efficiently, they have nice packing and covering properties, and up to constant scaling factors, M(x)
approximates the minimum volume cap centered at x as well as the unit balls centered at x in
both the Hilbert and Blaschke geometries induced by K [11, 29, 30]. Macbeath regions have been
introduced to computational geometry as a tool to prove lower bounds for range searching [10,14].
Later on, Macbeath regions have been used to prove existential results [6,7,21,28]. More recently,
the explicit computation of such regions has been used to obtain the fastest algorithms known for
several approximation problems such as ε-kernel, diameter, and width [5, 8].

In spite of their obvious relevance to convex approximation, there is still much that is not known
about Macbeath regions. In the context of convex approximation, the number of disjoint (shrunken)
Macbeath regions that can be placed within distance ε of K’s boundary is closely related to the
complexity of approximating K. In earlier work [6], we showed that for any convex body of unit
diameter, such a set has size O(1/ε(d−1)/2). The volume distribution of such a set is a question
of key importance. To see why this is nontrivial, consider the unit hypercube. Parallel to each
facet is an ε-width cap (and Macbeath region) of very large volume Θ(ε). Since the volume of the
portion of K lying within distance ε of the boundary is Θ(ε), a packing argument implies that there
cannot be more than a constant number of disjoint Macbeath regions associated with such large
volume caps. On the other hand, ε-width caps (and Macbeath regions) that are orthogonal to the
main diagonals, that is, close to the vertices of the hypercube, have very small volume of Θ(εd). A
packing argument provides no useful bound on their number. Nonetheless, there cannot be many
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of them. To see why, observe that a small volume ε-width cap can only exist where K’s boundary
has high curvature, and the total curvature of any convex body is bounded. In this paper, we
formalize and generalize this intuition. In particular, we show (in Theorem 4.2) that the number
of disjoint ε-width Macbeath regions of volume v is O(min(ε/v, v/εd)). Note that in both of the
above extremes, this yields a tight bound of O(1) on the number of Macbeath regions.

To prove this volume-sensitive bound we explore the nature of the Macbeath regions and caps
in the polar body K∗ of K. We show that for any cap C of width ε in the primal body K, there is
a corresponding cap C ′ of width Θ(ε) in the polar body K∗ such that the base of C ′ is a constant
factor approximation of the polar of the base of C. Supplementing this new fundamental result
with Mahler-volume upper and lower bounds (which imply a reciprocal relationship between the
volume of a convex body and its polar), we conclude that the product of the volume of C and the
volume of C ′ is roughly the same for every cap C. The volume-sensitive bound follows by applying
packing in either the original body or the polar, depending on volume.

In order to apply this new volume-sensitive bound to convex approximation, we recall the
witness-collector approach to bound the combinatorial complexity of the convex hull of a set of
points [6, 19]. Let S ⊂ Rd be a set of points. We define a set W of regions called witnesses and a
set C of regions called collectors, which satisfy the following properties:

(1) Each witness of W contains a point of S in its interior.

(2) Any halfspace H either contains a witness W ∈ W or H∩S is contained in a collector C ∈ C .

(3) Each collector C ∈ C contains a constant number of points of S.

Devillers et al. [19] showed that given a set of witnesses W and collectors C satisfying the above
properties, the combinatorial complexity of the polytope K defined as the convex hull of S is O(|C |).
Hence, to prove Theorem 1.1, it suffices to provide a set S whose convex hull ε-approximates K
and a corresponding set of witnesses and collectors of cardinality O(1/ε(d−1)/2).

The key tool for our construction is the aforementioned collection of disjoint Macbeath regions
lying within distance ε of K’s boundary. This set of Macbeath regions has the desired size, and the
corresponding caps satisfy properties (1) and (2) above, where the Macbeath regions represent the
witnesses and the caps represent the collectors. Since Macbeath regions approximate caps, if we
define a set S by picking one arbitrary point inside each Macbeath region, then we are guaranteed
to obtain an ε-approximation of K.

However, the construction may fail to satisfy property (3). While a cap may only intersect a
constant number of Macbeath regions of larger or similar volume, any given cap may intersect a
large number of Macbeath regions of smaller volume. We dealt with this in [6] by arranging the
Macbeath regions into O(log 1

ε ) layers of thickness ε, moving low-volume Macbeath regions into the
innermost layers. In this way, we prevented the caps from intersecting Macbeath regions of smaller
volume, and assuring property (3). However, the approximation error grew from ε to O(ε log 1

ε )
because of the increased total thickness of the layers. An ε-approximation was achieved through a
compensatory scaling of ε, causing the complexity to grow to O((log 1

ε/ε)
(d−1)/2).

In this paper we show how to exploit our volume-sensitive bound to obtain an ε-approximation
of optimal combinatorial complexity. As in [6], we place Macbeath regions in different layers of
thickness according to their volumes, the outermost layers corresponding to Macbeath regions of
larger volume and the innermost layers corresponding to smaller volumes. However, we no longer
use layers of constant thickness. Instead, the middle layer (numbered layer 0), which corresponds
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Figure 1: (a) A convex body K in γ-canonical form and (b) an inner ε-approximation P .

to Macbeath regions of volume v = ε(d+1)/2, has the maximum thickness ε, and a layer of number
i (that may be positive or negative) has thickness ε/i2. The sum of the thicknesses of all layers
is then given by

∑
i ε/i

2 = O(ε), thus eliminating the wasteful log factor. The Macbeath regions
inside each layer have width proportional to the thickness of the layer and, thanks to the volume-
sensitive bound, the total number of Macbeath regions remains O(1/ε(d−1)/2), yielding the optimal
bound for the combinatorial complexity.

The remainder of the paper is organized as follows. In Section 2, we introduce the various
geometric preliminaries upon which our construction relies, and summarize the salient properties
of Macbeath regions, which are central to our construction. In Section 3, we investigate the
relationship between ε-width caps in the primal body K and its polar K∗. In Section 4, we show
that the number of disjoint Macbeath regions of width ε and volume Θ(v) is O(min(ε/v, v/εd)).
Finally, we prove Theorem 1.1 in Section 5.

2 Geometric Preliminaries

Much of the material in this section has been presented in [5–7] and can be skimmed on first
reading. We include it here for the sake of completeness. The proofs of all the lemmas in this
subsection that are omitted can be found in these papers or are straightforward adaptations of the
proofs given therein.

Consider a convex body K in d-dimensional space Rd. Let ∂K denote the boundary of K. Let
O denote the origin of Rd. Given a parameter 0 < γ ≤ 1, we say that K is γ-fat if there exist
concentric Euclidean balls B and B′, such that B ⊆ K ⊆ B′, and radius(B)/ radius(B′) ≥ γ. We
say that K is fat if it is γ-fat for a constant γ (possibly depending on d, but not on ε).

Let B0 denote the ball of unit radius centered at the origin and for α > 0, let αB0 denote the
ball of radius α centered at the origin. We say that a convex body K is in γ-canonical form2 if it
is nested between

√
γB0 and B0/

√
γ (see Figure 1(a)). A body in γ-canonical form is γ-fat and,

for constant γ, it is fat and has Θ(1) diameter.

2This definition differs from our earlier papers but has the elegant feature that a convex body K is in γ-canonical
form if and only if its polar K∗ (see Section 2.2) is as well.
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We say that a convex body P is an ε-approximation (see Figure 1(b)) to another convex body K
if they are within Hausdorff error ε of each other. Further, we say that P is an inner (resp., outer)
approximation if P ⊆ K (resp., P ⊇ K). The next lemma shows that, up to constant factors,
the problem of approximating a convex body can be reduced to the problem of approximating a
convex body in canonical form. The proof is an easy consequence of John’s Theorem [24]. (Also,
see Lemma 2.1 of [6].)

Lemma 2.1. Let K ⊂ Rd be a convex body. There exists a non-singular affine transformation T
such that T (K) is in (1/d)-canonical form and if P is any (2ε/

√
d)-approximation to T (K), then

T−1(P ) is an ε-approximating polytope to K.

In light of this result, we may assume that K is presented in γ-canonical form, for any constant
γ (depending on dimension), and that ε has been appropriately scaled. (This scaling will only
affect the constant factors hidden in our asymptotic bounds. The transformation also preserves
directionally sensitive notions of approximation [5].) Henceforth, we will focus on the problem of
ε-approximating a convex body K in canonical form.

Finally, we define two useful notions of distance from the boundary of a convex body. Let K be
a convex body and let x be a point. Define δ(x) to be the minimum distance from x to any point on
∂K. We define a ray-based notion of distance of a point x as well. Consider the intersection point
p of ∂K and the ray emanating from O and passing through x. Define x’s ray-distance, denoted
ray(x), to be ‖xp‖ (see Figure 2(a)). We have the following lemma, which shows that for points
inside a convex body in γ-canonical form for constant γ, these two distance measures are the same
to within a constant factor.

Lemma 2.2. Let K be a convex body in γ-canonical form. For any point x ∈ K, δ(x) ≤ ray(x) ≤
δ(x)/γ.

