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Flat inputs: theory and applications

Florentina Nicolau∗, Witold Respondek †, Jean-Pierre Barbot ‡, and Achour
Ouslimani §

Abstract

In this paper, we study the problem of constructing flat inputs for multi-output
dynamical systems. The notion of flat inputs has been introduced byWaldherr and Zeitz
in [30, 31] and can be seen as dual to that of flat outputs. In the single-output case, a
flat input can be constructed if and only if the original dynamical system together with
its output is observable. In the multi-output case, the observability is not necessary
for the existence of flat inputs. The observable case has been treated in [31], where
a system of linear algebraic equations has been proposed in order to determine the
control vector fields associated to the flat inputs. The goal of this paper is to treat
the unobservable case for multi-output dynamical systems. We start by discussing the
case when the dynamical system together with the given output is observable and we
present a generalization of the results of [31] by relating them with the notion of minimal
differential weight. Then we give our main results. We consider the unobservable case
for which locally, on an open and dense subset of Rn, we construct control vector fields
g1, . . . , gm such that the associated control system is flat. Finally, we explain how our
results can be applied to private communication.

Keywords: Flat inputs, flatness, observed dynamical systems, constructing control vector
fields, private communication.

1 Introduction

Consider the following nonlinear observed dynamics:

Σ : ẋ = f(x), y = h(x), (1)

where x is the state defined on Rn (or more generally, on an open subset of Rn or on an n-
dimensional manifold) and y ∈ Rm are the measurements, supposed independent everywhere.
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The vector field f and the functions hi, 1 ≤ i ≤ m, are supposed smooth (the word smooth
will always mean C∞-smooth). The problem that we are studying in this paper is to find
control vector fields g1, . . . , gm (or equivalently, to place the actuators or the inputs) such
that the control-affine system Σc : ẋ = f(x) +

∑m
i=1 gi(x)ui, associated to Σ, is flat with the

original measurements (h1, . . . , hm) being a flat output.
The notion of flatness was introduced in control theory in the 1990’s, by Fliess, Lévine,

Martin and Rouchon [3, 4], see also [11, 12, 18, 25], and has attracted a lot of attention be-
cause of its multiple applications in the problems of constructive controllability and motion
planning (see, e.g., [16, 19] and references therein). Flat systems form a class of control sys-
tems whose set of trajectories can be parametrized bym functions and their time-derivatives,
m being the number of controls. More precisely, the control system ẋ = f(x) +

∑m
i=1 gi(x)ui,

where x ∈ Rn and u ∈ Rm, is flat if we can find m functions ϕi(x, u, . . . , u(q)) such that

x = γ(ϕ, . . . , ϕ(s−1)) and u = δ(ϕ, . . . , ϕ(s)), (2)

for certain integers q and s, where ϕ = (ϕ1, . . . , ϕm) is called a flat output. Therefore the
time-evolution of all state and control variables can be determined from that of flat outputs
without integration and all trajectories of the system can be completely parameterized.

The construction of a flat output h = ϕ can be seen as a problem of sensor placement
in order to achieve flatness of the resulting input–state-output system. Dual to this, one
can consider the problem of actuator placement, i.e., given (f, h), find control vector fields
g1, . . . , gm, in order to achieve the same property. This dual problem has been introduced
by Waldherr and Zeitz [30, 31] who call inputs u1, . . . , um multiplying, resp., g1, . . . , gm, as
flat inputs (which are objects dual to flat outputs).

In the single-output case, a flat input can be constructed if and only if the system Σ
together with its output h is observable and the control vector field associated to the flat
input can be computed from a system of linear algebraic equations, see [30]. In the multi-
output case, the observability is not necessary for the existence of flat inputs. The observable
case has been discussed in [31] and the control vector fields (there are as many as the number
of outputs) associated to the flat inputs can be determined in a similar way as that for the
SISO case. Another approach in the observable case, based on the notion of unimodularity,
has been recently proposed in [5], together with an algorithm for constructing flat inputs and
it is then shown that in the observable case, the integrability condition is always satisfied.
The goal of this paper is to treat the unobservable multi-output case (the two-output case
has been solved by the authors in [21]). It is crucial to distinguish the observability (or
unobservability) of controlled systems from observability of uncontrolled ones (recall that for
nonlinear systems, the observability property depends on the control [6, 8]). Here we deal
with unobservable uncontrolled system that become at least locally weakly observable due
to a suitable design of flat inputs. We give a complete solution for the local construction of
flat inputs: we show that locally (and, as a consequence, on an open and dense subset of the
state space) there always exist control vector fields g1, . . . , gm such that the control-affine
system Σc is flat with h being a flat output. The link between the observed (via the given
output h) subsystem and the unobserved one is made with the help of flat inputs and some
linking terms.

First of all, it is important to highlight that this paper completely solves (under some
suitable constant rank conditions) the problem of constructing flat inputs, that is, for any
observed dynamical system (Σ, h), the proposed solution always allows to construct control
vector fields g1, . . . , gm such that Σc is flat with h being a flat output. When comparing
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this problem with that of verifying flatness for control systems, an interesting phenomenon
can be noted: contrary to flat control systems that are very rare (the class of flat control
systems is of codimension infinity among all control systems), any dynamical system (Σ, h)
can be rendered flat by adding suitable control vector fields (or equivalently, suitable flat
inputs). Our method constructs the control vector fields in the simplest possible way: indeed,
g1, . . . , gm are the simplest possible nonlinear control vector fields: they are linear (if (Σ, h)
is observable) and they are in the multi-chained form (if (Σ, h) is not observable).

The main results of the paper are based on several normal forms (for which h is a flat
output). The construction of the first normal form NF1 is performed on an open and dense
subset of Rn and is valid around any point x0 of that set. In order to compute the control
vector fields of the flat control system NF1, we do not need to solve any partial differential
equation. The nature of the nominal point around which we work (equilibrium or not) plays
an important role in our study. If x0 is not an equilibrium point of the original system, i.e.,
f(x0) 6= 0, then we can still simplify the solution of the problem: we render the system Σ
flat, with h being a flat output, around any point x0 (not just on an open and dense subset)
provided that a suitable codistribution has constant rank around x0. Furthermore, the new
control system NF2 that we construct turns out to be not only flat, which is our primary
goal, but the differential weight of h (which equals the the sum of minimal numbers of time-
derivatives of hi needed to express all states x and controls u) as a flat output of NF2 is
the lowest (minimal possible) among all differential weights of h as a flat output of any Σc.
Contrary to NF1, constructing NF2 requires suitable coordinates and in order to obtain
them, we have to solve some partial differential equations. The normal forms NF1 and NF2
apply when the number of unobserved (with respect to the original output h) directions is at
least m− 1. Finally, a third normal form NF3 is proposed for the case when the number of
unobserved states is smaller than m−1. NF3 is the analogue of NF1, that is, it is established
on an open and dense subset and we do not need to solve any partial differential equation
in order to construct its associated control vector fields; but NF3 is also reminiscent of NF2
since the differential weight of h as a flat output of NF3 is the lowest among all differential
weights of h as a flat output of any Σc.

One of the motivations to construct a flat input for a given output is that with such an
input, the tracking problem for that output can be solved with no need to calculate the zero
dynamics (see, e.g., [7]), but constructing flat inputs may be useful for other problems as
well: in this paper, we explain how it can be applied to private communication.

The paper is organized as follows. In Section 2, we recall the definition of flatness and the
notion of differential weight of a flat system. We discuss (from the point of view of minimal
differential weight) the case when the dynamical system Σ together with a given output h
is observable and we present a generalization of the results of [31]. In Section 3, we give
our main results. We completely describe the local case (and, as a consequence, we obtain
solutions almost everywhere, that is, on an open and dense subset). We illustrate our results
by several examples throughout the paper and we explain how it can be applied to private
communication in Section 4. We provide proofs in Section 5.

2 Definitions and problem statement

Consider a nonlinear control systems of the form ẋ = f(x)+
∑m

i=1 gi(x)ui, where x is the state
defined on Rn (more generally, an open subset X of Rn or an n-dimensional manifold X) and
u is the control taking values in Rm. Fix an integer l ≥ −1 and denote ul = (u, u̇, . . . , u(l)).
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For l = −1, the sequence u−1 is empty.

Definition 2.1. The system ẋ = f(x) +
∑m

i=1 gi(x)ui is x-flat at (x0, ū
l
0) ∈ X × Rm(l+1),

for l ≥ −1, if there exist a neighborhood Ol of (x0, ū
l
0) and m smooth functions ϕi = ϕi(x),

1 ≤ i ≤ m, defined in a neighborhood of x0, having the following property: there exist an
integer s > l and smooth functions γi, 1 ≤ i ≤ n, and δj, 1 ≤ j ≤ m, such that

xi = γi(ϕ, ϕ̇, . . . , ϕ
(s−1)) and uj = δj(ϕ, ϕ̇, . . . , ϕ

(s))

for any Cs−1-control u(t) and corresponding trajectory x(t) that satisfy (x(t), u(t), . . . ,
u(l)(t)) ∈ Ol, where ϕ = (ϕ1, . . . , ϕm) and is called a flat output.

Remark 2.1. There exists a more general notion of flatness for which the functions ϕi
may depend on the control and its successive time-derivatives up to a certain order q (i.e.,
ϕi = ϕi(x, u, u̇, . . . , u

(q)), as in the introduction of the paper), but we do not need it since,
in our study, all functions ϕi depend on the state x only (hence only the notion of x-flatness
is required).

The minimal number of derivatives of components of a flat output, needed to express x
and u, will be called the differential weight of that flat output and is formalized as follows.
By definition, for any flat output ϕ of Ξ there exist integers s1, . . . , sm such that

x = γ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m )

u = δ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m ).

(3)

Moreover, we can choose (s1, . . . , sm), γ and δ such that (see [27]) if for any other m-tuple
(s̃1, . . . , s̃m) and functions γ̃ and δ̃, we have

x = γ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m )

u = δ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m ),

then si ≤ s̃i, for 1 ≤ i ≤ m. We will call
∑m

i=1(si + 1) = m+
∑m

i=1 si the differential weight
of ϕ. A flat output of Ξ is called minimal if its differential weight is the lowest among all flat
outputs of Ξ. We define the differential weight of a flat system to be equal to the differential
weight of a minimal flat output. The differential weight of Ξ is at least n+m, since we have
to express n states and m independent controls and in order to do that, we need at least
n+m derivatives (taking into account also those of order zero).

