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Abstract

Recognizing visual unseen classes, i.e. for which no
training data is available, is known as Zero Shot Learn-
ing (ZSL). Some of the best performing methods apply the
triplet loss to seen classes to learn a mapping between vi-
sual representations of images and attribute vectors that
constitute class prototypes. They nevertheless make sev-
eral implicit assumptions that limit their performance on
real use cases, particularly with fine-grained datasets com-
prising a large number of classes. We identify three of these
assumptions and put forward corresponding novel contribu-
tions to address them. Our approach consists in taking into
account both inter-class and intra-class relations, respec-
tively by being more permissive with confusions between
similar classes, and by penalizing visual samples which
are atypical to their class. The approach is tested on four
datasets, including the large-scale ImageNet, and exhibits
performances significantly above recent methods, even gen-
erative methods based on more restrictive hypotheses.

1. Introduction

The task of zero-shot recognition, also referred to as
zero-shot learning (ZSL) [1, 18, 20, 26], consists in clas-
sifying samples belonging to unseen classes, for which
no training sample is available. Instead, the only train-
ing samples available are from different classes, called the
seen classes; for each such class, a “semantic” representa-
tion is also provided along with the training samples. At
testing time, the semantic representations of unseen classes
can be used to make predictions. Although ZSL can be
applied in many different contexts, it often refers to tasks
where samples are of visual nature and the semantic repre-
sentations, also called class prototypes, consist in vectors of
attributes. For example, if one considers images of animals,
attributes may be the number of legs or wings, the presence
of fur or stripes.

In their seminal work, Lampert et al. [18] used a com-

Figure 1. t-SNE [23] visualization of 300 samples from the first 8
training classes from CUB [37]. Classes 6 and 7 look quite similar
and appear closer than classes 6 and 2, which are more dissimilar;
the nestling from class 2 is far from the other samples in the same
class. We propose to explicitly take these inter-class and intra-
class relations into account. Best viewed in color.

bination of simple classifiers to estimate the probabilities
of attributes and classes given visual features. Other ap-
proaches [31, 32] use least-square regression models to pre-
dict one modality from the other. Triplet loss methods are
closer to the final classification goal. They consider that
each visual sample should be “much” more similar to the
prototype corresponding to its class than to all the others.
How “much” more similar is specified by a given fixed mar-
gin, included in an adequate penalty as described in more
details in Sec. 3.1. DEVISE [12] makes the most direct use
of this idea by simply summing the penalty over all train-
ing samples and all candidate classes; SJE [3] only keeps
the largest such penalty among all classes; ALE [2] adds



weights to put more emphasis on the top candidate classes
for each visual sample. Although these latter methods have
led to promising results for ZSL, they fail to consider sev-
eral key aspects of the problem. We argue this is due to
several implicit assumptions that we identify and propose
to fix by introducing corresponding novel contributions.

Assumption that classes are equally different. Relations
between classes are typically ignored, i.e. there is no dif-
ference between any two incorrect class assignments in the
triplet loss. However, many datasets encompass groups of
very similar classes, particularly fine-grained datasets com-
prising many classes. One may argue that when building
the similarity-based decision model, a confusion between
two nearly indistinguishable classes should not be penal-
ized as much as a confusion between two grossly different
classes. Figure 1 illustrates such a case: we can see that
two samples from classes 6 and 7 are much more difficult
to tell apart than two samples from classes 6 and 2. A bet-
ter differentiation of incorrect classes could enable to learn
a more robust mapping between modalities. With this pur-
pose we put forward a flexible semantic margin that takes
into account the first and second order statistics of the class
prototypes to introduce in the triplet loss a margin that re-
flects the actual dissimilarity between classes (Sec. 3.2).

Assumption of meaningful margin. In many triplet loss
methods, the models are trained to separate seen classes
with a fixed margin. Although not strictly necessary in the
formulation of the objective—it should be sufficient for a
visual sample to be at least slightly more compatible with
its class prototype than with other prototypes—this margin
is supposed to act as a regularizer and reduce overfitting on
the training set. However, the compatibility between a vi-
sual sample and a prototype being often computed with a
dot product, it is not bounded and can be made arbitrarily
large by increasing the norm of the projected visual sam-
ples. Consequently, the constraint imposed by the margin is
reduced to the point where it becomes negligible. While this
may be desirable in some cases, by arbitrarily reducing reg-
ularization it also negatively affects the overall performance
of the resulting model. We introduce a partial normaliza-
tion that allows to learn a proper trade-off between the use
of raw visual embeddings, which offers more flexibility to
the model, and the unit normalized version, which forces
the most restrictive use of the margin (Sec. 3.3).