2.1 Caps and Macbeath Regions

Given a convex body K, a cap C is defined to be the nonempty intersection of the convex body
K with a halfspace (see Figure 2(b)). Let h denote the hyperplane bounding this halfspace. We
define the base of C to be h ∩K. The apex of C is any point in the cap such that the supporting
hyperplane of K at this point is parallel to h. The width of C, denoted width(C), is the distance
between h and this supporting hyperplane. Given any unit vector u and any sufficiently small
width w, there is a unique cap of width w whose base is orthogonal to u and lies on the same side
of the origin as indicated by u. We refer to this as the cap that is orthogonal to u. Given any cap
C of width w and a real λ ≥ 0, we define its λ-expansion, denoted Cλ, to be the cap of K cut by
a hyperplane parallel to and at distance λw from this supporting hyperplane. (Note that Cλ = K,
if λw exceeds the width of K along the defining direction.)

We begin with some simple geometric facts about caps. An easy consequence of convexity is
that, for λ ≥ 1, Cλ is a subset of the region obtained by scaling C by a factor of λ about its apex.
This implies the following lemma.

Lemma 2.3. Let K ⊂ Rd be a convex body and λ ≥ 1. For any cap C of K, vol(Cλ) ≤ λd ·vol(C).

Another consequence of convexity is that containment of caps is preserved if the halfspaces
defining both caps are consistently scaled about a point that is common to both caps. This is
stated in the following lemma.
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Figure 2: (a) Notions of distance, (b) cap concepts, and (c) Macbeath regions.

Lemma 2.4. Let K be a convex body, and let C1 ⊆ C2 be two caps of K. Let H1 and H2 be their
respective defining halfspaces, and let Hλ

1 and Hλ
2 be the respective halfspaces obtained by scaling

by λ ≥ 1 about any point p ∈ C1. Then K ∩Hλ
1 ⊆ K ∩Hλ

2 .

The next two lemmas apply to bodies in γ-canonical form. The first shows that for a point p in
a cap near the boundary, the angle between Op and the normal to the base of the cap is bounded
away from π/2. The second gives upper and lower bounds on the volume of a cap of width α.

Lemma 2.5. Let K ⊂ Rd be a convex body in γ-canonical form for constant γ, and let ∆0 be a
sufficiently small constant (depending on d and γ). Let C be a cap of width at most ∆0 and let p
be any point inside C. Then the cosine of the angle between Op and the normal to the base of C is
at least γ/2.

Lemma 2.6. Let K ⊂ Rd be a convex body in γ-canonical form for constant γ, and let 0 < α < 1
be a positive real. Then there exist constants c and c′ (depending on d and γ) such that for any cap
C of width α, cαd ≤ vol(C) ≤ c′α.

Given a point x ∈ K and a real parameter λ ≥ 0, the Macbeath region Mλ(x) (also called an
M-region) is defined as:

Mλ(x) = x+ λ((K − x) ∩ (x−K)).

It is easy to see thatM1(x) is the intersection ofK and the reflection ofK around x (see Figure 2(c)),
and so M1(x) is centrally symmetric about x. Mλ(x) is a scaled copy of M1(x) by the factor λ
about x. We refer to x as the center of Mλ(x) and to λ as its scaling factor. As a convenience,
we define M(x) = M1(x) and M ′(x) = M1/5(x). We refer to the latter as the shrunken Macbeath
region.

Macbeath regions have found numerous uses in the theory of convex sets and the geometry
of numbers (see Bárány [11] for an excellent survey). They have also been applied to a growing
number of results in the field of computational geometry, particularly to construct lower bounds
for range searching [9, 10,14] and to bound the complexity of an ε-approximating polytope [3, 6].

Given any point x ∈ K, we define a minimal cap C(x) to be the cap with minimum volume that
contains x. There generally may be multiple minimum-volume caps containing a given point, and if
so, C(x) denotes any such cap. Clearly, the base of C(x) must pass through x. In fact, a standard
variational argument implies x is the centroid of the base (for otherwise, we could decrease the cap
volume by an infinitesimal rotation of the base about x [23]). Indeed, our use of minimal caps is

7



primarily due to the fact that they are well centered around their defining point, and not volume
properties. We also let Cλ(x) refer to the λ-expansion of C(x), that is, Cλ(x) = (C(x))λ.

We now present lemmas that encapsulate key properties of Macbeath regions, which will be
useful in our analysis. The first lemma shows that if two shrunken Macbeath regions have a
nonempty intersection, then a constant factor expansion of one contains the other [14,23].

Lemma 2.7. Let K be a convex body, and let λ ≤ 1/5 be any real. If x, y ∈ K such that Mλ(x) ∩
Mλ(y) 6= ∅, then Mλ(y) ⊆M4λ(x).

The next two lemmas are useful in situations when we know that a Macbeath region partially
overlaps a cap of K, and allow us to conclude that a constant factor expansion of the cap will fully
contain the Macbeath region. The first applies to shrunken Macbeath regions and the second to
Macbeath regions with scaling factor one.

Lemma 2.8. Let K be a convex body. Let C be a cap of K and x be a point in K such that
C ∩M ′(x) 6= ∅. Then M ′(x) ⊆ C2.

Lemma 2.9. Let K be a convex body. If x is a point in a cap C of K, then M(x) ⊆ C2.

The next lemma shows that any sufficiently small cap is contained within a suitable constant
factor expansion of the Macbeath region centered at the centroid of its base [14,23]. In particular,
it implies that the minimal cap associated with a point is contained within a suitable constant
factor expansion of the Macbeath region centered at that point.

Lemma 2.10. Let K ⊂ Rd be a convex body in γ-canonical form for constant γ, and let ∆0 be a
sufficiently small constant (depending on d and γ). Let C be a cap of K of width at most ∆0 and
let x denote the centroid of the base of this cap. Then C ⊆M3d(x).

The following four lemmas are easy consequences of standard properties of Macbeath regions.
The first gives lower and upper bounds on the width of the minimal cap. The second generalizes
Lemma 2.10 to caps formed by expanding the minimal cap. The third states that if the shrunken
Macbeath regions associated with two caps overlap, then a constant factor expansion of any one
cap is contained in a suitable constant factor expansion of the other. The last states that all the
points in a shrunken Macbeath region have similar distances from the boundary of K.

Lemma 2.11. Let K,C and x be as defined in Lemma 2.10. Then δ(x) ≤ width(C) ≤ cδ(x) for
a suitable constant c (depending on d and γ).

Lemma 2.12. Let λ ≥ 1 and let K,C, and x be as defined in Lemma 2.10. Then Cλ ⊆
M3d(2λ−1)(x).

Lemma 2.13. Let K ⊂ Rd be a convex body in γ-canonical form, where γ is a constant. Let ∆0 be
the constant of Lemma 2.10 and let λ ≥ 1 be any real. There exists a constant β ≥ 2 such that the
following holds. Let C1 and C2 be any two caps of K of width at most ∆0. Let x1 and x2 denote the
centroids of the bases of the caps C1 and C2, respectively. If M ′(x1)∩M ′(x2) 6= ∅, then Cλ1 ⊆ C

βλ
2 .

Lemma 2.14. Let K be a convex body. If x ∈ K and x′ ∈M ′(x), then 4δ(x)/5 ≤ δ(x′) ≤ 4δ(x)/3.
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2.2 Polarity and the Mahler Volume

Some of our analysis will involve the well known concept of polarity. Let us recall some general
facts (see, e.g., Eggleston [22]). Given vectors u, v ∈ Rd, let 〈u, v〉 denote their dot product, and
let ‖v‖ =

√
〈v, v〉 denote v’s Euclidean length. (Throughout, we use the terms point and vector

interchangeably.) Given a bounded convex body K ∈ Rd that contains the origin in its interior,
define its polar, denoted K∗, to be the convex set

K∗ = {u : 〈u, v〉 ≤ 1, for all v ∈ K}.

The polar enjoys many useful properties. For example, it is well known that K∗ is bounded and
(K∗)∗ = K. Further, if K1 and K2 are two convex bodies such that K1 ⊆ K2 then K∗2 ⊆ K∗1 .

It will be convenient to also define the polar of a point. Given a point v ∈ Rd (not the origin),
we define v∗ to be the hyperplane that is orthogonal to v and at distance 1/‖v‖ from the origin,
on the same side of the origin as v. The polar of a hyperplane is defined as the inverse of this
mapping. We may equivalently define K∗ as the intersection of the closed halfspaces that contain
the origin, bounded by the hyperplanes v∗, for all v ∈ K.

For any centrally symmetric convex body K and real λ > 0, we use λK to denote the body
obtained by scaling K by a factor of λ about its center. Given any convex body K and real λ ≥ 1,
we say that a point x ∈ K is λ-centered in K if there exists an ellipsoid E centered at x such
that E ⊆ K ⊆ λE. It is well known that every convex body K contains a d-centered point. This
follows from the fact that the ellipsoid E of largest volume contained inside a convex body K,
called the John Ellipsoid, satisfies E ⊆ K ⊆ dE. The following lemma shows that the centroid of
K is O(1)-centered (the proof is presented in [25]).

Lemma 2.15. For any convex body K, its centroid is d-centered.

An important concept related to polarity is the Mahler volume, which is defined to be the
product of the volumes of a convex body and its polar. There is a large literature on the Mahler
volume (see, e.g., Kuperberg [26]). It is well known that the Mahler volume is affine invariant. The
following lemma establishes a constant upper and lower bound on the Mahler volume of a convex
body when the polar is computed with respect to an O(1)-centered point. Note that the convex
body need not be centrally symmetric.

Lemma 2.16. Let K be a convex body, let x ∈ K be a λ-centered point for constant λ, and let K∗

denote the polar of K with respect to x. Then vol(K) · vol(K∗) = Θ(1).