Flatness is a property of the state-space dynamics ẋ = F (x, u) of a control system. It
can also be described as a property of the input-output map for a dummy output y. In
fact, x-flatness is equivalent to the existence of an Rm-valued dummy output y = ϕ(x) that
renders the system ẋ = F (x, u) observable [9, 14] and left-invertible [26]. Indeed, expressing
the state as x = γ(ϕ, ϕ̇, . . . , ϕ(s−1)) and the control as u = δ(ϕ, ϕ̇, . . . , ϕ(s)) corresponds,
resp., to observability and left invertibility.

Let us now consider the dynamical system Σ together with the output y = h(x) ∈ Rm,
given by (1). In order to emphasize the fact that the system is observed1 we will use the
notation (Σ, h).

1When we say that a dynamical system Σ is observed, this does not mean that Σ is necessarily observable
with respect to the output h.
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Remark 2.2. The state x of the dynamical system Σ, given by (1), is defined on Rn, but all
results of the paper also hold when x is defined on an open subset of Rn or, more generally,
on an n-dimensional manifold.

The problem that we are studying in this paper is the construction of control vector fields
g1, . . . , gm (whose inputs u1, . . . , um are called flat inputs) such that the control-affine system
Σc, associated to Σ, and given by

Σc : ẋ = f(x) +
m∑
i=1

gi(x)ui,

is x-flat with respect to the the original output (h1, . . . , hm). In that case, we will say that
the pair (Σc, h) is x-flat.

As we have already noticed, flatness is closely related to observability. Thus for the
problem of constructing flat inputs, it is natural to start by checking observability of Σ with
respect to h. We denote by H(x) the observability codistribution

H(x) = span {dLjfhi(x), j ≥ 0, 1 ≤ i ≤ m} (4)

associated with the output h. In our study, we will distinguish the observable and unobserv-
able case.

Definition 2.2. The observed system (Σ, h) is said to have observability quasi-indices
(ρ1, . . . , ρm) at x0 ∈ Rn if

∑m
i=1 ρi = n and span {dLjfhi(x0), 0 ≤ j ≤ ρi − 1, 1 ≤ i ≤ m} =

Rn. If, moreover, the quasi-indices satisfy ρ1 ≥ ρ2 ≥ . . . ≥ ρm, then the smallest, in the
lexicographic ordering, quasi-indices are called observability indices.

The existence of observability quasi-indices (and thus of observability indices as well,
see [14] where the notion of observability indices has been analyzed) implies observability
of (Σ, h). More precisely, we can distinguish points in a neighborhood of x0 with the help
of exactly ρ1 + . . . + ρm = n derivatives of the output components (actually, using ρi time-
derivatives of yi(t) = hi(x(t))). If (Σ, h) is locally observable everywhere on Rn (see [9],
for various concepts of nonlinear observability), it possesses observability quasi-indices on
an open and dense subset X ∈ Rn and thus, although it is locally observable, fails to have
observability quasi-indices around singular points of Rn \X. Contrary to the observability
indices (which are unique), the observability quasi-indices (ρ1, . . . , ρm) are not unique and
we do not suppose any order relation between them. Since observability quasi-indices may
depend on a point, we say that quasi-indices (ρ1, . . . , ρm) are uniform in a subset X of Rn if
(ρ1, . . . , ρm) form quasi-indices at any x0 ∈ X .

Example 2.1. Consider the following dynamics

ẋ1 = x2 + x3 ẋ3 = x4
ẋ2 = 0 ẋ4 = 0

(5)

with the outputs y1 = x1 and y2 = x3. A straightforward calculation shows that both couples
(ρ1, ρ2) = (2, 2) and (ρ1, ρ2) = (3, 1) are (uniform) observability quasi-indices (but only the
first one corresponds to the observability indices).
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The following theorem states that the observed system (Σ, h) can be made flat of dif-
ferential weight n + m (which is the minimal possible) if and only if it admits observability
quasi-indices and, moreover, gives a system of algebraic equations, whose coefficients are
calculated in terms of the Lie derivatives of the outputs, to be solved in order to construct
flat inputs.

Theorem 2.1. Consider the observed system (Σ, h) around x0 ∈ Rn. The following condi-
tions are equivalent:

(O1) There exist observability quasi-indices (ρ1, . . . , ρm) at x0;

(O2) There exist vector fields g1, . . . , gm such that the system (Σc, h) is x-flat at x0 of dif-
ferential weight n+m, with h being a minimal flat output;

Moreover, under (O1), the vector fields g1, . . . , gm are given by

(i) < dLqfhi, gj >= 0 and < dLρi−1f hi(x), gj >= Dj
i (x), for 1 ≤ i, j ≤ m, 0 ≤ q ≤ ρi − 2,

where
(
Dj
i (x)

)
is any smooth invertible m×m-matrix,

or, equivalently, by

(ii) The distribution G = span {g1, . . . , gm} satisfies

G⊥ = span {dLjfhi, 0 ≤ j ≤ ρi − 2, 1 ≤ i ≤ m}.

If (ρ1, . . . , ρm) are uniform quasi-indices on X (in particular, on X = Rn), then the vector
fields g1, . . . , gm exist globally on X , on which are given by (i), and they yield the global
system Σc on X that is locally flat around any x ∈ X with the help of the globally defined
flat output (ϕ1, . . . , ϕm) = (h1, . . . , hm).

The following two results are a direct consequence of Theorem 2.1, their proofs as well
as the proof of Theorem 2.1 are given in Section 5.

Corollary 2.1. If (Σ, h) is not locally observable at x0 and admits g1, . . . , gm such that the
system (Σc, h) is x-flat at x0 with ϕ = h being a minimal flat output at x0, then the control
system Σc, independently of the choice of g1, . . . , gm, is never static feedback linearizable
around x0.

Corollary 2.2. Consider (Σ, h) a linear system of the form Σ : ẋ = Ax, y = h(x) =Cx.
There exist constant vector fields g1 = b1, . . . , gm = bm such that the system Σc : ẋ =
Ax+

∑m
i=1 biui is x-flat at x0 with flat outputs ϕ = y = Cx if and only if the pair (A,C) is

observable.

According to Corollary 2.2, if the original dynamical system is linear and if we want to
obtain a flat control system that is also linear, then flat inputs can be constructed if and
only if (Σ, h) = (Ax,Cx) is observable. If we do not necessarily require to remain within the
linear category, flat inputs can (generically) always be constructed following the procedure
explained in Section 3 (but for the price of loosing the linearity). Notice also that there is
no hypotheses on the differential weight of the flat linear control system (Σc, Cx): for any
constant control vector fields gi = bi that render the linear system Σc flat with ϕ = Cx being
a flat output (of any differential weight), the pair (A,C) is necessarily observable.
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Remark 2.3. Theorem 2.1 generalizes the result of [31] according to which if a system
has observability quasi-indices (ρ1, . . . , ρm) and the vector fields g1, . . . , gm satisfy (i) with
Dj
i (x) = δji , then the control system (Σc, h) is flat. All other vector fields gi corresponding to

all other invertible matrices
(
Dj
i (x)

)
render the system feedback linearizable and are given

up to a transformation gi 7→
∑m

j=1D
j
i (x)gj. In our result, we prove additionally that such

gi’s (and only such) lead to a flat system Σc of differential weight n + m, which is minimal
and implies that Σc is static feedback linearizable (see [10, 13] and also [20], where this last
property is related to the minimal differential weight n+m).

The conditions of Theorem 2.1 are local and valid around a nominal point x0 that can
be an equilibrium or not. If quasi-indices are uniform on Rn, then the control vector fields
g1, . . . , gm exist globally and the control system is x-flat on Rn with a flat output being
globally defined as ϕi = hi, 1 ≤ i ≤ m, nevertheless representation (3) is, in general, local
only. In particular, the map (x, u) → (h1, ḣ1, . . . , h

(s1)
1 , . . . , hm, ḣm, . . . , h

(sm)
m ) need not be

globally invertible, as shows the following example.

Example 2.2. Consider the following dynamics on R2

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2),

(6)

with the outputs y1 = ex1 cosx2 and y2 = ex1 sinx2. The above system is locally everywhere
observable, with (ρ1, ρ2) = (1, 1) uniform observability indices on R2. Hence, by Theorem 2.1,
the control vector fields g1 and g2 exist globally on R2 and can be defined by Lgjhi(x) = Dj

i (x),
1 ≤ i, j ≤ 2, where

(
Dj
i (x)

)
is any smooth invertible 2 × 2-matrix. They yield, on R2,

the global control system Σc : ẋ = f(x) + u1g1 + u2g2. The flat output ϕ(x) = h(x) =
(ex1 cosx2, e

x1 sinx2) is globally defined on R2 but the map (x, u) → (h1, ḣ1) is not globally
invertible (because the map x→ h(x) = (ex1 cosx2, e

x1 sinx2) is not). Notice, however, that
Σc is globally flat with another flat output ϕ̃ = (x1, x2).

Notice that there can be many observability quasi-indices, and different observability
quasi-indices (ρ1, . . . , ρm) lead to different control vector fields g1, . . . , gm, not equivalent
via gi 7→

∑m
j=1 β

j
i gj, and thus to flat control systems (Σc, h) that are not static feedback

equivalent, see Example 2.3 below. In particular, to any choice of observability quasi-indices
(ρ1, . . . , ρm), there correspond flat inputs u1, . . . , um giving (3) with si = ρi.

Example 2.3. Consider again system (5). For the first couple of quasi-indices (ρ1, ρ2) =
(2, 2), we get G⊥ = span {dx1, dx3}. Thus G = span { ∂

∂x2
, ∂
∂x4
} and the associated flat

control system is (or any system equivalent to it via an invertible static feedback u = β(x)ũ)

ẋ1 = x2 + x3 ẋ3 = x4
ẋ2 = u1 ẋ4 = u2

(7)

with h = (x1, x3) a minimal flat output of differential weight n+ 2 = 6.
The second couple of quasi-indices (ρ1, ρ2) = (3, 1) leads to G⊥ = span {dx1, dx2 + dx3}.

Thus G = span { ∂
∂x4
, ∂
∂x2
− ∂

∂x3
} and the associated flat control system is (or any system

equivalent to it via an invertible static feedback u = β(x)ũ)

ẋ1 = x2 + x3 ẋ3 = x4 − u1
ẋ2 = u1 ẋ4 = u2

(8)

with h = (x1, x3) a minimal flat output of differential weight n+ 2 = 6.
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In some practical applications, it may be interesting to use more derivatives of a par-
ticular output component to decrease the number of derivatives of another (more sensitive)
component. For instance, in the above example, if the output y1 = x1 contains less mea-
surement noise than y2 = x3 or if the system were nonlinear, with fewer nonlinear terms
in successive time-derivatives of y1 = x1 than of y2 = x3, then it is natural to consider the
quasi-indices (ρ1, ρ2) = (3, 1). Notice also that both resulting control systems (7) and (8)
are static feedback linearizable with (x1, x3) playing the role of the linearizing outputs, but
they are not static feedback equivalent to each other. This is so because their quasi-indices
coincide with their controllability indices. The former being different implies that the latter
are different as well and thus the systems cannot be static feedback equivalent.