Assumption of class homogeneity. All samples from seen
classes are usually considered equally representative when
building the model; yet, they may differ vastly within each
class. In particular, some samples may not exhibit attributes
usually shared by most members of their class. For exam-
ple, although tigers are usually orange and striped, there
exist white and albino tigers (and such examples can be
found in the AwA2 dataset [19, 39]). Or, as illustrated in
Fig. 1, a few images of a bird species may represent chicks

(nestlings), whose appearance differs greatly from the adult
specimens. The presence of outliers in the training set has a
negative impact on the learned model, and this impact is
stronger for similarity-based models like those employed
for ZSL. To address this issue, we propose a relevance
weighting scheme that quantifies the representativeness of
each sample of the training classes (Sec. 3.4).

The core of our contribution is thus to take into ac-
count both inter-class and intra-class relations, respectively
by being more permissive with confusions between simi-
lar classes, and by penalizing visual samples which are not
representative of their class. Integrated in a simple triplet
loss-based approach, our method also ensures that the con-
straint imposed by the margin is profitably enforced. Each
contribution brings an advantage in itself as shown in the
ablation study (Sec. 5). Through extensive evaluation, we
show that the full proposal enables to reach a level of per-
formance superior to the current state-of-the-art, in particu-
lar on fine-grained datasets with a large number of classes
(Sec. 4). In addition, it does not require to change the under-
lying hypothesis of the ZSL task: the only data that needs to
be available at training time consists of the visual samples
of the seen classes and the corresponding class prototypes.
We discuss limitations of our approach in Sec. 6 and draw
some directions for further work.

2. Related work

Zero-Shot Learning. In addition to those mentioned in
the introduction, many ZSL methods have been proposed
[28, 25, 38, 33, 42]. Closely related to our work is the one
of Annadani et al. [4] who consider how close classes are in
the attribute space. This information is explicitly included
in the objective function to learn a mapping from the at-
tribute space to the visual space. Our approach to address
this aspect is more general since it can be applied to a larger
set of existing methods, including those based on the triplet
loss. Similarly, Changpinyo et al. [7, 8] include an `2 dis-
tance to measure class similarity in the structured loss vari-
ant of their synthesized classifiers (SYNCstruct). However,
in addition to using higher order statistics to model class
(dis)similarity and to adjust its mean and variance as hyper-
parameters, our overall approach is quite different as we
learn a straightforward, linear mapping between modalities
and do not make use of phantom classes. We also further in-
corporate these class dissimilarities in a broader framework,
which enables our flexible margin to be fully leveraged dur-
ing the training phase and addresses other limiting aspects
of existing ZSL methods. Changpinyo et al. [9] proposed
to learn to predict visual exemplars from attributes to use
these predictions as additional semantic information. This
method can be applied to most ZSL model and is thus com-
plementary to our approach.



Generalized Zero-Shot Learning. In the early years of
ZSL, only samples from unseen classes were included in
the testing dataset. As emphasized by Chao et al. [10], it is
more realistic to also include unseen samples from the seen
classes since a user may want to recognize both unseen and
seen classes. Known as Generalized Zero Shot Learning
(GZSL), this setting usually leads to a strong bias towards
recognizing seen classes, used to learn the model, thus re-
ducing the performance of most existing ZSL approaches
at the time. This was put into evidence by Xian et al. [41],
who conducted an extensive evaluation of recent ZSL meth-
ods with a common protocol and reported synthetic results
using the harmonic mean of the performances obtained on
seen and unseen classes. To address this performance gap,
Le Cacheux et al. [21] proposed a process to select some
generic hyper-parameters of several ZSL methods that leads
to a significant performance boost in a GZSL setting.