Proof. By definition, there is an ellipsoid E centered at x such that E ⊆ K ⊆ λE. By standard
properties of the polar transformation, we have (λE)∗ ⊆ K∗ ⊆ E∗. Since (λE)∗ = (1/λ)E∗, it
follows that (1/λ)E∗ ⊆ K∗ ⊆ E∗. Thus

1

λd
· vol(E) · vol(E∗) ≤ vol(K) · vol(K∗)

≤ λd · vol(E) · vol(E∗).

Since the Mahler volume is invariant under linear invertible transformation, vol(E) ·vol(E∗) equals
the square of the volume of a unit ball, which is Θ(1). The desired result follows immediately.

The following lemma is now an immediate consequence of Lemmas 2.15 and 2.16.

Lemma 2.17. Let K be a convex body and let K∗ denote the polar of K with respect to its centroid.
Then vol(K) · vol(K∗) = Θ(1).

9



3 Caps of the Polar

Let K denote a convex body. The goal of this section is to establish certain fundamental and novel
relationships between ε-width caps in K and its polar K∗. Assuming K satisfies certain fatness
assumptions, we show that the base of a cap in K and the base of a corresponding cap in K∗,
treated as (d−1)-dimensional bodies, are roughly related as polars of each other. We establish this
in Lemmas 3.1 and 3.2.

It will be useful to consider the notion of a cap in a dual setting (see, e.g., [3,4]). Given a convex
body K and a point z that is exterior to K, we define the dual cap of K with respect to z to be the
set of (d − 1)-dimensional hyperplanes that pass through z and do not intersect K’s interior (see
Figure 3). If K is full dimensional and contains the origin, it follows that a hyperplane h lies in the
dual cap if and only if the point h∗ lies on the base of the cap of K∗ defined by the hyperplane z∗.
We can define the polar of a dual cap as the set of points that results by taking the polar of each
hyperplane of the dual cap.

OO
K∗

K

z

z∗
h

h∗polar

Figure 3: Definition of a dual cap and its polar.

The following lemma will be useful in proving Lemma 3.2, wherein we establish a polar relation-
ship between the base of a cap in a convex body and the base of a corresponding cap in its polar.
For the sake of concreteness, we state our results in terms of an arbitrary direction, which we call
vertical, and any hyperplane orthogonal to this direction is called horizontal. Since the direction is
arbitrary, there is no loss of generality.

Lemma 3.1. Let z ∈ Rd be a point that lies on a vertical ray from the origin O, and let K be
a (d − 1)-dimensional convex body whose interior intersects the segment Oz at some point x (see
Figure 4). Let G be the polar of the dual cap of K with respect to z, let K be the vertical projection
of K, and let h be the hyperplane parallel to K passing through z. Then G − h∗ = αK

∗
, where

α = ‖xz‖/‖Oz‖.

Note that G is a (d − 1)-dimensional convex body that lies on the horizontal hyperplane z∗.
Since h passes through z and does not intersect K, h∗ is a point lying within G, and therefore the
translate G− h∗ is horizontal and contains the origin. Since K is also horizontal and contains the
origin, so does K

∗
(see Figure 4).

Proof. Let u be the unit vector orthogonal to K, and let v be the unit vector in the vertical
direction. Let g be any hyperplane as described above. Letting w = g∗, it follows that g is the
set of points p satisfying 〈w, p〉 = 1. In order to find the polar of K, our approach is to find the
equation of the hyperplane g′ whose normal has no vertical component and which passes through
the vertical projection of the intersection of g with the hyperplane containing K. Clearly, by taking

10



K

O

z∗G

polar

h

h∗

K
∗

O

G−h∗

K

x

z

Figure 4: Statement of Lemma 3.1.

the polar of this hyperplane, we will obtain a point in K
∗

and, moreover, all points in K
∗

can be
generated in this manner.

We claim that the hyperplane g′ is defined by the equation 〈w′, p〉 = α, where w′ = w−u/〈u, z〉.
Note that w′ has no vertical component since 〈w′, z〉 = 0. To show that g′ passes through the
vertical projection of the intersection of g with the hyperplane containing K, let y be any point
on the intersection of g with the hyperplane that contains K. We may express y as y = x + a,
where 〈a, u〉 = 0. The vertical projection of y, denoted y′, equals y − 〈y, v〉 v. Using the facts that
〈u, a〉 = 0 and 〈w, y〉 = 〈w, z〉 = 1, we obtain

〈w′, y′〉 =

〈
w − 1

〈u, z〉
u, y − 〈y, v〉v

〉
= 〈w, y〉− 〈u, y〉

〈u, z〉
−〈y, v〉 · 〈w, v〉+ 〈y, v〉

〈u, z〉
· 〈u, v〉

= 1− 〈u, y〉
〈u, z〉

− 〈y, v〉〈w, z〉
‖z‖

+
〈y, v〉
‖z‖

= 1− 〈u, x+ a〉〈
u, 1

1−αx
〉 = 1− (1− α)

〈u, x〉
〈u, x〉

= α,

which proves the claim.
Taking the polar of g′, we obtain the point w′/α = (w − u/〈u, z〉)/α, which lies in K

∗
. Note

that this point is a scaled and translated version of w, the polar of g. Since each hyperplane g
generates a point in both K

∗
and G related by this transformation, and every point in both these

bodies is generated by some hyperplane g, we see that G− u/〈u, z〉 = αK
∗
. Observe that u/〈u, z〉

is the vector orthogonal to h that lies on G, so it must be h∗. Thus, G − h∗ = αK
∗
, completing

the proof.

For the rest of this section, we focus on the case where K is a convex body in γ-canonical form
for constant γ. In order to relate approximating elements for K with approximating elements for
K∗, we introduce a mapping of ε-width caps of K to Θ(ε)-width caps of K∗. Let C be an ε-width
cap of K. For concreteness, assume that space has been rotated so that C’s base is horizontal
with C lying above the origin. For a suitably large constant c (to be specified later), shoot a ray

11



vertically upwards from O, and let x ∈ K∗ be a point on this ray such that δ(x) = ε/c. Define
π(C) to be a minimum volume cap of K∗ that contains x (see Figure 5). Our next lemma shows
that there is a polar relationship between the bases of C and π(C).

polar

O
K

C

z∗

c1εX
∗ + h∗ c2εX

∗ + h∗

h∗

X

K∗

h

O

z

x

π(C)

Figure 5: Statement of Lemma 3.2.

Lemma 3.2. Given a convex body K in γ-canonical form for a constant γ, there exist constants
c1, c2 such that the following holds. Let C be a horizontal ε-width cap of K lying above the origin.
Let X be the vertical projection of the base of π(C). Let z be the point that is the polar of the
hyperplane passing through base(C), and let h be the hyperplane parallel to base(π(C)) passing
through z. Then c1εX

∗ ⊆ base(C)− h∗ ⊆ c2εX∗.

Proof. Let z′ be the point of intersection of the vertical ray Ox with ∂K∗ (see Figure 6). By the
definition of the polar transformation, z lies on the ray Ox (outside K∗) such that c′1ε ≤ ‖z′z‖ ≤ c′2ε
for suitable constants c′1 and c′2. Let B1 = base(π(C)). Let D and D1 be the dual caps of K∗ and
B1, respectively, with respect to z. Recall that the polar of D is base(C). Let G1 be the polar
of D1. Since B1 ⊆ K∗, we have D ⊆ D1. It follows that base(C) ⊆ G1. Applying Lemma 3.1,
we obtain G1 − h∗ = (‖xz‖/‖Oz‖)X∗. Since ‖xz‖ = Θ(ε) and ‖Oz‖ = Θ(1), it follows that
base(C)−h∗ ⊆ c2εX∗, for a suitable constant c2. This establishes one part of the desired inequality.

We establish the other part of the inequality using a similar approach. The key insight is that a
scaled and translated version of B1 has the property that its dual cap with respect to z is a subset
of D, the dual cap of K∗ with respect to z. Towards this end, let ψ1 be the (infinite) generalized
cone defined by rays shot from z′ to B1. Note that ψ1 will enclose K∗ \ π(C) due to convexity.
Consider the generalized cone Γ1 with apex O and base B1. Scale this cone about O by a suitable
factor f1 to produce a cone Γ2 whose base (call it B2) is tangent to K∗. Since δ(x) = ε/c and, by
Lemma 2.11, width(π(C)) = O(δ(x)), it is easy to see that f1 ≤ 1 + c′3(ε/c) for a suitable constant
c′3. Note that Γ2 encloses the entirety of π(C). We now expand ψ1 by this same factor f1 about
O to produce ψ2. Clearly, ψ2 encloses both K∗ \ π(C) and π(C) itself, so it encloses all of K∗.
For sufficiently large constant c, we can show that the apex of ψ2 lies below z. This is because the
distance between z′ and the apex of ψ2 is (f1 − 1)‖Oz′‖ ≤ c′3(ε/c)‖Oz′‖ ≤ c′3(ε/c)(1/

√
γ). Recall

that z is at distance at least c′1ε from z′. Thus, by choosing c larger than c′3/(c
′
1
√
γ), we can ensure

that the apex of ψ2 lies below z. We scale ψ1 about O such that the apex of the resulting cone ψ3
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is z. The scaling factor f2 is ‖Oz‖/‖Oz′‖ = 1 + Θ(ε). We scale B1 by the same factor f2 about O
to obtain B3. Clearly ψ3 encloses the entirety of K∗. Further, B3 is at vertical distance Θ(ε) below
z. To see this, let x′ be the point of intersection of Oz with B3. Note that ‖x′z‖ = f2‖xz′‖ = Θ(ε).