It is well known that systems linearizable via invertible static feedback are flat and their
description (3) uses the minimal possible, which is n+m, number of time-derivatives of the
components of the flat output (see [20] where that property is discussed). So, according to
Theorem 2.1, if the pair (Σ, h) is observable, then there always exist g1, . . . , gm such that
the associated control system Σc is flat with h being a flat output and, moreover, g1, . . . , gm
can be chosen such that Σc is static feedback linearizable and can be calculated via a system
of algebraic equations. The goal of this paper is thus to solve the problem of finding flat
inputs for the unobservable multi-output case and to generalize the results of [21] treating
the two-output case.

Similarly to the definition of observability quasi-indices, we introduce the notion of un-
observability quasi-indices. Recall that to the output h, we associated the observability
codistribution H given by (4).

Definition 2.3. The observed system (Σ, h) is said to have unobservability quasi-indices
(ρ1, . . . , ρm) around x0 if dim span {dLjfhi(x), 0 ≤ j ≤ ρi − 1, 1 ≤ i ≤ m} = dim H(x) =∑m

i=1 ρi = k < n in a neighborhood of x0.

According to the above definition, if the systems (Σ, h) has unobservability quasi-indices
around x0, then it is unobservable at x0 and, in addition, the associated codistribution H(x)
is of constant rank, equal to k, in a neighborhood of x0. This means that only k directions can
be observed (and this is valid around any point of that neighborhood). The above definition
is more restrictive than the lack of observability at a point: we require the system to be
nowhere observable on a whole neighborhood of x0 and, moreover, its observability defect
to be constant on that neighborhood. As for the observability quasi-indices, there can be
many unobservability quasi-indices and different unobservability quasi-indices (ρ1, . . . , ρm)
will lead to different control vector fields g1, . . . , gm and thus to different flat control systems
(Σc, h), as explained in Section 3.

3 Main results

Throughout, we suppose that (Σ, h) is nowhere observable. More precisely, we assume that
around any x0 in an open and dense subset X of Rn, we have dimH(x) = k and there exist
unobservability quasi-indices (ρ1, . . . , ρm) of (Σ, h) which, by definition, satisfy ρ1+· · ·+ρm =
k (in the C∞-case the values of k and (ρ1, . . . , ρm) can be different on various connected
components of X but this does not affect our constructions below, that are local, so given on
an arbitrary but fixed connected component). Locally, around x0 ∈ X, introduce coordinates
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wji = Lj−1f hi, 1 ≤ j ≤ ρi, 1 ≤ i ≤ m, (9)

in which the system Σ can be locally transformed into the following observed-unobserved
form

ẇji = wj+1
i , 1 ≤ j ≤ ρi − 1,

ẇρii = ai(w), 1 ≤ i ≤ m,
(10)

ż = b(w, z), (11)

with dimw = k < n and dimw+ dim z = n, where z consists of any coordinates completing
w to a coordinate system, and (h1, . . . , hm) = (w1

1, . . . , w
1
m).

z w
h(w)

Figure 1: Observed-unobserved variables.

The w-coordinates of the above form are the states observed with the help of the output
h and its successive time-derivatives, and there are k of them (recall that k = dim H(x),
where H(x) = span {dLjfhi(x), j ≥ 0, 1 ≤ i ≤ m}). The z-coordinates correspond to the
unobserved directions, there are n − k (which is the observability defect) of them and they
complete w to a coordinate system. Figure 1 summarizes the above remark. We denote by a
(resp., by b) the drift associated to the observed (resp., unobserved) subsystem.

The main results of the paper are given by Theorems 3.1, 3.2, and 3.3 below according to
which, even in the unobservable case, we can always, at least locally on an open and dense
subset, construct control vector fields g1, . . . , gm such that the associated control system
(Σc, h) is x-flat with flat output ϕ = h. We first discuss Theorems 3.1 and 3.2 in Section 3.1,
which apply to the case n − k ≥ m − 1, and then Theorem 3.3 in Section 3.2, which deals
with n− k < m− 1.

The nature of the nominal point around which we work plays an important role in our
study. Theorems 3.1, 3.2, and 3.3 are based on normal forms given in terms of (w, z)-
coordinates. For the normal forms of Theorems 3.1 and 3.2, in the zji -variables, the lower
index i is numbered between 2 andm since for the flat control system (Σc, h), the first output
h1 = w1

1 (and the corresponding flat input u1) has a special role and we distinguish it from
the other outputs.

3.1 Construction of the control vector fields: the case n− k ≥ m− 1

Theorem 3.1 presents a normal form NF1 whose construction is performed on a an open and
dense subset X ⊂ Rn. Normal form NF1 contains vector fields g1, . . . , gm that render the
system (Σ, h) locally flat, with h being a flat output. The idea is to complete the original
output h to a new output h` = (h, ψ1, . . . , ψ`) such that (Σ, h`) is locally observable.

The integers µ`ii appearing in NF1 (and defined in Section 3.1.2), are related with ob-
servability quasi-indices of (Σ, h`). For each zi-chain, we distinguish `i (where either `i = `
or `i = `− 1) variables zqi , where q = µ1

i , . . . , µ
`i
i . Each zi-chain exhibits `i (nonlinear) func-

tions bqi that actually depend on certain z-variables only and to indicate on which variables

9 / 30



they depend, for q = µsi , denote zq = (z12 , . . . , z
µs2
2 , . . . , z

1
m, . . . , z

µsm
m ). Observe that only the

upper-index s of q = µsi is actually involved in the right-hand side term, that is, zµsi is the
same for all 2 ≤ i ≤ m and equals zµsi = (z12 , . . . , z

µs2
2 , . . . , z

1
m, . . . , z

µsm
m ).

Theorem 3.1. Consider the observed system (Σ, h) and assume that n−k ≥ m− 1. Then:

(A1) There exists X ⊂ Rn, open and dense, such that locally, around any x0 ∈ X , we can
always construct g1, . . . , gm such that (Σc, h) is x-flat at any (x0, u0) satisfying x0 ∈ X
and u10 6= 0.

(A2) Around any x0 ∈ X , an open and dense subset of Rn, there exist local coordinates (w, z),
with w given by (9), bringing (Σ, h) into (10)-(11) with the unobserved subsystem (11)
of the form:

żqi =

{
zq+1
i , q 6= µ1

i , . . . , µ
`i
i ,

bqi (w, z
q), q = µ1

i , . . . , µ
`i
i ,

2 ≤ i ≤ m, (12)

where the integers 1 ≤ µ1
i < µ2

i < · · · < µ`ii satisfy
∑m

i=2 µ
`i
i = n, and for this form, we

can always locally construct g1, . . . , gm such that (Σc, h) is x-flat at (x0, u0) ∈ X ×Rm,
with u10 6= 0, and is given by the following form:

NF1 :



ẇj1 = wj+1
1 ẇji = wj+1

i

ẇρ11 = a1(w) + u1 ẇρii = ai(w) + z1i u1

żqi =


zq+1
i , q 6= µ1

i , . . . , µ
`i
i ,

bqi (w, z
q) + zq+1

i u1, q = µ1
i , . . . , µ

`i−1
i ,

bqi (w, z) + ui, q = µ`ii ,

2 ≤ i ≤ m,

where 1 ≤ j ≤ ρi − 1, and h = (w1
1, . . . , w

1
m) is a flat output of differential weight

n+m+ max
2≤i≤m

µ`ii .

An algorithm constructing NF1 will be given in Section 3.1.1, and a proof of Theorem 3.1,
based on that algorithm, in Section 5.4. Item (A2) of Theorem 3.1 is valid around any
nominal point x0, equilibrium or not. If x0 is not an equilibrium point of the original system,
i.e., f(x0) 6= 0, then we can still simplify the solution of the problem in Theorem 3.2 below.
Indeed, first, we render the system (Σ, h) flat around any point x0 (not just on an open
and dense subset) provided that (Σ, h) has unobservability quasi-indices at x0. Second, the
proposed normal form NF2 is obtained by adding to (Σ, h) a multi-input chained form for
the whole z-space (with respect to z-variables that rectify the z-component of the drift f)
and not only a multi-input chained form on a submanifold (with respect to suitable chosen
z-variables that need to be identified through the algorithm). Third, the control system
(Σc, h) that we construct (by adding a multi-input chained form) turns out to be not only
flat, which is our primary goal, but the differential weight of h as a flat output of NF2 is the
lowest (minimal possible) among all differential weights of h as a flat output of any Σc.

Recall that dimH(x) = k and let

n− k = p(m− 1) + r and p∗ =

{
p, if r = 0,
p+ 1, if r > 0,

(13)
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be the Euclidean division of n−k (the observability defect) and m−1 (the number of output
components being m). Define the integers

µi = p, 2 ≤ i ≤ m− r,
µi = p+ 1, m− r + 1 ≤ i ≤ m,

(14)

that will correspond to the lengths of the zi-chains of the form NF2.

Theorem 3.2. Consider the observed system (Σ, h) and assume that n−k ≥ m− 1. Then:

(B1) For any x0 ∈ Rn satisfying f(x0) 6= 0 and such that (Σ, h) admits unobservability
quasi-indices (ρ1, . . . , ρm) at x0, there exist local coordinates (w, z) in a neighborhood
X0 of x0, with w given by (9), bringing (Σ, h) into (10)-(11) with the unobserved
subsystem (11) of the form:

żqi = 0, 1 ≤ q ≤ µi − 1,
żµii = bi, 2 ≤ i ≤ m,

(15)

where the integers µi are given by (14), and b2 = 1 and bi = 0, for 3 ≤ i ≤ m− 1, and
for this form, we can always construct vector fields g1, . . . , gm on X0 such that (Σc, h)
is x-flat at (x0, u0) ∈ Rn × Rm, with u10 6= 0, of differential weight n+m+ p∗, and is
given by the following form with h = (w1

1, . . . , w
1
m):

NF2



ẇj1 = wj+1
1 ẇji = wj+1

i

ẇρ11 = a1(w) + u1 ẇρii = ai(w) + z1i u1

żqi = zq+1
i u1

żµii = bi + ui,

2 ≤ i ≤ m,

where 1 ≤ j ≤ ρi − 1, 1 ≤ q ≤ µi − 1.

(B2) Let x0 ∈ Rn and assume that dimH(x) = k and is constant around x0. If there exist
g1, . . . , gm such that (Σc, h) is x-flat at (x0, ū

l
0) ∈ Rn × Rm(l+1), for a certain l ≥ −1,

then the differential weight of h as a flat output of Σc is at least n + m + p∗. In
particular, the differential weight of h as a flat output of NF2 is the lowest (minimal
possible) among all differential weights of h as a flat output of any Σc.