Generative methods. A recent line of research proposed
to learn a conditional generator using the seen classes,
then generate artificial training samples for the unseen
classes [36, 6, 35, 40]. Discriminative models can then be
trained based on real samples from the seen classes and ar-
tificial samples from the unseen classes. Verma et al. [36]
proposed to model each class-conditional distribution as an
exponential family. Bucher et al. tested different gener-
ative models of visual features and obtained the best re-
sults with a Generative Moment Matching Network [6]. In
the same vein, Xian et al. [40] used a Generative Adver-
sarial Network to synthesize CNN features conditioned on
class-level semantic information. A slightly different ap-
proach was adopted by Verma et al. [35] who developed a
model based on a conditional variational autoencoder and
thus generate images on which features can be extracted to
learn discriminative models for the unseen classes. These
approaches are quite different from ours, since we do not
generate features nor images of unseen classes. Once again,
these contributions could nevertheless be combined to ours.
However, we do not include here such a combination for
two reasons. First, each method has a significant number
of specific hyperparameters to set that make it quite sensi-
tive to further processing. Second, the setting in which we
evaluate our work is slightly less restrictive than the one im-
plied by generative methods. Indeed, upon addition of even
a single novel unseen class, generative methods must first
generate artificial positive samples for this class, then train
a discriminative classifier (SVM, softmax...) for this class
and retrain all the classifiers for the previous (seen and un-
seen) classes. While a classical (G)ZSL system can imme-
diately manage a new unseen class (and thus consider all of
them incrementally), the generative approaches [6, 35, 40]
need a fully-defined ZSL problem and have to (re)learn the
discriminative models each time unseen classes are added.
However, since these methods report some of the best re-

sults on the fine grained ZSL benchmarks, we compare our
approach to them according to the same evaluation proto-
cols.
Transductive setting. Transductive ZSL methods [13, 17,
30, 34] assume that unlabeled samples from unseen classes
are available during training. This naturally leads to im-
proved performance. We do not adopt such a restrictive
hypothesis in this article and consider that no information
regarding unseen classes is available at training time.

3. Proposed approach
3.1. Standard triplet loss

Let X = (x1, . . . ,xN )> ∈ RN×D represent N D-
dimensional visual feature vectors, y = (y1, . . . , yN )> ∈
{1, . . . , C}N the corresponding labels assigning them to
one of C classes, and S = (s1, . . . , sC)> ∈ RC×K the
class prototypes. A ZSL training set consists of {X,y,S}.

With a similarity function f providing a compatibility
score f(x, s) between visual sample x and class prototype
s, the standard triplet loss aims to enforce the constraint that
for any xn,

f(xn, syn) ≥ f(xn, sc) +M,∀c 6= yn (1)

where syn is the corresponding class prototype, sc a differ-
ent class prototype and M a given margin.

The enforcement of this constraint for a triplet
(xn, syn , sc) takes the form of the following penalty:

[M + f(xn, sc)− f(xn, syn)]+ (2)

where [·]+ denotes the function max{0, ·}.
To use this triplet loss, the most straightforward ap-

proach is simply to sum it over all possible triplets in the
training set as in [12]:

1

N · C

N∑
n=1

C∑
c=1
c6=yn

[M + f(xn, sc)− f(xn, syn)]+ (3)

At testing time, the prediction ŷ(x) for a visual sample x
is the class among candidate classes C test whose prototype
maximizes the learned compatibility function f :

ŷ(x) = argmax
c∈Ctest

f(x, sc) (4)

3.2. Flexible semantic margin

To take into account the distinction between similar and
dissimilar classes, we replace the fixed margin M in Eq. (2)
by a function M(c, c′) measuring the dissimilarity between
classes c and c′. Since ZSL attributes tend to be corre-
lated [15], such a function should take these correlations



Figure 2. Left: histogram of the raw semantic distances in D
from CUB. Right: histogram of the rescaled semantic distances in
D̃ with µD̃ = 0.5 and σD̃ = 0.15.

into account (as evidenced in Sec. 5). From the set of pro-
totypes of the seen classes we first compute Σ−1, the in-
verse of the covariance matrix of the attributes. Because
the number of prototypes is usually small compared to the
dimension of the covariance matrix, we use the Ledoit-
Wolf method [22] to obtain a more robust estimation of
Σ−1. This is crucial, as a naive computation of Σ−1 would
lead to poor results in the following. We then compute the
matrix D composed of the Mahalanobis distances between
all pairs of seen class prototypes (si, sj):

Di,j = [(si − sj)
>Σ−1(si − sj)]

1
2 (5)

Since the semantic space is high dimensional, the dis-
tances composing D typically have low variance σ2

D. This
is not desirable, since semantic distances that are too close
to an average value do not support the intended goal of the
introduction of a variable margin. Furthermore, as illus-
trated in Fig. 2, the initial mean value µD of distances in D
is arbitrary and can be quite large. We therefore rescale the
elements of D to approximately have given mean µD̃ and
standard deviation σD̃ while keeping their values positive:

D̃i,j =

[
Di,j − µD

σD
σD̃ + µD̃

]
+

(6)

The values we use for our flexible semantic margin are
M(c, c′) = D̃c,c′ . µD̃ and σD̃ are considered to be hyper-
parameters of the model. Note that setting σD̃ = 0 is equiv-
alent to using a fixed margin M = µD̃.

