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PHENOMENOLOGICAL DETERMINISMS IN AN HAMILTONIAN COSMOS

We show that the classical equations that govern exactly in both time directions the fundamental information, and express at each time the state of a Boltzmann-Gibbs hamiltonian cosmos, entails the existence of a specific phenomenological fraction of the fundamental information. Observers may anticipate accurately this fundamental information, but exclusively along a preferential time direction, identified with the arrow of time. That phenomenological fraction is thus submitted to a phenomenological determinism applicable only along the arrow of time. It permanently generates non-phenomenological components of the fundamental information. The latter accumulates undamped, but experiences an exponentially fast complexification. This complexification makes the accumulated nonphenomenological information definitively inaccessible to the observers, but at the same time unable to influence the evolution of the phenomenological information. That evolution is thus autonomous and submitted to a phenomenological determinism.

I -INTRODUCTION

The fundamental determinism in a Boltzmann-Gibbs hamiltonian cosmos links exactly the information t  that describes the cosmos state at a time t, to the information ' t  at any time t' before or after t. It exists in a phase space (x,p) expressing the 2N canonically conjugate degrees of freedom (x i ,p i ) of the cosmos, during a time interval that spans   to +  . It relies on the trajectories (x,p) t of the cosmos governed by the hamiltonian H(x,p) assumed to have the standard form V(x) + p 2 /2. We assume that these trajectories run in an ergodic way over a specific closed energy surface H(x,p) = E, and we assume that the Von Neumann-Birkhoff ergodic theorem is verified [START_REF] Mackey | Time's arrow : The Origins of Thermodynamic Behaviour[END_REF]. In the classical hamiltonian framework, the fundamental information t  is assimilated to a point (x,p) t . An observable V, defined as a single valued and analytical function V(x,p) of (x,p), has at each time t the exact value V((x,p) t ). The fundamental determinism ' t t     (t,t') is expressed by the laws of motion dt d V((x,p) t )={V,H} = i x

V   i p H    i p V   i x H  
. However, a fundamental information concentrated at each time t within a point (x,p) t , without possible variations of its quantity and quality was found too rigid when thermodynamics came in. This gave rise to the Boltzmann-Gibbs framework. The fundamental information t  expressing the cosmos state at time t in that framework is a normalized fundamental distribution function  t (x,p) in the phase space. The values of the observables V=V(x,p) become random variables, with an average value <V> t =   p xd d N N V(x,p) t (x,p) at time t specified by  t (x,p). That situation equips naturally the vector space  formed by all the observables with the hermitian product V

•W = (W•V) * =  p xd d N N
V(x,p)(W t (x,p)) * , so that <V> t V• t . The cosmos remains recognizable by the observers since, generally through the law of large numbers, many observables V are well defined thermodynamic quantities with a small variance <(V<V> t ) 2 > t . It is the case for instance with the observable H(x,p) equal to the cosmos energy E. The fundamental determinism t   ' t  i.e.  t (x,p)   t' (x,p),  (t,t') in the Boltzmann-Gibbs framework is expressed by the Liouville equation t p) (x, ρ t   =  t , where the linear operator , acting in the vector space  formed by all the observables V(x,p) is such that V = {V,H} whatever the observable V. The Liouville equation entails that  t+ (x,p) = exp() t =  t ((x,p)())

where the point (x,p)() is the hamiltonian image of the point (x,p) after the time interval .

Whatever the function FONC(u), the product  t •FONC( t ) remains invariant at all times t : that point expresses that the quantity of information in the fundamental distribution  t (x,p) is invariant when t varies, if one admits that such a quantity reflects the degree of concentration of  t (x,p) in the phase space (x,p) and thereby the values of the integrals of type  t P •FONC( t P ) where FONC(u) is a growing function of u. The Boltzmann-Gibbs framework has been found in turn inapplicable if the involved observables V(x,p) display small variation scales in x i ,p i approaching the quantum uncertainty. The resulting quantum revolution of first generation no longer expresses the observables V by functions V(x,p), but by linear operators V ° acting in a vector space formed by the quantum states of the cosmos. It maintains on that basis the organization of the fundamental determinism t   ' t   (t,t'), which applies in the Boltzmann-Gibbs framework [START_REF] Zachos | Quantum Mechanocs in Phase Space[END_REF]: the fundamental information t  is expressed by a particular operator, the density matrix, which plays the role of the fundamental distribution  t (x,p) ; the fundamental determinism t   ' t   (t,t')is expressed by the von Neumann-Liouville equation linking the density matrices at any different times. If the variation scales in (x,p) of the involved observables V(x,p) are above the quantum uncertainty, the Wigner formalism [START_REF] Zachos | Quantum Mechanocs in Phase Space[END_REF] provides a transposition from the functions V(x,p) to the quantum operators V °, and in particular from the fundamental distribution  t (x,p) to the density matrix, which expresses the operator   t that replace  t (x,p), thermodynamics can be understood as well via the Boltzmann-Gibbs framework as via the quantum framework [START_REF] Landau | Statistical Physics[END_REF][START_REF] Balian | From Microphysics to Macrophysics[END_REF].  for t' > t means that  t P   t' P for t' > t.