An algorithm constructing g1, . . . , gm of normal form NF2 is given in Section 3.1.2, and
a proof of Theorem 3.2, based on that algorithm, in Section 5.5.

Since a flat system is observable (with respect to its flat output and independently of
the applied input signal), we have to render the original system (Σ, h) observable. For
observability we need a link between the w- and the z-subsystems (Figure 2) but for Σ

z w
h(w)needed

Figure 2: Link needed for observability.

there is no such a link, see the observed-unobserved form (10)-(11) illustrated by Figure 3.
It follows that we have to create a link assuring observability with the help of the control
vector fields (see Figure 4, where Π stands for products zq+1

i u1).
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z w
h(w)

Figure 3: For Σ, no link between the w- and the z-subsystems.

z w
h(w)

u1

 
u2,..., um

Figure 4: Observability obtained with the help of the gi’s.

3.1.1 Algorithm for constructing g1, . . . , gm of the normal form NF1

Consider the dynamical system (Σ, h) around any x0 ∈ Rn such that (Σ, h) admits unobserv-
ability quasi-indices (ρ1, . . . , ρm) at x0 (thus around any x0 in X, an open and dense subset
of Rn) and transform it locally into the observed-unobserved form (10)-(11) and denote
x = (w, z). We first introduce coordinates z in which the subsystem ż = b(w, z) of (10)-(11)
takes form (12) and then for (12) we construct vector fields g1, . . . , gm yielding normal form
NF1. Introduce the following notations: X0 = X, H0 = H, where H is the observability
codistribution given by (4), and k0 = k = dimH(x).

Choose m − 1 functions ψ1
i (w, z), for 2 ≤ i ≤ m, satisfying (dψ1

2 ∧ . . . ∧ dψ1
m)(x0) 6=

0 mod H0(x0), where, in the (w, z)-coordinates, H0(x) = span {dwji , 1 ≤ i ≤ m, 1 ≤ j ≤ ρi}.
The functions ψ1

i always exist, since dim z = p(m−1)+r, with p ≥ 1, and can be, for instance,
taken as m− 1 well chosen original coordinates zi2 , . . . , zim . Consider ψ1 = (ψ1

2, . . . , ψ
1
m) as

dummy outputs that complete the original output h to a new output h1 = (h, ψ1) and denote
by H1 its associated observability codistribution H1(x) = H0(x) + span {dLqfψ1

i (x), 2 ≤ i ≤
m, q ≥ 0}.

There exists an open and dense subset X1 ⊂ X0 (thus open and dense in Rn as well)
such that for any x0 ∈ X1, we can find integers ν12 , . . . , ν1m and a neighborhood X1

x0
of x0

satisfying H1(x) = H0(x) + span {dLq−1f ψ1
i (x), 2 ≤ i ≤ m, 1 ≤ q ≤ ν1i } for x ∈ X1

x0
, where

dimH1(x) = k0 +
∑m

i=2 ν
1
i = k1. Two cases are to be distinguished. Either k1 = n, for

x ∈ X1
x0
, and then (f, h1) is observable at x0 and (ρ1, . . . , ρm, ν

1
2 , . . . , ν

1
m) form observability

quasi-indices at x0. Or k1 < n, for x ∈ X1
x0
, and then (f, h1) is not observable at x0 and

(ρ1, . . . , ρm, ν
1
2 , . . . , ν

1
m) are unobservability quasi-indices at x0 (of the output h1). Notice

that in both cases, observable and unobservable, the choice of ν12 , . . . , ν1m is, in general, not
unique.

For 2 ≤ i ≤ m, in both cases, introduce coordinates

zqi = Lq−1f ψ1
i , 1 ≤ q ≤ ν1i .

and define µ1
i = ν1i . In the observable case, we set ` = 1, and the construction of the

z-variables ends up, while in the unobservable case, we complete the output h1 to a new
output h2 = (h1, ψ2) by choosing m − 1 functions ψ2

i (w, z), 2 ≤ i ≤ m, such that (dψ2
2 ∧

. . . ∧ dψ2
m)(x0) 6= 0 mod H1(x0). Denote by H2 its associated observability codistribution

H2(x) = H1(x)+span {dLqfψ2
i (x), 2 ≤ i ≤ m, q ≥ 0}. There exists an open and dense subset

X2 ⊂ X1 (thus open and dense in Rn as well) such that for any x0 ∈ X2, we can find integers
ν22 , . . . , ν

2
m and a neighborhood X2

x0
of x0 satisfying H2(x) = H1(x) + span {dLq−1f ψ2

i (x), 2 ≤
i ≤ m, 1 ≤ q ≤ ν2i } for x ∈ X2

x0
, where dimH2(x) = k1 +

∑m
i=2 ν

1
i = k2. For 2 ≤ i ≤ m,
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introduce coordinates
z
q+µ1i
i = Lq−1f ψ2

i , for 1 ≤ q ≤ ν2i ,

and denote µ2
i = µ1

i + ν2i = ν1i + ν2i . If k2 = n, we set ` = 2, and the construction of the
z-variables stops, if k2 < n, we continue.

Repeat this process until the system (f, h`), where h` = (h, ψ1, . . . , ψ`), obtained at the
`-th step, has observability quasi-indices (ρ1, . . . , ρm, ν

j
i ), where 2 ≤ i ≤ m, 1 ≤ j ≤ `, and

k +
∑m

i=2

∑`
j=1 ν

j
i = n, on an open and dense subset X` ⊂ X`−1 (thus open and dense in

Rn). Notice that for any 1 ≤ j ≤ ` − 1, we have νji ≥ 1, for 2 ≤ i ≤ m, but for j = `, we
have either ν`i ≥ 1, for 2 ≤ i ≤ m (like in all preceding steps), if n− k −

∑m
i=2 µ

`−1
i ≥ m− 1

(first case), or ν`i = 1, for 2 ≤ i ≤ d, and ν`i = 0, for d + 1 ≤ i ≤ m (implying that the
corresponding ψ`i are absent), if d = n− k −

∑m
i=2 µ

`−1
i < m− 1 (second case).

In the first case, we define µ`i = µ`−1i + ν`i , for 2 ≤ i ≤ m, and we set `i = ` implying
µ`ii = µ`i . In the second case, for 1 ≤ i ≤ d, we define µ`i = µ`−1i + ν`i , and we set `i = `
implying µ`ii = µ`i , but for d+ 1 ≤ i ≤ m, we set `i = `− 1 implying µ`ii = µ`−1i (since ψ`i are
absent for d+ 1 ≤ i ≤ m).

Around any point x0 ∈ X`, we introduce n−k coordinates zq+µ
j−1
i

i = Lq−1f ψji , for 2 ≤ i ≤
m, 1 ≤ q ≤ νji , 1 ≤ j ≤ `i, that are independent modulo H = span {dwji , 1 ≤ i ≤ m, 1 ≤ j ≤
ρi}, and bring the unobserved subsystem (11) into form (12). For that form, set Z0

i = z1i and

(Z1
i , Z

2
i , Z

3
i , Z

4
i , . . . , Z

2`i−3
i , Z2`i−2

i , Z2`i−1
i ) = (z

µ1i
i , z

µ1i+1
i , z

µ2i
i , z

µ2i+1
i , . . . , z

µ
`i−1
i

i , z
µ
`i−1
i +1

i , z
µ
`i
i

i ),
and define the control vector fields

g1 =
∂

∂wρ11
+

m∑
i=2

(
Z0
i

∂

∂wρii
+

`i−1∑
s=1

Z2s
i

∂

∂Z2s−1
i

)
and gi =

∂

∂Zi
2`i−1 , 2 ≤ i ≤ m,

which are in the multi-chained form on the submanifold {wji = 0, for 1 ≤ j ≤ ρi−1 and 1 ≤
i ≤ m, and zqi = 0, for q 6= µ1

i , . . . , µ
`i
i and 2 ≤ i ≤ m}, where either `i = ` − 1 or `i = `,

and obtain the normal form NF1, with (h1, . . . , hm) = (w1
1, . . . , w

1
m), which is clearly x-

flat at (x0, u0), where u10 6= 0, with (h1, . . . , hm) being a flat output of differential weight
n+m+ max

2≤i≤m
µ`ii .

C

The above algorithm provides an explicit construction, that uses differentiation and al-
gebraic operations only, of gi’s.

Corollary 3.1. Consider the dynamical system (Σ, h) around any x0 ∈ X` and denote
Ψ
q+µj−1

i
i = Lq−1f ψji , for 2 ≤ i ≤ m, 1 ≤ q ≤ νji , 1 ≤ j ≤ `i, where the functions ψji and the

set X` are given by the above algorithm. Denote ϕqi = Lq−1f hi, for 1 ≤ q ≤ ρi. Vector fields
g1, . . . , gm such that (Σc, h) is x-flat with h being a flat output can be constructed by

< dϕqi , g1 >= 0, 1 ≤ q ≤ ρi − 1, < dϕρii , g1 >= Ψ1
i ,

< dϕρ11 , g1 >= 1, < dΨq
i , g1 >= Ψq+1

i , q = µ1
i , . . . , µ

`i−1
i ,

1 ≤ i ≤ m, < dΨq
i , g1 >= 0, q 6= µ1

i , . . . , µ
`i−1
i ,

2 ≤ i ≤ m,

(16)

for g1, and
< dϕqi , gj >= 0, 1 ≤ q ≤ ρi, < dΨq

i , gj >= 0, q 6= µ`ii ,

1 ≤ i ≤ m, < dΨq
i , gj >= δij, q = µ`ii ,

2 ≤ i ≤ m,

(17)
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where 2 ≤ j ≤ m, and δij = 1, if i = j, and 0, otherwise, for g2, . . . , gm. If all functions ϕqi
and Ψq

i are global, then the vector fields gi are defined globally and assure local flatness around
any x0 ∈ Rn.

Proof. The proof follows directly from the algorithm for constructing g1, . . . , gm of NF1.

Observe that if we regroup all n functions ϕqi and Ψq
i of Corollary 3.1 into Φ = (ϕqi ,Ψ

q
i ),

systems (16) and (17) can be rewritten as

dΦ(x) · gi = di(x), 1 ≤ i ≤ m,

where the terms di denote the right hand-side of (16) and (17) and both, Φ(x) and di(x) are
known.