3.3. Partial normalization

In Eq. (2), we intuitively expect that a larger value of
M should constrain the model to increase the difference
f(xn, sc) − f(xn, syn), and thus to better differentiate
classes c and yn. However, in most triplet loss methods,
the compatibility function f is a dot product between the
respective projections of the visual features θ(x) and class

prototypes φ(s):

f(x, s) = θ(x)>φ(s) (7)

with θ being a linear transformation θ(x) = Wx and φ
the identity in [2, 3, 12]. In this latter case, since s is usu-
ally unit-normalized, so is φ(s); the value of f(x, s) only
depends—proportionally—on ‖θ(x)‖2 and cos(α), where
α is the angle between θ(x) and φ(s). While cos(α) is
obviously bounded, this is not usually the case for ‖θ(x)‖2.

The fact that ‖θ(x)‖2 can grow arbitrarily large means
that an increased difference f(xn, sc) − f(xn, syn) can be
achieved simply by scaling the similarities f(x, s) accord-
ingly through ‖θ(x)‖2, leading to no practical gain. In prac-
tice, we observed that ‖θ(x)‖2 does indeed increase with
M : the blue line (corresponding to γ = 0 as explained
below) in Fig. 3 shows how ‖θ(x)‖2 grows from 1.2 with
M = 0.2 to 6.6 with M = 2 on the CUB [37] dataset. This
makes the value of M of little relevance and thus reduces
the regularization provided by the margin.

We observed that simply regularizing θ is not generally
effective in preventing this effect: we found that, depend-
ing on the weight of this regularization, it is either unable to
prevent a large ‖θ(x)‖2, or too restrictive and thus limiting
the learning ability of the model; no trade-off between these
two objectives was able to offer a satisfactory compromise.
Fully normalizing θ(x) before computing f(x, s) is not al-
ways optimal either: we found that completely removing
the constraint to produce projections θ(x) with consistent
norms led to severe overfitting in some cases.

We therefore introduce a partial normalization function
Ψ parameterized by a scalar γ ∈ [0, 1] and applicable to
any vector v:

Ψγ(v) =
1

γ(‖v‖2 − 1) + 1
· v (8)

defined in such a way that γ = 0 means that no transfor-
mation is applied—the initial norm of v is preserved—and

Figure 3. Average norm of projected visual features ‖θ(x)‖2 with
respect to M on CUB, without (γ = 0) and with (γ > 0) partial
normalization. Partial normalization helps prevent ‖θ(x)‖2 from
growing with M .



γ = 1 means that Ψγ(v) has unit norm.
This partial normalization is applied to the initial θ(x).

As the norm of θ(x) can still be increased to compensate
for Ψγ (provided γ 6= 1), it needs to be combined with
a regularization on θ. The combination of both these el-
ements helps preventing ‖θ(x)‖2 from growing arbitrarily,
while still offering enough flexibility to avoid restricting the
learning abilities of the model. It thus enables the marginM
to achieve its intended goal, which is all the more important
in our case as M also embodies the class similarities.

Fig 3 shows how partial normalization helps prevent
‖θ(x)‖2 from growing with M .

3.4. Relevance weighting

We make use of intra-class relations by explicitly taking
into account the fact that some samples may not be repre-
sentative of their class: we therefore assign a weight vn to
each training sample xn to quantify its representativeness.

For each class c, let Xc = (xc1, . . . ,x
c
Nc

)> be the matrix
whose Nc rows correspond to the visual samples from c,
and yc the associated class labels. We compute the vector
uc of distances between all xcn and the center of the class:

ucn =

∥∥∥∥xcn − 1

Nc

∑
i

xci

∥∥∥∥
2

(9)

Provided the visual features employed are appropriate
for these distances to be meaningful, this gives us a first
indication of how different an image is from the other im-
ages in the same class. It may also be possible to use higher
order statistics to evaluate the intra-class relations; but since
the visual space is typically very high-dimensional with few
samples per class, they are impractical to robustly estimate,
and such an approach did not lead to measurable gains.

To allow distances computed in Eq. (9) to result in
weights on the same scale regardless of the initial within-
class variance, we apply a cumulative distribution function
on each element of uc to obtain the weights vc:

vcn = 1− Φ

(
ucn − µc
σc

)
(10)

where µc and σc are the respective mean and standard de-
viation of the distances in uc, and Φ(·) is the cumulative
distribution function for the standard normal distribution.