K∗
ψ1

ψ2

ψ3

Γ1

z

B2

Γ2

B3

O

x

z′ B1

x′

Figure 6: Definitions in the proof of Lemma 3.2.

Let D3 be the dual cap of B3 with respect to z, and let G3 be the polar of D3. Since D3 ⊆ D,
it follows that G3 ⊆ base(C). Applying Lemma 3.1, we obtain G3 − h∗ = (‖x′z‖/‖Oz‖)(X ′)∗,
where X ′ is the vertical projection of B3 (and so is a constant-factor expansion of X). Since
‖x′z‖ = Θ(ε) and ‖Oz‖ = Θ(1), it follows that G3 − h∗ = c1εX

∗, for some constant c1. Thus, we
have c1εX

∗ ⊆ base(C)− h∗, which is the other part of our desired inequality.

Given this polar-like relationship between C and π(C), we can apply the Mahler volume to
bound the product of their volumes.

Lemma 3.3. Let C be as defined in Lemma 3.2. Then vol(C) · vol(π(C)) = Θ(εd+1).

Proof. Recall that K is in γ-canonical form for constant γ. Thus K∗ is also in γ-canonical form
for constant γ and, by Lemma 2.5, area(base(π(C))) = Θ(area(X)). By Lemma 3.2, base(C) is
sandwiched between two scaled copies ofX∗, where the scaling factor is Θ(ε). Thus area(base(C)) =
Θ(εd−1 area(X∗)). We have

area(base(C)) · area(base(π(C)))

= Θ(εd−1 area(X∗) · area(X)) = Θ(εd−1).

In the last step we have used the fact that for any minimal volume cap containing a point x, x is
the centroid of the base of the cap. Thus, it follows from the definition of π(C) and X that X∗ is
the polar of X with the centroid of X as origin, and so area(X∗) · area(X) = Θ(1) by Lemma 2.17.
Finally, the lemma follows by noting that the caps C and π(C) each have Θ(ε) width and thus
their volumes are Θ(ε) times the areas of their respective bases.

Next, we show that the bound on the product of volumes holds within the neighborhood of the
ray, and specifically to any shrunken Macbeath region that intersects the ray. This will be applied
in Section 4 to establish our volume-sensitive bounds on the number of Macbeath regions.

Lemma 3.4. Let C be a horizontal ε-width cap of K lying above the origin. Let y ∈ K∗ be a
point at distance ε/c from ∂K∗, where c is a sufficiently large constant. Suppose that the ray
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from the origin shot vertically upwards intersects the Macbeath region R = M ′(y) of K∗. Then
vol(C) · vol(R) = Θ(εd+1).

Proof. Let x be a point in the intersection of M ′(y) with the ray shot vertically upwards from O, and
let E denote the minimum volume cap containing x. By Lemma 2.14, 4δ(y)/5 ≤ δ(x) ≤ 4δ(y)/3.
It follows from Lemma 3.3 that vol(C) · vol(E) = Θ(εd+1). By Lemmas 2.8 and 2.10, we have
vol(M ′(x)) = Θ(vol(E)). As M ′(x) intersects R, by Lemma 2.7, a constant factor expansion of
R encloses M ′(x) and vice versa, so vol(R) = Θ(vol(M ′(x))). Thus vol(C) · vol(R) = Θ(εd+1), as
desired.

Intuitively, the points inside a scaled Macbeath region M ′(x) are similar in many respects. Two
points within a shrunken Macbeath region in the polar body can be thought of as generating similar
caps in the original body in the sense of satisfying a “sandwiching” property. This property will
be used in Section 4 to allow us to focus on a discrete set of caps as defined by a finite collection
of Macbeath regions. This will be proved in Lemma 3.6 below. The following technical lemma will
be useful for proving it.

Lemma 3.5. Consider a Macbeath region R = M ′(y) for K. Consider two rays r and r′ shot
from the origin through R (see Figure 7). Let z 6∈ K be a point on r. Let h be a hyperplane
passing through z that does not intersect K. Let z′ be the point of intersection of r′ with h. Then,
ray(z′) = O(ray(z) + δ(y)).

r r′

h

z′

K

O

R
y
δ(y)

ray(z′)
ray(z)

z

Figure 7: Statement of Lemma 3.5.

Proof. Consider a hyperplane h′ that is parallel to h and passes through a point p ∈ r ∩M (see
Figure 8). We claim that the distance between h and h′ is O(ray(z)+δ(y)). To see this, let t be the
point of intersection of r with ∂K. By Lemma 2.14, δ(p) = O(δ(y)). Applying Lemma 2.2, we have
‖pt‖ = ray(p) = O(δ(p)). It follows that ‖pz‖ = ‖pt‖+ ‖tz‖ = ray(p) + ray(z) = O(ray(z) + δ(y)),
which proves the claim.

Let C be the cap induced by h′. Since C intersects R, by Lemma 2.8 the cap C2 encloses R.
Let h′′ denote the hyperplane passing through the base of C2. Observe that the distance between
h′′ and h is no more than twice the distance between h′ and h, and is thus O(ray(z) + δ(y)).

Let p′ be any point in r′ ∩ M . It follows easily from Lemma 2.5 that ‖p′z′‖ is at most a
constant times the distance between h′′ and h. Thus, ‖p′z′‖ = O(ray(z) + δ(y)). It follows that
ray(z′) = O(ray(z) + δ(y)), as desired.

14



r r′ h

z′

K
O

R
y p′

h′

h′′C

C2

z

t

p

Figure 8: Proof of Lemma 3.5.

Lemma 3.6. For any choice of constants c1 and c2, there exist constants c0, σ, such that the
following holds. Let R = M ′(y) be any Macbeath region of K∗, where δ(y) = ε/c0 (see Figure
9). There is a point z 6∈ K∗ on the ray Oy such that the following holds. Consider any ray r
from the origin that intersects R. Let C be a cap of K whose base is orthogonal to r such that
c1ε ≤ width(C) ≤ c2ε. Then the cap E of K induced by the hyperplane z∗ satisfies E1/σ ⊆ C ⊆ E.

Proof. Since K is in γ-canonical form, it is easy to see that the polar of any hyperplane that induces
a cap of K of width between c1ε and c2ε is a point outside K∗, whose ray-distance with respect
to K∗ is at least c′1ε and at most c′2ε for suitable constants c′1 and c′2 (depending only on c1, c2, d,
and γ). Let β be a sufficiently large constant. We assume that the constant c0 in the statement of
this lemma is β/c′1. In other words, δ(y) = c′1ε/β.

Let z, z′ 6∈ K∗ be points on the ray Oy such that ray(z) = c′2βε and ray(z′) = c′1ε/β. Let E and
E′ be caps of K induced by hyperplanes z∗ and (z′)∗, respectively. Let r be the ray given in the
statement of the lemma (drawn vertically in Figure 9), and let C be as described in the lemma. Let
x be the polar of the hyperplane passing through the base of C. Recall that c′1ε ≤ ray(x) ≤ c′2ε.

We claim that E′ ⊆ C ⊆ E. Since ray(z′) = c′1ε/β, δ(y) = c′1ε/β and ray(x) ≥ c′1ε, it follows
that ray(x) ≥ (β/2)(ray(z′) + δ(y)). Since β was chosen to be a sufficiently large constant, by
Lemma 3.5, any hyperplane passing through z′ that does not intersect K∗ separates K∗ from x.
Thus, taking the polar, it follows that E′ ⊆ C. Similarly, since ray(x) ≤ c′2ε, δ(y) = c′1ε/β, and
ray(z) = c′2βε, it follows that ray(z) ≥ (β/2)(ray(x) + δ(y)). Consequently, by Lemma 3.5, any

K∗

O

C

E

E1/σ

polar

K

z∗
y

R

z r

xz′
x∗

Figure 9: Statement and proof of Lemma 3.6.
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hyperplane passing through x that does not intersect K∗ separates K∗ from z. Thus, taking the
polar, C ⊆ E. Putting it together, we obtain E′ ⊆ C ⊆ E.

Let w denote the distance from O to ∂K∗ along the ray Oy. By basic properties of the polar
transformation, the widths of the caps E and E′ are(

1

w
− 1

w + c′2βε

)
and

(
1

w
− 1

w + c′1ε/β

)
,

respectively. It is now easy to verify that width(E)/width(E′) = O(β2), which is bounded above
by some constant σ. Thus E1/σ ⊆ E′. Since E′ ⊆ C ⊆ E, it follows that E1/σ ⊆ C ⊆ E.

4 Volume of Macbeath Regions

In this section, we present a bound on the number of disjoint shrunken Macbeath regions associated
with ε-width caps, that is sensitive to the volume. In turn, this volume-sensitive bound leads to a
more elegant proof of the bound on the total number of disjoint Macbeath regions associated with
ε-width caps. Our proofs are based on the relationship we developed in the last section between a
cap in a convex body and the corresponding cap in its polar.

Lemma 4.1. Let K be a convex body in γ-canonical form for constant γ. There exists a set R of
Macbeath regions M ′(x) of K, where δ(x) = ε, such that the following properties hold:

(i) For any v > 0, the number of Macbeath regions in R of volume Θ(v) is O(ε/v).

(ii) Any ray emanating from the origin of K intersects some Macbeath region of R.