3.1.2 Algorithm for constructing g1, . . . , gm of the normal form NF2

Consider the system (Σ, h) around any x0 ∈ Rn satisfying f(x0) 6= 0 and such that (Σ, h) ad-
mits unobservability quasi-indices (ρ1, . . . , ρm) at x0. Bring Σ into the observed-unobserved
form (10)-(11). By f(x0) 6= 0, the first order partial differential equation Lfψ(x) = 0 admits
n − 1 solutions independent at x0. We choose among them any n − k − 1 solutions inde-
pendent modulo H = span {dwji , 1 ≤ j ≤ ρi, 1 ≤ i ≤ m} at x0 and we label them as ψqi ,
2 ≤ i ≤ m, where 1 ≤ q ≤ p for 2 ≤ i ≤ m − r and 1 ≤ q ≤ p + 1 for m − r + 1 ≤ i ≤ m,
and (i, q) 6= (2, p) (recall that n− k = p(m− 1) + r). Choose a solution of Lfψ(x) = 1, and
denote it ψp2, such that the functions ψp2, w

j
i , and the just constructed ψqi , are independent

at x0. Introduce, around x0, the new z-coordinates zqi = ψqi , for 2 ≤ i ≤ m, 1 ≤ q ≤ µi,
where µi = p, if 2 ≤ i ≤ m− r, and µi = p+ 1, if m− r + 1 ≤ i ≤ m.

For the system (Σ, h), whose w-subsystem is given by (10) and the z-subsystem is repre-
sented by (15) in just constructed zqi -coordinates, define

g1 =
∂

∂wρ11
+

m∑
i=2

(
z1i

∂

∂wρii
+

µi−1∑
q=1

zq+1
i

∂

∂zqi

)
and gi =

∂

∂zµii
, 2 ≤ i ≤ m. (18)

In (w, zqi )-coordinates, the corresponding control system is in the form NF2, with (h1, . . . , hm) =
(w1

1, . . . , w
1
m), which is clearly x-flat at (x0, u0), with u10 6= 0, of differential weight n+m+ p∗,

see (13) for the definition of p∗, and with (h1, . . . , hm) being a minimal flat output of NF2.
C

The above algorithm provides an explicit construction of gi’s (that, once the solutions ψqi
of Lfψ(x) = 0 and Lfψ(x) = 1 are computed, uses differentiation and algebraic operations
only).

Corollary 3.2. Consider the dynamical system (Σ, h) around any x0 ∈ Rn satisfying
f(x0) 6= 0 and such that (Σ, h) admits unobservability quasi-indices (ρ1, . . . , ρm) at x0. De-
note ϕqi = Lq−1f hi, for 1 ≤ q ≤ ρi, and compute the functions ψqi , for 1 ≤ q ≤ µi, 2 ≤ i ≤ m,
of the above algorithm. Vector fields g1, . . . , gm such that (Σc, h) is x-flat with h being a flat
output can be constructed by

< dϕqi , g1 >= 0, 1 ≤ q ≤ ρi − 1, < dϕρii , g1 >=ψ1
i ,

< dϕρ11 , g1 >= 1, < dψqi , g1 >=ψq+1
i , 1 ≤ q ≤ µi − 1,

1 ≤ i ≤ m, < dψµii , g1 >= 0,
2 ≤ i ≤ m,

(19)
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for g1, and
< dϕqi , gj >= 0, 1 ≤ q ≤ ρi, < dψqi , gj >= 0, 1 ≤ q ≤ µi − 1,

1 ≤ i ≤ m, < dψµii , gj >= δij,
2 ≤ i ≤ m,

(20)

where 2 ≤ j ≤ m, and δij = 1, if i = j, and 0, otherwise, for g2, . . . , gm. If all functions ϕqi
and ψqi are global, then the vector fields gi are defined globally and assure local flatness around
any x0 ∈ Rn.

Proof. The proof follows directly from the algorithm for constructing g1, . . . , gm of NF2.

Observe that if we regroup all n functions ϕqi and ψ
q
i of Corollary 3.2 into Φ = (ϕqi , ψ

q
i ),

systems (19) and (20) can be rewritten as

dΦ(x) · gi = di(x), 1 ≤ i ≤ m,

where the terms di denote the right hand-side of (19) and (20). In order to get the expressions
of Φ(x) and di(x), we first have to compute the solutions ψqi of Lfψ(x) = 0 and Lfψ(x) = 1.

3.1.3 Discussion of the normal form NF1

The two extreme cases of the z-part of NF1 are ` = 1 and ` = p, if n − k = p(m − 1), or
` = p+ 1, if n− k = p(m− 1) + r, where 1 ≤ r ≤ m− 2. In the first case, we have

żqi = zq+1
i , 1 ≤ q ≤ µ1

i − 1,

ż
µ1i
i = b

µ1i
i (w, z) + ui, 2 ≤ i ≤ m,

the z-subsystem is formed by m − 1 almost linear chains (the nonlinearities as well as the
inputs appear at the bottom level of each zi-chain only). In the second case, we have µsi = s,
1 ≤ s ≤ `i, with `i = p, for 2 ≤ i ≤ m− r, and `i = p+ 1, for m− r + 1 ≤ i ≤ m, and

żqi = bqi (w, z
q) + zq+1

i u1, żqi = bqi (w, z
q) + zq+1

i u1,
1 ≤ q ≤ p− 1, 1 ≤ q ≤ p,

żpi = bpi (w, z) + ui, żp+1
i = bp+1

i (w, z) + ui,
2 ≤ i ≤ m− r, m− r + 1 ≤ i ≤ m.

This case reminds very much the form NF2; indeed the control vector fields gi are in the
multi-chained form (18), with µi replaced by `i (equal p or p + 1), and it is because of g1
only (the drift does not play any role) that for each q, the successive derivatives Lg1z

q
i = zq+1

i

provide m− 1 new states zq+1
i (as many as possible).

If x0 is an equilibrium point of f , contrary to the case of the normal form NF2, then the
drift cannot be rectified and we need to identify its triangular structure and to respect it.
Any system can always be transformed into NF1 and this normal form actually works around
any x0, equilibrium or not, and in order to compute the z-coordinates we do not have to
compute any partial differential equation, see the algorithm for the construction of NF1 and
Corollary 3.1 in Section 3.1.1. For NF1, the linking terms, that is, the nonzero components
of g1, are the functions ψqi defining the variables zqi , for q = µ0

i , µ
1
i , . . . , µ

`i−1
i (where we put

µ0
i = 1). Notice that the choice of linking terms ψqi is far from being unique and may be

important. The components of the vector field g1 depend on z only, the link between the
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observed subsystem and the (still) unobserved one is made (at each step s) with the help
of zµ

s
i+1

i u1 that involve the control u1 only, and the remaining inputs (flatness implies that
there are necessarily m inputs, which is the number of outputs) appear at the bottom levels
of the zi-chains.

In general, there is no reason for all zi-chains to be (contrary to the normal form NF2)
of length p or p+ 1, thus the differential weight of h may be greater than n+m+ p∗, (which
is the minimal possible and characterizes h as a flat output of NF2). In fact, the differential
weight of h equals n+m+ max

2≤i≤m
µ`ii .

For fixed functions ψqi , constructing the z-variables (and thus the form NF1) is performed
on an open and dense subset Xψ ⊂ Rn that, indeed, depends on ψ. If it is important to
work at a fixed point x0 (around which unobservability quasi-indices exist) and if x0 6∈ Xψ,
we can choose another family of dummy outputs ψ̃ because, in general, Xψ 6= Xψ̃. Choosing
different ψqi ’s will lead, in general, to different control vector fields and thus to different flat
control systems with different differential weights.

3.1.4 Discussion of the normal form NF2

For the case f(x0) 6= 0, corresponding to the normal form NF2, in order to connect the w- and
the z-subsystems, one linking term for each wi-chain is needed and the variables (z12 , . . . , z

1
m)

play indeed the role of those linking terms, as z1i affects ẇρii . Like for NF1, the link between
the observed w-subsystem and the unobserved z-subsystem is made with the help of the
control vector field g1 only and the remaining m− 1 inputs u2, . . . , um appear at the bottom
level of each zi-chain. It follows that u1 is the only input that needs to be differentiated in
order to express all states and controls with the help of flat outputs h1 = w1

1, . . . , hm = w1
m

and their derivatives. If the observability defect verifies n − k = p(m − 1), i.e., n − k
is a multiple of m − 1, then each zi-chain is of length p, and the control u1 needs to be
differentiated p times, so the differential weight is n + m + p. If n − k = p(m − 1) + r,
with 1 ≤ r ≤ m− 2, then the r first zi-chains are of length p + 1, the input u1 needs to be
differentiated p+ 1 times and, hence the differential weight is n+m+ p+ 1.

Notice that there is a significant freedom in constructing gi’s, see the algorithm describ-
ing NF2 and Corollary 3.2 in Section 3.1.2. First we can choose any n − k − 1 solutions
(independent modulo H) of Lfψ(x) = 0. Second, there is a full arbitrariness of labelling
them as ψqi . In particular µi can be taken not as p or p+ 1 but (almost) arbitrary respecting∑m

i=2 µi = n− k. Our choice is simple (the form of gi’s is the simplest possible) and natural
(chosen µi give the minimal differential weight) but other choices may be also interesting (in
applications, for instance). Third, it is clear that we may replace the proposed g1, . . . , gm by
a more general triangular form

ḡ1 =
∂

∂wρ11
+

m∑
i=2

g0i (w, z
1)

∂

∂wρii
+

m∑
i=2

µi−1∑
q=1

gqi (w, z
q+1)

∂

∂zqi
,

and
ḡi =

∂

∂zµii
, 2 ≤ i ≤ m,

where zq = (z12 , . . . , z
q
2, . . . , z

1
m, . . . , z

q
m), and rk

(
∂gqi
∂zq+1
j

)
(w0, z0) = m − 1, 2 ≤ i, j ≤ m, for

any 0 ≤ q ≤ µi − 1. Then the new control system ẋ = f(x) +
∑m

i=1 uiḡi(x), obtained with
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the help of ḡi’s, is also flat with h = (w1
1, . . . , w

1
m) being a flat output of the same differential

weight n+m+ p∗ as previously.

If f(x0) 6= 0, then the drift corresponding to the z-variables, that we denote by b(w, z)
in (11), can be rectified (even if b(w0, z0) = 0 and a non vanishing component of f is in the
w-part, i.e., a(w0, z0) 6= 0) and, in well chosen z-coordinates, we have b(w, z) = ∂

∂z
µ2
2

(which
is of form (15)). It follows that, if x0 is not an equilibrium point, the drift after rectification
plays no role in choosing the linking terms ψ1

i = z1i that can be any (linking terms meaning
the w-components of g1) and, moreover, it has no impact on the triangular structure of the
z-part, which is completely determined by g1. Notice that the components of the vector
fields g1, . . . , gm depend on the unobserved (with respect to the original output h) states
only and they are designed to be in the multi-chained form. This particular form guarantees
that the differential weight of h as a flat output of NF2 is the minimal possible (equal to
n+m+p∗) among all differential weights of h as a flat output of any Σc. It is clear that NF2
is not linearizable via invertible static feedback, however, NF2 becomes static static feedback
linearizable after pre-integrating p∗ times the first control u1, thus after the application of a
dynamical precompensator of dimension p∗.