For each visual sample xn, we weight its contribution to
the loss with the corresponding vn, so that representative
samples have more importance.

3.5. Final model

The partially normalized projection of xn is denoted by
x̂n = Ψγ(θ(xn)), and similarly ŝc = Ψγ(φ(sc)). We
choose to always fully normalize the projection of sc, such
that ŝc = Ψ1(φ(sc)) = φ(sc)/‖φ(sc)‖2.

The projections θ and φ are regularized by Ω[θ,φ]. In
order to enforce sparsity and reduce the number of hyper-
parameters, Ω is defined as the sum of the average `1 norms
of the parameters p1, . . . , pP of θ and q1, . . . , qQ of φ:

Ω[θ,φ] =
1

P

P∑
i=1

|pi|+
1

Q

Q∑
i=1

|qi| (11)

For a triplet (xn, syn , sc), c 6= yn, the triplet loss now
takes the form:

l(xn, syn , sc) = [M(yn, c) + x̂n
>

ŝc − x̂n
>

ŝyn ]+ (12)

This loss is summed over all triplets (xn, syn ,sc), each
triplet being weighted by vn, the representativeness of xn.
The resulting final loss function is

1

N · C

N∑
n=1

(
vn

C∑
c=1
c6=yn

l(xn, syn , sc)

)
+ λΩ[θ,φ] (13)

where λ is a regularization hyper-parameter.
Two settings of the model can be considered. The first

consists in a linear projection of the visual features x onto
the semantic space similar to [12], such that θ(x) = Wθ ·x
and φ is the identity. In the second setting, we make a linear
projection of both x and s onto a common space with the
same dimension as the semantic space, such that θ(x) =
Wθ · x and φ(s) = Wφ · s. Whether both θ and φ or only
φ is learned is considered to be a hyper-parameter.

The demo code for the final model is avail-
able at https://github.com/yannick-lc/
iccv2019-triplet-loss.

4. Evaluation
4.1. Experimental setting

Datasets. We evaluate our approach on three standard
ZSL datasets: Caltech UCSD Birds 200-2011 (CUB) [37],
SUN Attribute (SUN) [27] and Animals with Attributes 2
(AwA2) [39]. CUB and SUN are fine-grained datasets con-
sisting of 200 bird species for the former and 717 scenes
for the latter. AwA2 is a more coarse-grained dataset of 50
animal species, that replaces the Animals with Attributes
(AwA) [19] dataset whose images are no longer available.
Splits. ZSL test splits which include classes used to train
a visual feature extractor, typically classes present in Ima-
geNet [11], can induce a huge bias in the evaluation of the
method. We therefore use the “Proposed Splits” of [41] to
divide our datasets into training and testing splits and, as
suggested in [41], we randomly remove 20% of the images
from seen classes to be used as unseen samples from seen
classes during testing in the GZSL setting.

https://github.com/yannick-lc/iccv2019-triplet-loss
https://github.com/yannick-lc/iccv2019-triplet-loss


We select the hyper-parameters using 3-fold cross-
validation on the training sets for CUB and SUN. For AwA2
all 10 unseen testing classes should not be in ImageNet. But
among the 40 training classes, only 8 are not in ImageNet,
so randomly selected cross-validation folds would contain
few such classes. This may introduce significant differ-
ences between hyper-parameter values that are optimal for
cross-validation folds (as they would mostly contain Ima-
geNet classes) and those optimal for truly unseen classes.
We therefore decided to use a single validation split con-
taining all 8 classes that are not in ImageNet.

Visual features. We employ a pre-trained ResNet-101 [14]
network as deep visual feature extractor in order to have
results comparable with the rest of the state-of-the-art,
and in particular with [41] and [21]. Keeping the acti-
vation weights of the last pooling layer gives us a 2048-
dimensional visual feature representation. Because we need
a robust representation to compute distances between visual
samples, we apply 10-crop on the original images, i.e. each
256 × 256 image is cropped into ten 224 × 224 im-
ages: one in each corner and one in the center for both the
original image and its y-axis symmetry. The visual features
of the resulting images are then averaged to obtain a 2048-
dimensional vector. The visual vectors are finally normal-
ized so that each visual feature has unit `2 norm.

Attributes. We employ the standard attributes provided
with each ZSL dataset, which we normalize to obtain class
prototypes having unit `2 norm.