Proof. Let R′ be a maximal set of disjoint Macbeath regions Mλ(x), where λ = 1/20 and δ(x) = ε.
We scale each Macbeath region of R′ by a factor of 4 about its center to obtain the set R.

Observe that all the Macbeath regions of R′ lie within distance O(ε) of ∂K, and so must lie in
a region of volume O(ε). For any v, it follows from disjointness that R′ contains O(ε/v) Macbeath
regions of volume Θ(v). Since the Macbeath regions of R are obtained by scaling the Macbeath
regions of R′ by a constant factor, this proves property (i).

To prove (ii), consider any ray emanating from the origin of K. Let y be a point on this ray such
that δ(x) = ε. Consider the Macbeath region R1 = Mλ(y). Observe that, since R′ is maximal,
R1 must intersect a Macbeath region R2 ∈ R′. Thus, by Lemma 2.7, the 4-factor expansion of R2

must fully enclose R1. By construction, the 4-factor expansion of R2 is an element R ∈ R. As R
encloses R1, R encloses y as well. Thus, any ray emanating from the origin must intersect some
element of R.

We are now ready to prove the volume-sensitive bound on the number of disjoint Macbeath
regions.

Theorem 4.2. Let K ⊂ Rd be a convex body in γ-canonical form for constant γ. Let C be a set
of caps of K of width Θ(ε) and volume Θ(v), such that the Macbeath regions M ′(x) centered at the
centroids x of the bases of these caps are disjoint. Then

|C | = O
(

min
(ε
v
,
v

εd

))
.
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Proof. Let R be the set of Macbeath regions described in the lemma. We will establish the bound
given in the lemma for R. As |C | = |R|, this will prove the lemma.

As in the proof of Lemma 4.1, the O(ε/v) bound on |R| follows easily from disjointness and
the fact that the Macbeath regions of R are all fully contained within distance O(ε) of ∂K. In the
rest of the proof, we will show that |R| = O(v/εd).

Construct the set of Macbeath regions as described in Lemma 4.1, with the convex body referred
to in the lemma being the polar body K∗, and with ε in the lemma set to ε/c for sufficiently large
constant c. Call this set R′. With each Macbeath region R′ ∈ R′, we associate a canonical cap
E of K as described in the statement of Lemma 3.6. We will show that, for every Macbeath
region R ∈ R, there is a canonical cap E which satisfies the following properties: (i) R ⊆ E2, (ii)
vol(E2) = O(v), and (iii) it is associated with a Macbeath region R′ ∈ R′ whose volume is Θ(V ),
where V = εd+1/v.

Consider a Macbeath region R ∈ R and let C be the associated cap of C . Let h be the base of
C. Shoot a ray orthogonal to h from the origin. From Lemma 4.1(ii), we know that this ray will
intersect some Macbeath region R′ ∈ R′. We will show that the canonical cap E associated with
R′ satisfies the above properties (i)–(iii).

By Lemma 3.6, we have E1/σ ⊆ C ⊆ E. By Lemma 2.8, we have R ⊆ C2 and, by Lemma 2.10,
we have C ⊆ R15d. Thus vol(R) = Θ(vol(C)) = Θ(v). To prove (i), we apply Lemma 2.4. Since
C ⊆ E, the lemma implies that C2 ⊆ E2. Since R ⊆ C2, it follows that R ⊆ E2. To prove (ii), note
that by Lemma 2.3, vol(E2) = O(vol(E1/σ)). Since E1/σ ⊆ C, we have vol(E2) = O(vol(C)) =
O(v). To prove (iii), we use the fact that vol(C) = Θ(v) and apply Lemma 3.4. It follows that the
volume of R′ is Θ(V ), where V = εd+1/v.

To bound |R|, recall that the Macbeath regions of R are disjoint and have volume Θ(v). By
properties (i) and (ii), each Macbeath region of R is contained in some cap E2 of volume O(v). By
a straightforward packing argument, the number of Macbeath regions that can be contained in such
a cap is O(1). Further, by property (iii), these caps are associated with Macbeath regions R′ ∈ R′

of volume Θ(V ). It follows that the number of Macbeath regions of R is asymptotically bounded
by the number of Macbeath regions R′ ∈ R′ of volume Θ(V ). By Lemma 4.1(i), the number of
such Macbeath regions R′ is O(ε/V ) = O(v/εd). This completes the proof.

We note that using the previous theorem, the bound on the total number of disjoint Macbeath
regions from [6] follows easily.

Corollary 4.3. Let K ⊂ Rd be a convex body in γ-canonical form for constant γ. Let C be a set
of caps of K of width Θ(ε), such that the Macbeath regions M ′(x) centered at the centroids x of the
bases of these caps are disjoint. Then |C | = O(1/ε(d−1)/2).

Proof. Partition C into disjoint sets containing caps of C whose volumes differ by a factor of at
most 2. By Lemma 2.6, the volume of any cap in C is Ω(εd) and O(ε), and so there are are O(log 1

ε )
such sets. Consider a set S in the partition containing caps of volume between v and 2v, where
v < ε(d+1)/2. By Theorem 4.2, |S| = O

(
min

(
ε
v ,

v
εd

))
= O

(
v
εd

)
. Summing up the cardinalities of all

those sets S corresponding to volumes v < ε(d+1)/2, we obtain a geometric progression that sums to
O(1/ε(d−1)/2). Next consider a set S′ in the partition containing caps of volume between v and 2v,
where v ≥ ε(d+1)/2. By Theorem 4.2, |S′| = O

(
min

(
ε
v ,

v
εd

))
= O

(
ε
v

)
. Summing up the cardinalities

of all those sets S′ corresponding to volumes v ≥ ε(d+1)/2, we obtain a geometric progression that
also sums to O(1/ε(d−1)/2). Putting together the two cases, which together address the entirety of
C , we see that |C | = O(1/ε(d−1)/2).
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5 Combinatorial Complexity

The bound on the total combinatorial complexity of approximating polytopes established in [6] is
sub-optimal by a factor that is polynomial in log 1

ε . In this section, we show how to apply the
volume-sensitive bounds developed in the previous sections to eliminate this overhead and obtain
an optimal bound. The key idea is to reduce the width of Macbeath regions that have either very
large or very small volumes. The reason we can do so is that our volume-sensitive bounds show
that their numbers are low, so we can afford the increase in their number that may come about
through the use of thinner Macbeath regions. Overall, we can adjust parameters to maintain the
asymptotic bound of O(1/ε(d−1)/2) on the total number of Macbeath regions. By using thinner
Macbeath regions, we can house them in thinner layers during the stratification process. As the
approximation quality of this method is determined by the total width of all the layers, our new
strategy allows us to improve the approximation quality. To be precise, we can reduce the total
width of all the layers from O(ε log 1

ε ) in the construction of [6] to O(ε) which, in turn, allows us to
eliminate the polylog(1/ε) overhead and obtain an optimal bound for the combinatorial complexity.

5.1 Cap Covering

In this subsection, we present a variant of the cap covering lemma proved in [6]. We will employ this
lemma later in establishing an optimal bound on the combinatorial complexity of an approximating
polytope. A novel feature of this variant is that the canonical caps in the cover have different widths.

Before presenting the lemma, we need some definitions. Throughout this section, we assume that
the convex body K is in γ-canonical form for constant γ. For any integer j, define vj = ε(d+1)/2 ·2j ,
aj = max(j2, 1), and wj = ε/aj . We say that a cap C of K is of type j if vj ≤ vol(C) < 2vj . By
Lemma 2.6, the volume of any ε-width cap of K is at least Ω(εd) and at most O(ε). It follows that
an ε-width cap is of type j, where j takes integral values ranging from −O(log 1

ε ) to +O(log 1
ε ). We

say that a set of caps C is ε-balanced if there exist constants b1 and b2 such that, for all j, any type-j
cap C ∈ C satisfies b1wj ≤ width(C) ≤ b2wj . More precisely, we say that C is (ε, b1, b2)-balanced.
Note that balanced caps of type 0 have volume Θ(ε(d+1)/2) and width Θ(ε). Roughly speaking,
balanced caps whose volumes are larger or smaller than type 0 caps by a factor of 2j have widths
that are smaller by a factor of j2. We will prove each property of the following lemma separately.

Lemma 5.1. Let K be a convex body in γ-canonical form for constant γ. There exists a set R of
disjoint centrally symmetric convex bodies R1, . . . , Rk, and a collection C of associated ε-balanced
caps C1, ..., Ck such that the following hold for some constant σ (depending only on d and γ):

(1) k = O(1/ε(d−1)/2).

(2) For each i, Ri ⊆ Ci ⊆ Rσi .

(3) For any direction u, there is a cap C whose base is orthogonal to u, and which satisfies Ri ⊆ C
and C

1/σ
i ⊆ C ⊆ Ci, for some i.

Let A = {A1, . . . , Ak} be a maximal set of (ε, b1, b2)-balanced caps, such that the Macbeath

regions M ′(xi) centered at the centroids xi of the bases of the caps A
1/β
i are disjoint. Here β is

the constant of Lemma 2.13, and b1 and b2 are constants that we will specify later in the proof of
Lemma 5.4. We let Ri = M ′(xi) and Ci = Aβi . Let R,C , and A ′ be the sets consisting of Ri, Ci,
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and A
1/β
i , respectively, for 1 ≤ i ≤ k. It follows from Lemma 2.3 that constant factor expansions of

ε-balanced caps are ε-balanced, so the sets C and A ′ are also ε-balanced (for different constants).
In Lemma 5.2, we establish Property 1 by showing a bound on |A ′|. In Lemma 5.3, we establish

Property 2, and in Lemmas 5.4 and 5.5, we establish Property 3.