3.2 Construction of the control vector fields: the case n− k < m− 1

If the observability defect satisfies n − k = r < m − 1 (i.e., p = 0), then a result similar
to Theorem 3.1 holds (but including it into Theorem 3.1 would significantly complicate the
notations) and is given by Theorem 3.3 below.

Theorem 3.3. Consider the observed system (Σ, h) and assume that n − k = r < m − 1.
Then the set X , consisting of points at which (Σ, h) admits unobservability quasi-indices, is
open and dense in Rn. Moreover:

(A1)’ Around any point x0 of X , we can always construct g1, . . . , gm such that (Σc, h) is x-flat
at any (x0, u0) satisfying x0 ∈ X and u10 6= 0. In particular, if X = Rn, then g1, . . . , gm
exist locally around any x0 ∈ Rn.

(A2)’ Around any point x0 of X , independently of whether f(x0) = 0 or f(x0) 6= 0, choose
any z-coordinates (z1m−r+1, . . . , z

1
m) completing the w-coordinates, given by (9), to a

local coordinate system and transform Σ into (10)-(11). For that form, the vector
fields g1 = ∂

∂w
ρ1
1

+
∑m

i=m−r+1 z
1
i

∂
∂w

ρi
i

, gi = ∂
∂w

ρi
i

, for 2 ≤ i ≤ m − r, and gi = ∂
∂z1i

, for
m − r + 1 ≤ i ≤ m, yield the system (Σc, h) that is x-flat at (x0, u0) ∈ Rn × Rm,
satisfying u10 6= 0, and is given by

NF3


ẇji = wj+1

i ẇji = wj+1
i

ẇρii = ai(w) + ui, ẇρii = ai(w) + z1i u1,

1 ≤ i ≤ m− r, ż1i = b1i (w, z) + ui,
m− r + 1 ≤ i ≤ m,

where b1i (w, z) are arbitrary functions of w and z, and h = (w1
1, . . . , w

1
m) is a minimal

flat output of of differential weight n+m+ 1.

(B2)’ Let x0 ∈ Rn and assume that dimH(x) = k and is constant around x0. If there exist
g1, . . . , gm such that (Σc, h) is x-flat at (x0, ū

l
0) ∈ Rn × Rm(l+1), for a certain l ≥ −1,
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then the differential weight of h as a flat output of Σc is at least n + m + 1. In
particular, the differential weight of h as a flat output of NF3 is the lowest (minimal
possible) among all differential weights of h as a flat output of any Σc.

3.2.1 Algorithm for constructing g1, . . . , gm of the normal form NF3

Consider the dynamical system (Σ, h) around any x0 such that (Σ, h) admits unobservabil-
ity quasi-indices (ρ1, . . . , ρm) at x0 and transform it locally into the observed-unobserved
form (10)-(11).

Since dim z = r < m− r, it follows that at least m− r controls, say u1, . . . , um−r, must
affect the w-subsystem. So we can choose gi = ∂

∂w
ρi
i

, for 2 ≤ i ≤ m − r (the control u1 will
play a special role), and thus modify the corresponding w-equations as ẇρii = ai(w) + ui, for
2 ≤ i ≤ m − r. The remaining equations for ẇρii have to be linked to the z-subsystem to
render the whole system observable and we use all z-variables, where z = (z1m−r+1, . . . , z

1
m),

as linking terms multiplying the control u1, that is, we put

g1 =
∂

∂wρ11
+

m∑
i=m−r+1

z1i
∂

∂wρii
and gi =

∂

∂z1i
, m− r + 1 ≤ i ≤ m,

to get ẇρ11 = ai(w) + u1, ẇρii = ai(w) + z1i u1 and ż1i = b1i (w, z) + ui, m− r + 1 ≤ i ≤ m. We
thus have obtained the normal form NF3 which is clearly x-flat at (x0, u0), where u10 6= 0,
with (h1, . . . , hm) = (w1

1, . . . , w
1
m) being a minimal flat output of differential weight n+m+1.

C

Like for the form NF1, the above algorithm provides an explicit construction, that uses
differentiation and algebraic operations only, of gi’s. The algebraic system giving g1, . . . , gm
for NF3 is very similar to that for NF1 and left to the reader.

3.2.2 Discussion of the normal form NF3

If the nominal point around which we work is not an equilibrium, i.e., f(x0) 6= 0, the drift b
of the unobserved subsystem (11) can be rectified, that is, in well chosen z-coordinates
z = (z1m−r+1, . . . , z

1
m), we have b(w, z) = ∂

∂z1m−r+1
, and we obtain the normal form NF3 with

b1m−r+1 = 1 and b1i = 0, for m− r+ 2 ≤ i ≤ m. This is the analogue of the normal form NF2
in the case n− k < m− 1.

The main difference between NF3 and the forms NF1 and NF2 is, as explained in the
above algorithm, that the unobserved z-part of NF3 can be affected by at most r inputs, so
the remaining controls necessarily appear in the w-equations. As for the case n−k ≥ m−1,
the control vector fields are designed to be in the simplest possible form and only the vector
field g1 is used to link the observed and the unobserved subsystems although g2, . . . , gm−r
affect the w-subsystem of NF3 as well (which is, in the case n − k ≥ m − 1, affected by g1
only). This, together with the fact that each zi-chain is of length one, guarantee that the
differential weight of h as a flat output of NF3 is the minimal possible, which is n+m+ 1,
compared to the differential weight of any Σc for which h is a flat output (recall that flatness
of differential weight n+m characterizes the observable case, see Section 2).

Notice also that the normal form NF3 of condition (A2)’ is valid around any x0 such that
(Σ, h) admits unobservability quasi-indices at x0. In particular, if quasi-indices exist around
any x0 ∈ Rn, then NF3 is established around any x0 ∈ Rn and not only on an open and
dense subset like NF1.
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Summing up, in all cases, we can always construct (locally, on an open and dense subset
of Rn), control vector fields g1, . . . , gm such that the associated control system (Σc, h) is flat
and thus, generically, the problem of constructing flat inputs is completely solved.

3.3 Avoiding singularities in the control space

If the system (Σ, h) is observable at a given x0, then for the corresponding flat control system
(Σc, h), given by Theorem 2.1, even if ϕi = hi yield local flatness only, representing the states
and the controls with the help of ϕi = hi and their derivatives is global with respect to u,
so we never face singularities in the control space. This is no longer the case if (Σ, h) is
unobservable and all normal forms NF1, NF2, and NF3 exhibit singularities in the control
space. For all of them, the system ceases to be flat (with h as a flat output) at u1 = 0 (which
is a singular control for flatness). If we want to avoid singularities in the control space, we
can construct another control system as follows: in all equations of NF1, NF2, and NF3, we
replace u1 by exp(u1), except for the equation ẇρ11 = a1(w) + u1 that we keep unchanged.
For instance, for NF1, the equations involving u1 become:

ẇρ11 = a1(w) + u1 ẇρii = ai(w) + z1i exp(u1)

żqi = bqi (w, z
q) + zq+1

i exp(u1), q = µ1
i , . . . , µ

`i−1
i ,

where 2 ≤ i ≤ m. We have thus constructed a new control system Σc that does no longer
display singularities in the control space (representing the state z and the control u, with the
help of components of ϕi = hi and their derivatives, is global), but the system is nonlinear
with respect to u (which is the price for avoiding singularities).

4 Application to private communication

Since the trendsetting work of [24], it is known that the problem of private communication can
be investigated with the help of a unidirectional synchronization of chaotic systems (see also
[23] for an observer point of view). The goal of this section (which is based on the preliminary
paper [22]) is to explain how constructing flat inputs for a given observed dynamic can be
applied to private communication via both, using chaotic models and including the messages
into the dynamics (see also [1], for a related approach using the design of nonlinear observers
with unknown inputs, and [2] and [29], where invertibility and flatness of switched linear
discrete-time systems is applied to private communication).

The general problem can be summarized as follow. Suppose that m confidential messages
u1(t), . . . , um(t) have to be sent to the receiver. To this aim, we use a transmitter (Σ, h) that
consists of a dynamical system together with an output

Σ :

{
ẋ = f(x), x ∈ Rn,
y = h(x), y ∈ Rm.

In order to transmit messages (u1(t), . . . , um(t)) , we will add to Σ control vector fields
g1, . . . , gm whose controls are, resp., u1, . . . , um (that is, messages to be sent) in such a way
that

Σc :

{
ẋ = f(x) +

∑m
i=1 uigi(x),

y = h(x),
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is a flat system with ϕ = (h1, . . . , hm) being a flat output (see Definition 2.1). Both the
sender and receiver know completely the equations of the flat control system Σc : ẋ =
f(x) +

∑m
i=1 uigi(x) and in order to transmit a message u(t) = (u1(t), . . . , um(t)), the sender

calculates the corresponding output signal y(t) = h(x(u(t), t)) and transmits the masked
information via the communication multiplexed channel. The receiver receives the signal
y(t) and knowing the system Σc calculates u(t) (recall that Σc is flat). Notice that the
flatness property and the fact that the original output forms a flat output are essential to
express the confidential message u(t) as function of the masked information y(t) sent to the
receiver (we thus study not only a synchronization problem, but also an input reconstruction
problem). In order to compute u(t) based on the knowledge of y(t), left invertibility of Σc

(which is a weaker property than flatness) would be sufficient but, in that case, the receiver
should know not only y(t) but also either the initial condition and the internal dynamics of
the inverse (see [26]). So the advantage of using the flat system Σc is that the receiver uses
the masked information y(t) only. To assure that y(t) is well masked (cannot be decrypted
by a third person), we use as Σ a chaotic system.

To illustrate that general scheme, assume that two messages u1(t) and u2(t) have to be
sent to the receiver. We use a transmitter, composed of two independent chaotic systems, a
Lorenz circuit (x`, y`, z`), see, e.g., [17], and a Rössler circuit (xr, yr, zr), see, e.g., [28], of the
form (the notation (Ch) referring to the chaotic behavior):

(Ch) :



ẋ` = σ(y` − x`)
ẏ` = −kdx`z` + rx` − y`
ż` = kdx`y` − βz`
ẋr = −yr − zr
ẏr = xr + ayr
żr = b+ zr(xr − c),

where the output (h1, h2) = (x`, z`) is the masked information transmitted via the commu-
nication multiplexed channel, the parameters a, b, c, β, σ, r and kd are constant. In order to
transmit messages u1(t) and u2(t), we add to (Ch) two control vector fields g1 and g2 whose
controls are, resp., u1 and u2 (that is, messages to be sent):

(Chc) : ẋ = f(x) + u1g1(x) + u2g2(x), yi = hi(x), 1 ≤ i ≤ 2,

where g1 and g2 are chosen in such a way that (Chc) is flat with ϕ = (h1, h2) being a flat
output, and f is the right-hand side of (Ch). The chaotic behavior of (Ch) (depending
on the values of the constant parameters) is crucial and has to be preserved by adding the
modification u1g1(x) + u2g2(x) to (Ch).