Large scale setting. We also conduct experiments on the
large scale ImageNet [11] dataset. We use the same splits
(1K classes for training, up to 20K for testing), attributes
(Word2Vec [24] trained on Wikipedia) and features (2048-
dimensional vectors extracted with ResNet-101) as in [41].

Optimization. We train the models for 50 epochs us-
ing the ADAM optimizer [16], with parameters β1 = 0.9,
β2 = 0.999 and a learning rate of 0.001.

Metrics and evaluation setting. In order to be comparable
with other recent publications, we employ the same met-
ric as [41] for ZSL, per class accuracy, which is defined
as 100/|Ctest| ·

∑
c∈Ctest

(
1/Nc

∑Nc

m=1 1[ŷ(xcm) = ycn]
)

where
1[·] is the indicator function.

For GZSL, we also use the metrics from [41]. AU→U+S
denotes the accuracy on samples from unseen classes when
candidate classes consist of all classes, seen and unseen.
AS→U+S is similarly defined as the accuracy on test (held-
out) samples from seen classes. The final GZSL score
is the harmonic mean H of AU→U+S and AS→U+S :
H = 2 ·AU→U+S ·AS→U+S/(AU→U+S +AS→U+S).

We report results averaged over 10 runs with different
random initializations of our model parameters.

Method CUB SUN AwA2 Avg
ALE* [2] 54.9 58.1 62.5 58.5
DEVISE* [12] 52.0 56.5 59.7 56.0
SJE* [3] 53.9 53.9 61.9 56.6
ESZSL* [31] 53.9 54.5 58.6 55.6
SYNCo-vs-o* [7] 55.6 56.3 46.6 52.8
PSR [4] 56.0 61.4 63.8 60.4
Ours 63.8 63.5 67.9 65.1

Generative models†

GFZSL*† [36] 49.3 60.6 63.8 57.9
SE-ZSL† [35] 59.6 63.4 69.2 64.0
Xian† [40] 57.3 60.8 68.2 62.1
Bucher† [6] 59.4 60.1 69.9 63.1

Table 1. Accuracy for ZSL, on the “proposed split” of [41]. Results
reported in [39] are marked with *. The generative models, marked
with †, rely on stronger hypotheses as explained in Sec. 2. Results
of Bucher et al. [6] are those with the GMMN generative model;
those of Xian et al. [40] are with Softmax+F-CLSWGAN. Our
results are averaged over 10 runs.

Hierarchy 2-hop 3-hop All
CONSE* [25] 7.63 2.18 0.95
ESZSL* [31] 6.35 1.51 0.62
SYNCo-vs-o* [7] 9.26 2.29 0.96
Ours 9.81 2.52 1.09

Table 2. ZSL results on the large scale ImageNet dataset. Results
marked with * correspond to top 3 results from [39].

4.2. Selection of hyper-parameters

We employ the following protocol to determine the
hyper-parameters using the validation splits: for a given set-
ting (whether both θ and φ or only θ are learned, Sec. 3.5),
we first set σD̃ and γ to 0, and µD̃ to 1, so that the setting
is approximately the one from DEVISE. We determine the
best λ using the validation set(s). We then divide this value
by a factor of 10 in order to not over-constrain the model,
and use this new value when jointly selecting γ and µD̃. We
select σD̃ while keeping the other hyper-parameters fixed.
Finally, we explore values in the neighborhood of the se-
lected quadruplet (µD̃, σD̃, γ, λ). We retain the setting of
the model producing the best results on the validation set.

For CUB and SUN, the 3-fold cross-validation works as
usual. For AwA2 and ImageNet, since there is only one
validation set, we perform each evaluation of a set of hyper-
parameters with 3 different initializations in order to im-
prove the robustness of the estimation.

4.3. Standard Zero-Shot Learning results

Table 1 reports results in a standard ZSL setting, where
test samples belong to unseen classes and candidate classes
consist of unseen classes only (AU→U ). We compare our



Method CUB SUN AwA2
H̄

AU→U+S AS→U+S H AU→U+S AS→U+S H AU→U+S AS→U+S H

Non generative approaches, without calibration
ALE* [2] 23.7 62.8 34.4 21.8 33.1 26.3 14.0 81.8 23.9 28.2
DEVISE* [12] 23.8 53.0 32.8 16.9 27.4 20.9 17.1 74.7 27.8 27.2
SJE* [3] 23.5 59.2 33.6 14.7 30.5 19.8 8.0 73.9 14.4 22.6
ESZSL* [31] 12.6 63.8 21.0 11.0 27.9 15.8 5.9 77.8 11.0 15.9
SYNCo-vs-o* [7] 11.5 70.9 19.8 7.9 43.3 13.4 10.0 90.5 18.0 17.0
PSR [4] 24.6 54.3 33.9 20.8 37.2 26.7 20.7 73.8 32.3 31.0
Ours 30.4 65.8 41.2 22.0 34.1 26.7 17.6 87.0 28.9 32.3