Lemma 5.2. The number of ε-balanced caps such that the Macbeath regions M ′(x) centered at the
centroids x of the bases of these caps are disjoint is O(1/ε(d−1)/2).

Proof. First we bound the number of such caps of type j where j ≥ 0. As these caps are ε-
balanced, they have width Θ(wj). By Theorem 4.2, their number nj is O(wj/vj). Recalling that
vj = ε(d+1)/2 · 2j and wj = ε/max(j2, 1), we have

nj = O

(
ε/max(j2, 1)

ε
d+1
2 · 2j

)
= O

(
1

ε
d−1
2

· 1

2j max(j2, 1)

)
.

Summing nj over all j ≥ 0, we obtain a total of N+ = O(1/ε(d−1)/2) caps.
Next we bound the number of such caps of type j where j < 0. By Theorem 4.2, their number

nj is O(vj/w
d
j ). Thus

nj = O

(
ε(d+1)/2 · 2j

(ε/j2)d

)
= O

(
1

ε(d−1)/2
· 2jj2d

)
.

Summing nj over all j < 0, we obtain a total of N− = O(1/ε(d−1)/2) caps. Therefore, the total
number of caps, N+ +N− = O(1/ε(d−1)/2), as desired.

Lemma 5.3. There exists a constant σ such that for each i, Ri ⊆ Ci ⊆ Rσi .

Proof. Recall that Ri = M ′(xi). By Lemma 2.8, the expansion A
2/β
i will fully contain Ri. Since

A
2/β
i ⊆ Aβi = Ci, we obtain Ri ⊆ Ci. By Lemma 2.12,

Ci = (A
1/β
i )β

2 ⊆M3d(2β2−1)(xi) = R
15d(2β2−1)
i ⊆ Rσi

for any constant σ ≥ 15d(2β2 − 1). Thus, Ri ⊆ Ci ⊆ Rσi , as desired.

Lemma 5.4. Given any ε-width cap C of type j, the cap C1/aj is a (ε, b1, b2)-balanced cap for
suitable constants b1 and b2.

Proof. Since C is of type j, we have ε(d+1)/22j ≤ vol(C) < ε(d+1)/22j+1. Let C ′ = C1/aj . Clearly,
vol(C ′) ≤ vol(C) and, by Lemma 2.3, vol(C) ≤ adj · vol(C ′). Thus

ε
d+1
2 2j+1 > vol(C ′) ≥ ε

d+1
2 2j

adj
= ε

d+1
2 2j−d log(aj).

Letting k denote the type of C ′, we have ε(d+1)/22k ≤ vol(C ′) < ε(d+1)/22k+1. These inequalities
readily imply that

j + 1 > k > j − d log(aj)− 1.

It is easy to see that aj = Θ(ak). As the width of C ′ is ε/aj , which is Θ(ε/ak), it follows that we
can choose b1 and b2 such that C ′ is (ε, b1, b2)-balanced.
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Lemma 5.5. There exists a constant σ such that the following holds. For any direction u, there is

a cap C whose base is orthogonal to u, and which satisfies Ri ⊆ C and C
1/σ
i ⊆ C ⊆ Ci, for some i.

Proof. Let F be an ε-width cap whose base is orthogonal to direction u. Suppose that F is of
type j. We will show that the cap C = F 1/aj satisfies the properties given in the statement of the
lemma.

By Lemma 5.4, C is (ε, b1, b2)-balanced. Let R = M ′(x) be the Macbeath region centered at the
centroid x of the base of the cap C1/β. By our construction, there must exist a Macbeath region
Ri which intersects R. Recall that Ci = Aβi and Ri = M ′(xi), where xi is the centroid of the base

of the cap A
1/β
i . Since M ′(xi) ∩M ′(x) 6= ∅, by Lemma 2.7, M ′(xi) ⊆ M(x). Also, by Lemma 2.9,

M(x) ⊆ C2/β. Clearly C2/β ⊆ C. Putting it together, we have Ri = M ′(xi) ⊆ M(x) ⊆ C2/β ⊆ C,
which proves the first part of the lemma.

It remains to show that C
1/σ
i ⊆ C ⊆ Ci. Since M ′(xi) ∩M ′(x) 6= ∅, we can apply Lemma 2.13

to caps A
1/β
i and C1/β (for λ = 1) to obtain A

1/β
i ⊆ C. Applying Lemma 2.13 again to caps C1/β

and A
1/β
i (for λ = β), we obtain C ⊆ Aβi . Recalling that Ci = Aβi , we have C

1/β2

i ⊆ C ⊆ Ci. The
claim now follows for any positive constant σ ≥ β2.

5.2 Witness-Collector Technique

In this section, we will provide a quick overview of the witness-collector approach [6], which is
central to our construction. Recall that K is a convex body in γ-canonical form for some constant
γ. The general strategy is as follows. First, we build a set R of disjoint centrally symmetric convex
bodies lying within K and close to its boundary. These bodies will possess certain key properties
to be specified later. For each R ∈ R, we select a point arbitrarily from this body, and let S denote
this set of points. The approximation P is defined as the convex hull of S. In Lemma 5.14, we will
prove that P is an ε-approximation of K and, in Lemma 5.15, we will apply a deterministic variant
of the witness-collector approach [19] to show that P has low combinatorial complexity.

Let H denote the set of all halfspaces in Rd. We define a set W of regions called witnesses and
a set C of regions called collectors, which satisfy the following properties:

(1) Each witness of W contains a point of S in its interior.

(2) Any halfspace H ∈H either contains a witness W ∈ W or H ∩ S is contained in a collector
C ∈ C .

(3) Each collector C ∈ C contains a constant number of points of S.

The key idea of the witness-collector method is encapsulated in the following lemma, which was
proved in [6].

Lemma 5.6. Given a set of witnesses and collectors satisfying the above properties, the combina-
torial complexity of the convex hull P of S is O(|C |).

5.3 Stratification

A natural choice for the witnesses and collectors would be the convex bodies Ri and the caps
Ci, respectively, from Lemma 5.1. As shown in [6], these bodies do not work for our purposes.
The main difficulty is that Property (3) could fail, since a cap Ci could intersect a non-constant
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number of bodies of R, and hence contain a non-constant number of points of S. Following the
general approach of that earlier paper, we show that it is possible to construct a set of witnesses
and collectors that satisfy all the requirements by scaling and translating the convex bodies from
Lemma 5.1 into a stratified placement according to their volumes. The properties we obtain are
specified below in Lemma 5.7.

Our choice of witnesses and collectors will be based on the following lemma. Specifically, the
convex bodies R1, . . . , Rk, will play the role of the witnesses and the regions C1, . . . , Ck, will play
the role of the collectors. The lemma strengthens Lemma 5.1, achieving the critical property that
any collector Ci intersects only a constant number of convex bodies of R. As each witness set Ri
will contain one point, this ensures that a collector contains only a constant number of input points
(Property (3) of the witness-collector system). This strengthening is achieved while maintaining
the same number of collectors asymptotically, as in Lemma 5.1. Also, the collectors are no longer
simple caps, but have a more complex shape as described in the proof (this, however, has no adverse
effect in our application).

Lemma 5.7. Let ε > 0 be a sufficiently small parameter. Let K ⊂ Rd be a convex body in canonical
form. There exists a collection R of k = O(1/ε(d−1)/2) disjoint centrally symmetric convex bodies
R1, . . . , Rk and associated regions C1, . . . , Ck such that the following hold:

1. Let C be any cap of width ε. Then there is an i such that Ri ⊆ C.

2. Let C be any cap. Then there is an i such that either (i) Ri ⊆ C or (ii) C ⊆ Ci.

3. For each i, the region Ci intersects at most a constant number of bodies of R.

As mentioned earlier, our proof of this lemma is based on a stratified placement of the convex
bodies from Lemma 5.1, which are distributed among O(log 1

ε ) layers that lie close to the boundary
of K. Let α = c0 ε, where c0 is a suitable constant to be specified later. We begin by applying
Lemma 5.1 to K using ε = α. This yields a collection R′ of k = O(1/α(d−1)/2) disjoint centrally
symmetric convex bodies {R′1, . . . , R′k} and associated caps C ′ = {C ′1, . . . , C ′k}. Our definition of the
convex bodies Ri and regions Ci required in Lemma 5.7 will be based on R′i and C ′i, respectively.
In particular, the convex body Ri will be obtained by translating a scaled copy of R′i into an
appropriate layer, based on the type of the cap C ′i.

Recall that the caps of C ′ are (α, b1, b2)-balanced for some constants b1 and b2, and have integral
types ranging from −t to +t, where t = O(log 1

α). By definition, the width of any cap of type j in
C ′ is at most b2wj , where wj = α/max(j2, 1) = c0ε/max(j2, 1).

We partition the set R′ of convex bodies into 2t+ 1 groups, based on the type of the associated
cap C ′. More precisely, for −t ≤ j ≤ t, group j consists of bodies R′ ∈ R′, such that the associated
cap C ′ is of type j.