It is clear that with the given output (x`, z`) only the Lorenz variables can be observed
and in the observed-unobserved form (10)-(11), using the new global w-coordinates w1

1 = x`,
w2

1 = Lfx` = σ(y` − x`), w1
2 = z`, the Lorenz circuit is equivalently given by: ẇ1

1 = w2
1,

ẇ2
1 = −σkdw1

1w
1
2 +σ(r−1)w1

1− (σ+1)w2
1 = a1(w) and ẇ1

2 = kdw
1
1(

1
σ
w2

1 +w1
1)−βw1

2 = a2(w).
Notice that here, the unobserved subsystem, described by the Rössler circuit, is com-

pletely independent of the observed Lorenz circuit. Define the linking term z12 = ψ(w, xr, yr, zr)
by ψ = yr and compute its successive time-derivatives. We get Lfψ = xr + ayr and
L2
fψ = −(yr + zr) + a(xr + ayr). It is clear that dψ, dLfψ and dL2

fψ are independent every-
where, and zj2 = Lj−1f ψ, 1 ≤ j ≤ 3, (together with the w-coordinates) define a global system
of coordinates on R3×R3. According to our results, we globally define g1 = ∂

∂w2
1

+ z12
∂
∂w1

2
and
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g2 = ∂
∂z32

and obtain in (w, z)-coordinates a systems in NF1-form

(Chc) :


ẇ1

1 = w2
1 ẇ1

2 = a2(w) + z12u1
ẇ2

1 = a1(w) + u1 ż12 = z22
ż22 = z32
ż32 = b32(w, z) + u2,

where b32(w, z) = −b−z22−az32−(z32−z12 +az22)(z22−az12), which is flat with (w1
1, w

1
2) = (x`, z`)

being a flat output. This system in the original coordinates is:

(C̃hc) :



ẋ` = σ(y` − x`)
ẏ` = −kdx`z` + rx` − y` + 1

σ
u1

ż` = kdx`y` − βz` + yru1
ẋr = −yr − zr
ẏr = xr + ayr
żr = b+ zr(xr − c)− u2.

The receiver knows completely the dynamics of the flat control system (C̃hc) as well as
the transmitted output (y1(t), y2(t)) = (x`(t), z`(t)) and therefore using the flatness property
the original messages u = (u1(t), u2(t)) can be recovered by the receiver as functions of
the received output and its successive time-derivatives: u1(t) = δ1(y1, ẏ1, y2) and u2(t) =

δ1(y1, . . . , y
(5)
1 , y2, . . . , y

(4)
2 ).

Remark 4.1. An interesting question is why the unobserved part z is needed. The un-
observed z-subsystem plays an important role for increasing the safety. Indeed, consider
the system (Chc) in (w, z)-coordinates, the message u1 has a degree of security significantly
lower than that of u2. The z-subsystem can be seen as a second level of security. This
motivates even more the use of the quasi-indices: for a general two-output system, in or-
der to decode u1, we may need only the output h1 = w1

1 (if the function a1 of equation
ẇρ11 = a1(w) + u1, allowing to decode u1, depends on wj1-variables only) but we never need
the linking term z12 , however, we always need it for decoding u2. Notice that for the proposed
transmitter (Chc), the function a1 involves both outputs h1 = w1

1 and h2 = w1
2. Another

issue (closely related to the above remark) is the motivation for using a two-output system
for transmitting the two messages u1 and u2 (whose encodings are thus coupled), instead of
using two independent systems, each one being used to encode a single message. Again it
is clear that the proposed transmitter guarantees a higher security level for u2: in order to
decode it, we have to decode beforehand u1.

4.1 Simulations

In this section we present a preliminary analysis that first shows, using numerical simulations,
that the chaotic behavior of the transmitter (Ch) is preserved by adding control vector fields
multiplied by suitable periodic messages into the dynamics, and second, that for suitable
amplitudes of the encoded messages, the messages are recovered with a good accuracy by the
receiver. The amplitudes should not be too small, otherwise the messages will be hidden into
the chaos or will have the same order of magnitudes as numerical errors or perturbations and
it will be difficult to distinguish between them; they should not be too large either, otherwise
the chaotic behavior will be strongly modified and the messages will be easily detected by a
hacker.
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(b) Rössler.

Figure 5: State variables phase plots without control.

We will first give the phase plots for the uncontrolled dynamical transmitter composed
by the Lorenz and Rössler circuits which are well know to be chaotic. Then we apply two
sinusoidal input signals u1 and u2. We present three cases for different amplitudes of the
inputs (the frequencies of u1 and u2 are the same for all cases). As expected, we observe
that the larger the amplitudes of u1 and u2, the more the chaotic behavior is modified (but
in all cases it seems to be preserved). The theoretical confirmation of this preliminary study
will be the subject of a future work. Neither noise nor parameter uncertainties between the
sender and the receiver nor the robustness with respect to different classical attacks have
been considered for the simulations presented here. It is, however, obvious that in practice,
those problems cannot be neglected and they will be discussed and taken into account in our
future work.

Figures 5a and 5b gives the phase plots for the original Lorenz and Rössler subsystems
(with no control), see the last paragraph of this section for the parameters values used in
the simulations.

Figures 6a and 6b correspond to the solutions of the control system (C̃hc) and show
that the chaotic behavior is preserved after modifying the original dynamical chaotic system
(Ch) by applying the following inputs: u1 = 0.5 + 0.1 sin(2πt) and u2 = 0.5 sin(1.8πt) to
the control system (C̃hc). For such (small) amplitudes, the first message is recovered with
a good accuracy (Figure 7a), but the second one does not converge to the transmitted u2
(Figure 7b). This is due to the fact that in order to decode u2, we need the third derivative
of yr (the linking term between the two chaotic subsystems) and even if the decoded yr is
close to the transmitted one (Figure 8), it still contains some approximation errors (namely,
the pick around 3.5 s in Figure 8) that are amplified at each new differentiation and lead to
a decoded u2 which is very far from the transmitted one.

Figures 9a and 9b correspond to the solutions of the control system (C̃hc) obtained for
u1 = 5 + sin(2πt) and u2 = 5 sin(1.8πt). Notice that, the amplitude of the control values
equals ten times that used in the previous example. For such inputs values, only the Lorenz
strange attractor is slightly modified (a peak appears).

Figures 10a and 10b show that, for u1 = 5 + sin(2πt) and u2 = 5 sin(1.8πt), the input u1
(which corresponds to one of the confidential messages) can be exactly recovered after a
very short time (t > 0.1 s) and u2 can be recovered with a very good accuracy after 2 s.
In order to obtain u2, first we have to decode u1, then yr and, finally, to differentiate three
times a filtered yr. Figure 11 shows that, after 0.5 s, the real yr of the transmitter and the
decoded one coincide. The purpose of this paper is not to present the receiver (observer
or/and differentiator), nevertheless it is important to note that the presented simulations
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(b) Rössler.

Figure 6: State variables phase plots for u1 = 0.5 + 0.1 sin(2πt), u2 = 0.5 sin(1.8πt).
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Figure 7: To-be-sent messages in red and decoded messages in blue for u1 = 0.5+0.1 sin(2πt),
u2 = 0.5 sin(1.8πt).
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Figure 8: yr of the transmitter in red and decoded yr in blue for u1 = 0.5 + 0.1 sin(2πt),
u2 = 0.5 sin(1.8πt).

23 / 30



−8

−6

−4

−2

0

2

4

6

8

−15

−10

−5

0

5

10

15

−10

−5

0

5

10

15

20

25

(a) Lorenz.

−15

−10

−5

0

5

10

15

20

−20

−15

−10

−5

0

5

10

15

−5

0

5

10

15

20

25

30

35

40

(b) Rössler.

Figure 9: State variables phase plots for u1 = 5 + sin(2πt), u2 = 5 sin(1.8πt).
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Figure 10: To-be-sent messages in red and decoded messages in blue for u1 = 5 + sin(2πt),
u2 = 5 sin(1.8πt).

have been obtained using two homogeneous differentiators [15] in order to compute u1 and
yr. Then, after filtering, using a low pass filter, the obtained yr, we use again a homogeneous
differentiator to decode u2. The above time constants (0.1 s, 2 s, etc.) are related to the
differentiators gains.

From Figures 12a-12b, we see that for u1 = 10+2 sin(2πt), u2 = 10 sin(1.8πt), the chaotic
behavior of the Lorenz subsystem and Rössler subsystem are modified. For such amplitudes,
the messages are perfectly recovered by the receiver (as for the above case, after 0.1 s and 2
s, respectively) but the structure of the strange attractors are too strongly modified and a
hacker would be able to detect the messages. We do not give the curves since they are very
similar to those of the previous case.

The parameters for the simulations are given by β = 8/3, σ = 10, r = 28, kd = 10,
a = 0.15, b = 0.20, c = 10, with initial conditions x`(0) = y`(0) = z`(0) = 1 and xr(0) =
yr(0) = zr(0) = 1.
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Figure 12: State variables phase plots for u1 = 10 + 2 sin(2πt), u2 = 10 sin(1.8πt).

5 Proofs

5.1 Proof of Theorem 2.1

Proof of (O1) ⇒ (O2). Consider the system Σ, around x0, together with its output h =
(h1(x), . . . , hm(x)) and assume that there exist observability quasi-indices (ρ1, . . . , ρm) at x0.
Around x0, the system Σ can be locally brought into

ẇji = wj+1
i , 1 ≤ j ≤ ρi − 1,

ẇρii = ai(w), 1 ≤ i ≤ m,

with wji = Lj−1f hi, for 1 ≤ i ≤ m and 1 ≤ j ≤ ρi. For this form, define gi(w) = ∂
∂w

ρi
i

,
1 ≤ i ≤ m. It is clear that the corresponding control system

Σc :

{
ẇji = wj+1

i , 1 ≤ j ≤ ρi − 1,
ẇρii = ai(w) + ui, 1 ≤ i ≤ m,

is static feedback linearizable around x0 (with hi = w1
i , for 1 ≤ i ≤ m, the linearizing

outputs) and thus x-flat at x0 of differential weight n + m, with h being a minimal flat
output.