Non generative approaches, with calibration
ALE** [2] - - 49.2 - - 34.9 - - 56.9 47.0
DEVISE** [12] - - 42.4 - - 32.5 - - 55.0 43.3
SJE** [3] - - 46.7 - - 36.8 - - 59.4 47.6
ESZSL** [31] - - 38.7 - - 11.8 - - 54.4 35.0
SYNCstruct** [7] - - 48.9 - - 27.9 - - 62.6 46.5
Ours 55.8 52.3 53.0 47.9 30.4 36.8 48.5 83.2 61.3 50.4

Generative approaches†

GFZSL*† [36] 0.0 45.7 0.0 0.0 39.6 0.0 2.5 80.1 4.8 1.6
SE-GZSL† [35] 41.5 53.3 46.7 40.9 30.5 34.9 58.3 68.1 62.8 48.1
Xian† [40] 43.7 57.7 49.7 42.6 36.6 39.4 57.9 61.4 59.6 49.6
Bucher† [6] 49.1 55.9 52.3 39.7 37.7 38.7 46.3 77.3 57.3 49.4

Table 3. Accuracy for GZSL on the “proposed split” of [41]. AU→U and AS→U are the top-1 per class accuracy on unseen and seen
classes respectively. H is the harmonic mean and H̄ the average over the three datasets. Results reported in [39] are marked with * and
those in [21] with **, the others are reported in the given papers. The generative models, marked with †, rely on stronger hypotheses as
explained in Sec. 2. Results of Bucher et al. [6] are those with the GMMN generative model; those of Xian et al. [40] are those with
Softmax+F-CLSWGAN. Our results are averaged over 10 runs.

results to those of several state-of-the-art approaches. We
only report the best and most relevant results from [39] to
avoid overloading the table. We also included recent state-
of-the-art ZSL methods based on generative models in our
comparison, although they rely on stronger hypotheses than
our approach, as explained in Sec. 2. For this reason, we
clearly distinguish generative from non generative methods.
We chose to not report any transductive ZSL results as they
rely on significantly different and even stronger hypotheses.

Our approach outperforms all the non-generative meth-
ods on the three datasets. Surprisingly, it also outperforms
the generative approaches on two datasets, as well as by
more than 1 point for the average. Three of the generative
models obtain better scores than ours on AwA2 only. In-
deed, this last dataset is not fine-grained with a large num-
ber of classes, so the proposed approach is less relevant.

We also evaluate our approach on the large-scale Ima-
geNet dataset (Table 2), where it likewise outperforms the
rest of the state-of-the-art reported in [39].

4.4. Generalized Zero-Shot Learning results

Standard Generalized Zero-Shot Learning. Most recent
ZSL methods are also evaluated on GZSL. In the stan-
dard evaluation setting,AU→U+S andAS→U+S are directly

measured, and the final GZSL score is their harmonic mean
H . We report our results in this setting, as well as other
state-of-the art results in the section Non generative ap-
proaches, without calibration of Table 3. As already men-
tioned, there is usually a strong imbalance in favor of the
seen classes, penalizing the final score. As a result, the best
GZSL models are typically those with the best AU→U+S .
Calibrated Generalized Zero-Shot Learning. As argued
in [21], it is more relevant to re-balance or calibrate
AU→U+S and AS→U+S by slightly penalizing seen classes
for the benefit of unseen classes during the prediction step,
as this more accurately reflects what is expected in a real
use case. We share this view and therefore report results af-
ter calibration in the Non generative approaches, with cal-
ibration section of Table 3. The optimal calibration was
obtained using training / validation / testing splits specific
to GZSL following the protocol described in [21], and we
report the score of all models whose calibrated harmonic
mean H is given there ([21] does not provide the associated
AU→U+S and AS→U+S ).
Generative models. Since generative models typically do
not suffer from the imbalance betweenAU→U+S ,AS→U+S
(except GFZSL which overfits on seen classes), we simply
report their results as such, without calibration.