Next we describe how the layers are constructed. We will construct 2t+ 1 layers corresponding
to the 2t+1 groups of R′. Our construction uses a constant parameter c1. For −t−1 ≤ j ≤ t−1, let
Tj denote the linear transformation that represents a uniform scaling by a factor of

∏t
i=j+1(1−c1wi)

about the origin, and let Tt denote the identity transformation. Further, define Kj = Tj(K) (see
Figure 10(a)) and let Kt = K. For −t ≤ j ≤ t, define layer j, denoted Lj , to be the difference
Kj \Kj−1. Whenever we refer parallel supporting hyperplanes for two bodies Ki and Kj , we assume
that both hyperplanes lie on the same side of the origin.
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Figure 10: (a) Stratified placement of the bodies Ri and (b) the region Ci corresponding to a body
Ri. (Figure not to scale.)

The following lemma describes some straightforward properties of these layers and the scaling
transformations. In particular, the lemma shows that the t layers lie close to the boundary of K
(within distance ε) and layer j has a “thickness” of Θ(wj).

Lemma 5.8. Let ε > 0 be a sufficiently small parameter and c1 be any constant. For sufficiently
small constant c0 in the definition of α (depending on c1), the layered decomposition and the scaling
transformations described above satisfy the following properties:

(a) For −t ≤ j ≤ t, the distance between parallel supporting hyperplanes of Kj−1 and Kj is at
most c1wj/

√
γ.

(b) For −t ≤ j ≤ t, the distance between parallel supporting hyperplanes of Kj−1 and Kj is at
least

√
γc1wj/2.

(c) The distance between parallel supporting hyperplanes of K and K−t−1 is at most ε.

(d) For −t− 1 ≤ j ≤ t, the scaling factor for Tj is at least 1/2 and at most 1.

(e) For −t− 1 ≤ j ≤ t, Tj preserves volumes up to a constant factor.

Proof. To prove (a), let h1, h2 denote parallel supporting hyperplanes of Kj ,Kj−1, respectively.
Since K is in γ-canonical form, and the scaling factor of the transformation Tj is at most 1, it
follows that h1 is at distance at most 1/

√
γ from the origin. Since h2 is obtained by scaling h1 by

a factor of 1 − c1wj about the origin, it follows that the distance between h1 and h2 is at most
c1wj/

√
γ.

To prove (c), let h1, h2 denote parallel supporting hyperplanes of K,K−t−1, respectively. The
upper bound of (a) implies that the distance between h1 and h2 is at most

∑t
j=−t c1wj/

√
γ. Recall

that wj = α/max(j2, 1), where α = c0ε. By choosing a sufficiently small constant c0 in the
definition of α (depending on c1 and γ), we can ensure that the distance between h1 and h2 is at
most ε.

In the rest of this proof, we will assume that c0 in the definition of α is sufficiently small, so
(c) holds. To prove (b), let h1, h2 denote parallel supporting hyperplanes of Kj ,Kj−1, respectively.
Since K is in γ-canonical form, it follows from (c) that h1 is at distance at least

√
γ − ε from the
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origin. Since h2 is obtained by scaling h1 by a factor of 1 − c1wj about the origin, it follows that
the distance between h1 and h2 is at least c1(

√
γ − ε)wj , which is at least

√
γc1wj/2 for ε ≤ √γ/2.

To prove (d), note that we only need to show the lower bound on the scaling factor of Tj , since
the upper bound is obvious. Again, let h1, h2 denote parallel supporting hyperplanes of K,K−t−1,
respectively. Since K is in γ-canonical form, h1 is at distance at least

√
γ from the origin. Recall

that T−t−1 maps h1 to h2 and, as shown above, the distance between h1 and h2 is at most ε. It
follows that the scaling factor of T−t is at least 1 − ε/√γ. By choosing ε ≤ √γ/2, we can ensure
that the scaling factor of T−t−1 is at least 1/2. Clearly, this lower bound on the scaling factor also
applies to any transformation Tj , −t− 1 ≤ j ≤ t. This proves (d). Note that (e) is an immediate
consequence.

Recall that the width of a cap of type j in C ′ is at most b2wj for some constant b2. In order
to ensure that layer j can accommodate caps of type j, we construct the layered decomposition
of Lemma 5.8 for a constant c1 = 2b2/

√
γ. This choice ensures that the distance between parallel

supporting hyperplanes of Kj−1 and Kj , respectively, is at most (2b2/γ)wj and at least b2wj
(properties (a) and (b) in Lemma 5.8).

Let H ′ be a halfspace and let C ′ = K ∩ H ′ be a type-j cap in C ′. It will be convenient to
associate a set of caps with C ′ that occur frequently in our construction and analysis. For j ≤ r ≤ t,
define Er = Kr ∩Tj(H ′) and define Fr = Tr(C

′). Both Er and Fr are caps of Kr. This is obviously
true for Er. To see that Fr is a cap of Kr, note that Fr = Tr(C

′) = Tr(K∩H ′) = Tr(K)∩Tr(H ′) =
Kr ∩ Tr(H ′). Also, note that Ej = Fj .

We are now ready to define the sets R and C required in Lemma 5.7. Let R′ ∈ R′ be a body
in group j and let the cap in C ′ associated with it be C ′ = K ∩H ′. We define a body R ∈ R and
an associated region C ∈ C , based on R′ and C ′ as follows. We define R = Tj(R

′), and define

C =
t⋃

r=j

Eσr ∩ Lr,

where σ is the constant of Lemma 5.1. (See Figure 10(b).)
In Lemma 5.9, we show that the regions R are contained in layer j if R′ is in group j. In

Lemmas 5.10 and 5.11, we establish Properties 1 and 2 of Lemma 5.7. Finally, in Lemmas 5.12 and
5.13, we establish Property 3 of Lemma 5.7.

Lemma 5.9. If R′ is in group j, then R ⊆ Fj ⊆ Lj.

Proof. By Property 2 of Lemma 5.1, R′ ⊆ C ′. Applying the transformation Tj to these two sets
yields R ⊆ Fj . Next we show that Fj ⊆ Lj . Since C ′ is a cap of type j, its width is at most b2wj .
By Lemma 5.8(d), the scaling factor for Tj is at most 1. Thus, the width of Fj is at most b2wj . By
Lemma 5.8(b) and our remarks following Lemma 5.8, the distance between any parallel supporting
hyperplanes of Kj−1 and Kj , respectively, is at least b2wj . It follows that Fj ⊆ Kj \Kj−1 = Lj .
This completes the proof.

Lemma 5.10. For any direction u, there is a cap A whose base is orthogonal to u, and which
satisfies R ⊆ A ⊆ C, for some R ∈ R and C ∈ C . Further, the width of the cap A is at most ε.

Proof. By Property 3 of Lemma 5.1, there exists a cap Â = K ∩ Ĥ whose base is orthogonal to u,
and which satisfies R′ ⊆ Â and (C ′)1/σ ⊆ Â ⊆ C ′ for some R′ ∈ R′ and C ′ ∈ C ′. Let C ′ be a type-j
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Figure 11: Proof of Lemma 5.10.

cap. Define H = Tj(Ĥ) and A = K ∩ H. We will show that the cap A possesses the properties
given in the statement of the lemma. See Figure 11 for a representation of the definitions.

Since R′ ⊆ Â = K∩Ĥ, we can apply the transformation Tj to these sets to obtain R ⊆ Kj∩H ⊆
K ∩H = A.

Next we show that the width of the cap A is at most ε. Recall that Â ⊆ C ′. Applying the
transformation Tj to these sets, we obtain Kj∩H ⊆ Fj . By Lemma 5.9, Fj ⊆ Lj . Thus Kj∩H ⊆ Lj .
Also, by Lemma 5.8(c), the distance between any parallel supporting hyperplanes of K and K−t−1
is at most ε. Since Kj ∩H ⊆ Lj , it follows that the width of the cap A = K ∩H is at most ε.

It remains to show that A ⊆ C. By the definition of A and C, it suffices to show that for
j ≤ r ≤ t, Kr ∩H ⊆ Eσr . Note that for r = j, applying Tj to both sides of Â ⊆ C ′, we obtain
Kj ∩H ⊆ Fj = Ej ⊆ Eσj (for any σ ≥ 1).

However, the proof is more involved when r > j. In this case, we will need to exploit the fact
that Â is sandwiched between two caps with parallel bases, that is, (C ′)1/σ ⊆ Â ⊆ C ′. Recall that
Fr and Fj are the caps of Kr and Kj , respectively, defined as Fr = Tr(C

′) and Fj = Tj(C
′). Define

F ′r = Tr(Â), F ′j = Tj(Â), and F ′′r = Tr((C
′)1/σ). We have F ′′r ⊆ F ′r ⊆ Fr and F ′j ⊆ Fj .

Let x denote the apex of C ′ and xr denote the point Tr(x). Let ar, br, and cr denote the
points of intersection of the bases of the caps F ′′r , F

′
r, and Fr, respectively, with the line segment

Ox. Similarly, let bj and cj denote the points of intersection of the bases of the caps F ′j and
Fj , respectively, with the line segment Ox. Consider scaling caps F ′′r , F

′
r and Fr as described in

Lemma 2.4, about the point xr with scaling factor ‖cjxr‖/‖arxr‖. Let G′′r , G
′
r, and Gr denote the

caps of Kr obtained from F ′′r , F
′
r, and Fr, respectively, through this transformation. By Lemma 2.4,

G′′r ⊆ G′r ⊆ Gr. Note that F ′′r and Er are caps of Kr with parallel bases and the base of Er passes
through the point cj (since the hyperplanes passing through the bases of the caps Er and Fj are
the same). Also, Kr∩H and G′r are caps of Kr with parallel bases. Our choice of the scaling factor
thus implies that G′′r = Er and Kr ∩H ⊆ G′r.