Proof of (O2) ⇒ (O1). Suppose that there exist g1, . . . , gm, around x0, such that the
associated control system Σc : ẋ = f(x) +

∑m
i=1 gi(x)ui is x-flat at x0 of differential weight

n + m, with h = (h1(x), . . . , hm(x)) being a minimal flat output. Let ν1, . . . , νm denote the
relative degrees of h1(x), . . . , hm(x), that is, h(νi)i is the lowest time-derivative of hi(x(t))

25 / 30



depending explicitly on u. Since the flat outputs and all their successive derivatives are
independent at x0, we can introduce the new coordinates x̃ji = Lj−1f hi, for 1 ≤ i ≤ m and
1 ≤ j ≤ νi. We get

˙̃xji = x̃j+1
i , 1 ≤ j ≤ νi − 1,

˙̃xνii = Lνif hi +
∑m

j=1(LgjL
νi−1
f hi)uj, 1 ≤ i ≤ m.

(21)

Flatness of differential weight n+m implies that we necessarily have
∑m

i=1 νi = n and that
the decoupling matrix Dj

i = LgjL
νi−1
f hi, for 1 ≤ i, j ≤ m, is of full rank (otherwise the system

would not be flat of differential weight n + m). It is clear that for the initial system Σ, the
integers ρi = νi, 1 ≤ i ≤ m, are observability quasi-indices at x0.

Proof of (i)-(ii). Suppose that (Σ, h) admits observability quasi-indices (ρ1, . . . , ρm) at x0.
It follows from the implication (O2) ⇒ (O1) that desired vector fields g1, . . . , gm satisfy (i)
for a suitable invertible matrix

(
Dj
i (x)

)
. Conversely, consider g1, . . . , gm satisfying (i). If

D(x) = Im, where Im denotes the identitym×m-matrix, then by the proof of the implication
(O1) ⇒ (O2), we get gi = ∂

∂w
ρi
i

. If we take D(x) instead of Im, we have to replace g(x) 7→
g(x)β(x), where β(x) = (D(x))−1 proving that for both choices of gi’s we get a feedback
linearizable system for which h is a flat output of differential weight n + m. Independently
of D(x), all corresponding vector fields g1, . . . , gm define the same distribution G given by
(ii).

5.2 Proof of Corollary 2.1

Consider the dynamical system (Σ, h) and assume that it is not locally observable at x0, but
that it admits control vector fields g1, . . . , gm such that the associated control system (Σc, h)
is static feedback linearizable around x0 (and thus of differential weight n + m, see [20])
with h being a minimal flat output. Then by Theorem 2.1, there exists observability quasi-
indices (ρ1, . . . , ρm) at x0 implying that (Σ, h) is locally observable at x0 and contradicting
our assumption.

5.3 Proof of Corollary 2.2

Consider the linear dynamical system Σ : ẋ = Ax, y = Cx, and assume that the pair (A,C)
is observable. Clearly, there exist observability quasi-indices for (A,C) and according to
Theorem 2.1, there exist vector fields g1, . . . , gm such that the corresponding control system
is x-flat of differential weight n + m, with ϕ = Cx being a flat output. We construct the
gi’s with the help of condition (i) of Theorem 2.1, where for Dj

i (x) we take Dj
i (x) = δji . It is

clear that with that construction, we obtain constant vector fields gi = bi, for 1 ≤ i ≤ m.
Let us now suppose that there exist constant vector fields g1 = b1, . . . , gm = bm such that

the associated linear control system is flat at x0. Since a flat control system is observable
with respect to its flat output and since the observability of linear control systems does not
depend on the control vector fields, it follows that the pair (A,C) is necessarily observable.

5.4 Proof of Theorem 3.1

Proof of (A2). The proof is given by the algorithm constructing the flat control system NF1
in Sections 3.1.1.
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Proof of (A1). Condition (A1) is a direct consequence of (A2) which gives the construction
of the flat control system NF1 around any point of X , an open and dense subset of Rn.
Notice also that in (A1), flatness holds locally around any (x0, u0) satisfying x0 ∈ X and
u10 6= 0, but the vector fields g1 and g2 are defined globally on all connected components of
X .

5.5 Proof of Theorem 3.2

Proof of (B1). The proof is given by the algorithm constructing the flat control system NF2
in Sections 3.1.2.

Proof of (B2). Consider the system Σ, around x0, together with its output h = (h1(x), . . . , hm(x))
and suppose that there exist g1, . . . , gm such that the associated control system Σc : ẋ =
f(x)+

∑m
i=1 gi(x)ui is x-flat at (x0, ū

l
0) with ϕ = (h1(x), . . . , hm(x)) a minimal x-flat output,

defined in a neighborhood of x0. Suppose that the differential weight of h as a flat output of
Σc is n+m+s. Recall that n−k = p(m−1)+r is the Euclidean division of the observability
defect n− k and m− 1. We will show that we necessarily have s ≥ p∗ (recall that p∗ = p,if
r = 0 and p∗ = p + 1 otherwise). We denote by si the order of the highest derivative of ϕi,
for 1 ≤ i ≤ m, involved in the expression of x and u, i.e.,

x = γ(ϕ̄s11 , . . . , ϕ̄
sm
m ) and u = δ(ϕ̄s11 , . . . , ϕ̄

sm
m ), (22)

where ϕ̄ji = (ϕi, ϕ̇i, . . . , ϕ
(j)
i ) and

∑m
i=1 si +m = n+m+ s.

Let νi, for 1 ≤ i ≤ m, be the relative degree of ϕi, that is, the smallest integer such that
the derivative ϕ(νi)

i depends explicitly on the control u. We clearly have νi ≥ 1 (since all
ϕi depend on x only), the functions Ljfϕi = Ljfhi, for 1 ≤ i ≤ m and 0 ≤ j ≤ νi − 1, are
independent (as successive derivatives of flat outputs) and dLj−1f hi ∈ H, so dimH(x) = k
implies

∑m
i=1 νi ≤ k (and, in particular,

∑m
i=1 νi < n, since k < n).

For 1 ≤ i, j ≤ m, denote rk
(
LgjL

νi−1
f hi

)
(x0) = rk

(
Dj
i

)
(x0) = d > 0. We clearly have

d ≤ m − 1, otherwise the control system Σc would not be flat since
∑m

i=1 νi < n. We first
suppose that the rank d of the decoupling matrix

(
Dj
i (x)

)
is constant around x0 and show

at the end of the proof of (B2) that the result still holds if the rank of
(
Dj
i (x)

)
drops at x0.

By the definition of the relative degree, we introduce new coordinates x̃ji = Lj−1f ϕi =

Lj−1f hi, for 1 ≤ i ≤ m and 1 ≤ j ≤ νi, and let ξ be complementary coordinates completing
the x̃-variables to a coordinate system (in particular, dim ξ ≥ n−k). By applying a suitable
feedback transformation (permute the components ϕi, if necessary), the system in the (x̃, ξ)-
coordinates reads

˙̃xji = x̃j+1
i , 1 ≤ j ≤ νi − 1, ˙̃xji = x̃j+1

i , 1 ≤ j ≤ νi − 1,

˙̃xνii = vi, 1 ≤ i ≤ d, ˙̃xνii = ai(x̃, ξ, v1, . . . , vd), d+ 1 ≤ i ≤ m,

ξ̇ = G(x̃, ξ, v),

(23)

for a smooth map G and smooth functions ai, all of them affine with respect to the controls.
By hypothesis, the above system is flat with ϕ = (x̃11, . . . , x̃

1
m) a minimal flat output. With

the components ϕ1, . . . , ϕd we can no longer produce any new state or control, therefore all
ξ-variables as well as controls vd+1, . . . , vm have to expressed with the help of ϕ(νi+j)

i , for
d+ 1 ≤ i ≤ m and j ≥ 0. For d+ 1 ≤ i ≤ m, each function ϕ(νi)

i = ai depends explicitly on
(some of) v1, . . . , vd, say on vj with j depending on i. Then ϕ(νi+1)

i depends on v̇j and, finally,
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ϕ
(si)
i depends on v(si−νi)j . It follows that dϕ

(νi+1)
i , . . . , dϕ

(si)
i are independent modulo X + U,

where X = span {dx1, . . . , dxn} and U = span {du1, . . . , dum}. Therefore the differential
weight of ϕ = h which is n + m + s satisfies s ≥ max

d+1≤i≤m
(si − νi) yielding si − νi ≤ s, for

d + 1 ≤ i ≤ m. Flatness implies that using at most (s + 1)(m − d) functions ϕ(νi)
i = ai,

ϕ
(νi+1)
i = ȧi, . . . , ϕ

(νi+s)
i = a

(s)
i , for d + 1 ≤ i ≤ m, we should be able to express (using

expressions that depend also on x̃ji and v1, . . . , vd) all state variables ξ (whose dimension is
at least n− k) and m− d control variables vi, for d+ 1 ≤ i ≤ m. So we need

(s+ 1)(m− d) ≥ n− k +m− d = (m− 1)p+ r +m− d,

yielding

s ≥ m− 1

m− d
p+

1

m− d
r.

and we clearly have s ≥ p∗.
If the rank of

(
Dj
i (x)

)
is not constant around x0, then the above proof holds on an open

and dense subset X of Rn. Thus on X , the differential weight of h is at least n + m + p∗.
Now suppose that x0 6∈ X (i.e., x0 is such that the rank of

(
Dj
i (x)

)
drops at x0) and that

the differential weight of h at x0 is strictly less than n+m+ p∗. It follows that h will have
the same differential weight (as that at x0) also on a neighborhood X0 of x0. Since X is
open and dense in Rn, then the set X ∩X0 is not empty and, according to what we have just
proved for the constant rank case, on that intersection the differential weight of h should be
at least n+m+ p∗, contradicting the assumption that the differential weight at x0 is strictly
less than n+m+ p∗.

5.6 Proof of Theorem 3.3

Proof of (A2)’. The proof is given by the (constructive) algorithm providing the construction
of the flat control system NF3 associated to (Σ, h) in Section 3.2.1.

Proof of (A1)’. Statement (A1)’ is a direct consequence of (A2)’ which gives the construction
of the flat control system NF3 around any point x0 such that (Σ, h) admits unobservability
quasi-indices at x0 (thus around any point of an open and dense subset of Rn). Moreover, if
(Σ, h) admits unobservability quasi-indices at any x0 ∈ Rn, then locally, around any x0 ∈ Rn,
we can always construct vector fields g1, . . . , gm with the desired properties.

Proof of (B2)’. Repeat the proof of condition (B2) of Theorem 3.1 for p = 0 and r 6= 0.
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