Analysis. On average, our approach outperforms other non
generative approaches in the standard GZSL setting, i.e.
without calibration. It also obtains the best score on CUB
and SUN. Unsurprisingly, GZSL scores are much higher
when calibration is employed; although this is the case for
most methods, our approach still obtains the best average
score in this setting. The final score on CUB is even higher
than the best reported score for a generative approach, even
though our approach is arguably simpler and less restrictive
as far as the underlying task hypotheses are concerned.

5. Ablation study

In order to evaluate the impact of each component of our
proposed approach, we perform an ablation study. We suc-
cessively deactivate the flexible semantic margin (FSM) by
setting σD̃ to 0 in Eq. (6); the partial normalization (PN)
by setting γ to 0 in Eq. (8); and the relevance weighting
(RW) scheme by setting all the weights vn to 1 in Eq. (13).
Active hyper-parameters are re-evaluated on the validation
set accordingly. We also evaluate the impact of taking at-
tribute correlations into account to estimate class similari-
ties by setting Σ−1 to the identity matrix IK in Eq. (5), so
that semantic distances correspond to euclidean distances.

Table 4 shows the results on the CUB dataset. Even
though for CUB the best performing setting of the model
is when both θ and φ (Sec. 3.5) are learned, as determined
on the validation sets, we also include some results for the
other setting, i.e. when only θ is learned. We denote the re-
spective settings by θ + φ and θ. Partial normalization has
the largest impact in both cases, but a flexible semantic mar-
gin and relevance weighting also significantly increase the
final score. They work particularly well together, as their
combined impact is better than the sum of their marginal im-
pacts. The bottom line in Table 4 corresponds to a method
close to DEVISE [12], and has comparable results.

6. Discussion

The relevance weighting we employ relates the impact of
each training sample to its representativeness of the class. A
typical case was illustrated here by chicks that are visually
different from adult birds and are scarcely present in the bird
classes. By reducing the importance of samples represent-
ing chicks of a given species, one improves the ability of
the system to recognize the adults of this species. However,
this also makes the chicks of the species harder to recog-
nize. Chicks of some species are treated as outliers because
they are atypical and significantly under-represented, not
because they don’t belong to that species. Beyond the case
of bird or animal species that dominate in the ZSL bench-
marks of the literature, this may be an issue for some prac-
tical cases. A way to circumvent the problem is to define
sub-classes and process each of them separately, provided

Setting FSM (MD) PN RW Score

θ + φ

3 3 3 63.8
3 - 3 3 61.7

- 3 3 61.8
3 - 3 57.6
3 3 - 61.7
- - 3 61.0
- - - 56.6

θ

3 3 3 61.3
- 3 3 61.1
3 - 3 60.0
3 3 - 55.3
- - - 55.0

Table 4. Ablation study on the CUB dataset, with settings θ + φ
and θ (Sec. 3.5). FSM stands for the flexible semantic margin,
Eq. (6). MD stands for the Mahalanobis distance, Eq. (5). PN
stands for partial normalization, Eq. (8). RW stands for relevance
weighting, Eq. (10). Results averaged over 10 runs.

that each is sufficiently well represented in the training set.
On the seen classes, sub-classes can be found by cluster-
ing the visual feature vectors. The problem remains for the
unseen classes, unless a transductive setting is adopted.

The performance exhibited by our approach is compa-
rable to that of generative methods, while we rely on less
restrictive hypotheses than generative methods—since they
need to have information about all unseen classes to gen-
erate the samples required to learn the discriminative mod-
els. An alternative with the generative approach is to use
incremental learning systems [29, 5] but it usually leads to
a significant drop in performance. Hence, our proposal has
a practical interest for real systems that aim to recognize
unseen classes whose number increases regularly.

7. Conclusion
Before the introduction of the generative approach for

ZSL, most of the best performing methods for ZSL were
based on the triplet loss. Several assumptions made by these
methods limited their ability to reach optimal performance
on real use cases, particularly on fine-grained datasets com-
prising a large number of classes. In this paper, we identi-
fied three of these assumptions and put forward novel con-
tributions to solve the problems they raised. We thus pro-
posed to model in a triplet loss approach the intra and inter-
class relations of ZSL datasets, by accounting for the actual
dissimilarities of the classes and quantifying the represen-
tativeness of each training sample with regard to its label,
while ensuring that the constraint imposed by the margin is
profitably enforced. This approach significantly improves
performance with respect to non generative methods and
even outperforms generative methods, while making less re-
strictive hypotheses.
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