Putting these facts together, we have Kr ∩H ⊆ Gr. Note that Gr and Er are caps of Kr with
parallel bases. Thus, to prove that Kr∩H ⊆ Eσr , it suffices to show that width(Gr)/width(Er) ≤ σ.
Note that

width(Gr)

width(Er)
=

width(Gr)

width(G′′r)
=

width(Fr)

width(F ′′r )
=

width(C ′)

width((C ′)1/σ)
= σ,

which completes the proof.
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Lemma 5.11. Let A be any cap of K. Then either (i) there is a body R ∈ R such that R ⊆ A or
(ii) there is a region C ∈ C such that A ⊆ C. Furthermore, if the width of A is ε, then (i) holds.

Proof. Taking u to be the unit vector orthogonal to the base of the cap A and applying Lemma 5.10,
it follows that there exists a cap A′ whose base is parallel to the base of A and which satisfies
R ⊆ A′ ⊆ C, for some R ∈ R and C ∈ C . Further, the width of the cap A′ is at most ε.

We consider two cases, depending on whether A′ ⊆ A or A ⊆ A′. In the first case, we have
R ⊆ A′ ⊆ A and, in the second case, we have A ⊆ A′ ⊆ C. Thus, either R ⊆ A or A ⊆ C.

Further, if the width of A is ε, then A′ ⊆ A because the width of A′ is at most ε. Thus the first
case holds implying that R ⊆ A.

In Lemma 5.13, we bound the number of bodies of R that overlap any region C ∈ C (Property 3
of Lemma 5.7). Recall that C corresponds to a cap C ′ ∈ C ′. Let C ′ be of type j. We first establish
a constant bound on the number of bodies of R that overlap Eσj ∩Lj . Then we bound the number
of bodies of R that overlap Eσr ∩ Lr for r > j. Our analysis exploits the fact that the volume of
Er exceeds the volume of Ej by a factor that is at most polynomial in r − j (i.e., the number of
layers between Kr and Kj), while the volume of the bodies of R in layer r exceeds the volume of
the bodies of R in layer j by a factor that is exponential in r − j. This allows us to show that the
number of bodies of R that overlap C is bounded by a constant.

Before presenting Lemma 5.13, we establish a polynomial bound on the growth rate of the
volume of the caps Er in the following lemma.

Lemma 5.12. Let C ′ be a type-j cap. For j + 1 ≤ r ≤ t, vol(Er) = O((r − j)3d) · vol(Ej).

Proof. Recall that Fr = Tr(C
′) and Ej = Fj = Tj(C

′). By Lemma 5.8(e), Tj and Tr preserve
volumes up to constant factors, and so vol(Fr) = Θ(vol(Fj)). Thus, to prove the lemma, it suffices
to show that vol(Er)/ vol(Fr) = O((r − j)3d). In turn, in light of Lemma 2.3, it suffices to prove
that width(Er)/width(Fr) = O((r − j)3).

Towards this end, recall that the width of Er is upper bounded by the distance between parallel
supporting hyperplanes of Kr and Kj−1 which, by Lemma 5.8(a), is at most O(

∑r
i=j wi). Further,

by Lemma 5.8(d), the width of Fr is at least half the width of C ′. As C ′ is of type j, by definition
its width is Θ(wj). It follows that the width of Fr is Ω(wj). Thus, we have shown that

width(Er)

width(Fr)
= O

(∑r
i=j wi

wj

)
.

Clearly, ∑r
i=j wi

wj
≤ (r − j + 1) ·

(
maxri=j wi

wj

)
.

To complete the proof, we will show that (maxri=j wi)/wj = O((r − j)2). Recall that for any i,

wi = α/max(i2, 1). We consider three cases: (1) r ≥ j ≥ 0, (2) 0 > r ≥ j, and (3) r ≥ 0 > j. In
Case 1, we have maxri=j wi = wj , and so the quantity of interest is 1. In Case 2, maxri=j wi = wr.
Thus

maxri=j wi

wj
=

wr
wj

=
1/r2

1/j2
=
j2

r2
=

(
(r − j) + |r|

|r|

)2

=

(
r − j
|r|

+ 1

)2

≤ (r − j + 1)2.
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Figure 12: Proof of Lemma 5.13.

In Case 3, maxri=j wi = w0. Thus

maxri=j wi

wj
=

1

1/j2
= j2 ≤ (r − j)2.

In all three cases, we have shown that (maxri=j wi)/wj = O((r − j)2), as desired.

Lemma 5.13. Any region C ∈ C intersects O(1) bodies of R.

Proof. Suppose that R′ is in group j. Recall that R = Tj(R
′), C ′ = K∩H ′ and C =

⋃t
r=j(E

σ
r ∩Lr).

We begin by bounding the number of bodies of R that overlap Eσj ∩Lj . (See Figure 12.) We assert
that all the bodies of R in layer j have volumes Ω(vol(Ej)). To prove this, recall that the type-
j caps of C ′ have the same volume as C ′ to within a factor of 2. Also, recall that the body
of R′ associated with a cap of C ′ has the same volume as the cap to within a constant factor
(immediate consequence of Property 2 of Lemma 5.1). It follows that all the bodies of R′ in group
j have volumes Ω(vol(C ′)). By Lemma 5.8(e), the scaling transformations used in our construction
preserve volumes to within a constant factor. Also, recall that the bodies of R in layer j are scaled
copies of the bodies of R′ in group j. It follows that the bodies of R in layer j all have volumes
Ω(vol(Ej)).

Next, we assert that any body of R that overlaps Eσj ∩ Lj is contained within the cap E2σ
j .

To prove this, recall from the proof of Lemma 5.1 that the bodies of R′ are (1/5)-scaled disjoint
Macbeath regions with respect to K. It follows that the bodies of R in layer j are (1/5)-scaled
disjoint Macbeath regions with respect to Kj . By Lemma 2.8, it now follows that any body of R
that overlaps Eσj ∩ Lj is contained within the cap E2σ

j . By Lemma 2.3, vol(E2σ
j ) = O(vol(Ej)).

Since the bodies of R in layer j have volumes Ω(vol(Ej)), it follows by a simple packing argument
that at most a constant number of bodies of R are contained within E2σ

j ∩Lj . Hence, the number
of bodies of R that overlap Eσj ∩ Lj is O(1).

Next we bound the number of bodies of R that overlap Eσr ∩ Lr, where j + 1 ≤ r ≤ t. (See
Figure 12.) By Lemma 5.12, we have vol(Er) = O((r − j)3d) · vol(Ej). Recall that the volume
of the bodies of R′ in group r exceeds the volume of the bodies of R′ in group j by a factor of
Ω(2r−j). It follows from Lemma 5.8(e) and our construction that the volume of the bodies of R
in layer r exceeds the volume of the bodies of R in layer j by a factor of Ω(2r−j). For the same
reasons as discussed above, any body of R that overlaps Eσr ∩ Lr is contained within E2σ

r , and
vol(E2σ

r ) = O(vol(Er)). Putting this together with the upper bound on vol(Er) given above, we

26



have vol(E2σ
r ) = O((r − j)3d) · vol(Ej). By a simple packing argument, it follows that the number

of bodies of R that are contained within E2σ
r ∩ Lr is O((r − j)3d/2r−j). This bounds the number

of bodies of R that overlap Eσr ∩ Lr. It follows that the number of bodies of R that overlap
C =

⋃t
r=j+1(E

σ
r ∩ Lr) is on the order of

∑
j+1≤r≤t(r − j)3d/2r−j = O(1), which completes the

proof.

5.4 Polytope Approximation

Finally, we can assemble all the pieces to obtain the desired approximation. Let S be a set of points
containing one point inside each body of R defined in Lemma 5.7 and no other point.

Lemma 5.14. The polytope P = conv(S) is an inner ε-approximation of K.

Proof. A set of points S is said to stab a cap if the cap contains at least one point of S. It is
well known that if a set of points S ⊂ K stabs all caps of width ε of K, then conv(S) is an inner
ε-approximation of K [15]. Let C be a cap of width ε. By Lemma 5.7, Property 1, there is a convex
body Ri ⊆ C. Since S contains a point that is in Ri, we have that the cap C is stabbed.

To bound the combinatorial complexity of conv(S), and hence conclude the proof of Theo-
rem 1.1, we use the witness-collector approach [19]. The proof is the analogue to the one in [6] and
is included for completeness.

Lemma 5.15. The number of faces of P = conv(S) is O(1/ε(d−1)/2).

Proof. Define the witness set W = R1, . . . , Rk and the collector set C = C1, . . . , Ck, where the Ri’s
and Ci’s are as defined in Lemma 5.7. As there is a point of S in each body Ri, Property (1) of
the witness-collector method is satisfied. To prove Property (2), let H be any halfspace. If H does
not intersect K, then Property (2) of the witness-collector method holds trivially. Otherwise let
C = K ∩ H. By Property 2 of Lemma 5.7, there is an i such that either Ri ⊆ C or C ⊆ Ci. It
follows that H contains witness Ri or H ∩ S is contained in collector Ci. Thus Property (2) of the
witness-collector method is satisfied. Finally, Property 3 of Lemma 5.7 implies Property (3) of the
witness-collector method. Thus, we can apply Lemma 5.6 to conclude that the number of faces of
P is O(|C |) = O(k), which proves the lemma.
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