The property 1/ is equivalent to a causality principle, meaning that observers have access at a time t' of a phenomenological information, which is the predictable effect of a cause identified with a phenomenological information accessible at any time t<t'. The causality principle is an indispensable postulate that allows the observers to elaborate step by step, empirically or deductively, their phenomenological laws along the arrow of time. That postulate is generally implicit, taken as granted, but must sometimes be explicitly introduced.

For instance the establishment of the transition probabilities per time unit starts from the postulate that the states at a time t<t' determine the states at the time t'. The Boltzmann equation [START_REF] Cercignani | The Boltzmann Equation and its Applications[END_REF] which relates the distributions P(v,t) in velocity space of the particles in a gas at various t may be elaborated through the ad hoc stossahlansatz postulate, but as well through the postulate that P(v,t) at a time t < t' determines P(v,t') at the time t'. The electromagnetic state in a plasma may be obtained by using the Vlasov equation (the Boltzmann equation in the limit of vanishing collisions) to calculate the electric charge and current densities and the Maxwell equations to deduce the electromagnetic field, but exclusively along the arrow of time [START_REF] Landau | [END_REF].

The property 1/ implies that  t P (x,p) is sufficient to determine  t' P (x,p) for t' > t but insufficient if t' <t. This suggests that the quantity of information in the distribution  t P (x,p) decreases when t increases, unlike the quantity of information in the fundamental distribution  t (x,p) which is invariant. That situation may be viewed as the basis of the "generalized H theorems" [START_REF] Jancel | Foundations of Classical and Quantum Statistical Mechanics[END_REF] which have been proposed for instance with  t P (x,p) taken equal to the coarse grained version of  t (x,p) assumed for the sake of the cause to have an autonomous evolution along the arrow of time (this is of course not the case). Admitting that the quantity of information in the phenomenological distribution  t P (x,p) reflects the integrals of type  t P •FONC( t P ) where FONC(u) is a growing function of u, one may consider such integrals, for instance  t P • t P or  t P •ln( t P ), as neguentropies of the cosmos expected to decrease when the time increases along the arrow of time.

We further simplify the analysis by admitting that the phenomenological distribution One may consider that the projection  t K (x,p) of  t (x,p) in K  expresses the non- phenomenological information present in the cosmos. We will denote by V P (x,p) and V K (x,p) the projections in P  and K  of any observable V(x,p) = V P (x,p) + V K (x,p)   . We remark that the operator  in the Liouville equation t

 t P (x,
ρ t   =  t , = { t ,H}, acting in the space  is anti-hermitian : the hermitian conjugate   of , such that V•W = V•  W  V,W, is
equal to . The operator exp() for  real is therefore unitary. It is convenient to exploit the Liouville equation through the following principle [10] ( t    t P )•W P +  t (W P ) + S t (W P ) = 0 whatever the test observable W P (x,p) P  (1a) where  t (W P ) for given  t P (x,p) and S t (W P ) for given  t K (x,p) are the following linear forms in (W P (x,p)) *

 t (W P ) =  t P )•W P = { t P ,H} P •W P =  t P •{W P ,H} P = H•{  t P ,W P } (1b)

S t (W P ) =  t K )•W P = { t K ,H} P •W P =  t K •{W P ,H} K = H•{  t K ,W P } (1c)
The dependence of the forms  t (W P ) and S t (W P ) on time t takes into account their respective dependence on  t P and  t K . The form  t (W P ) gives via the principle (1a) the component of

t ρ P t  
produced by  t P (x,p) directly without leaving the subspace P  , while the form S t (W P )

gives the component of t ρ P t   produced indirectly via the subspace K   P  . As { t P , t P } = 0, the equation (1b) gives  t ( t P ) = 0 and the principle (1a) then imposes that S t ( t P ) is equal to

S t ( t P ) =  t ρ P t   • t P =   2 1 dt d  t P • t P ) (2) 
and thus specify the rate of variation of the negentropy of the cosmos if that negentropy is identified with the squared norm  t* P • t* P .

II A -ELABORATION OF THE CONDITIONS FOR THE EXISTENCE OF A PHENOMENOLOGICAL DETERMINISM

An obvious condition that ensures the existence of a phenomenological determinism

 t P (x,p)   t' P (x,p) for t' > t > t* , is that the derivative t p) (x, ρ P t  
at each time t is exactly determined by the value of  t P (x,p) just before that time, i.e. by the value of  t P at times twhere  0 + . However, as it will appear below, that situation is impossible in most cases.

We can however establish schematic conditions of existence of an accurate phenomenological determinism  t P (x,p)   

The scale time  thus becomes a basic element of our schematic understanding of the phenomenological determinism.

If the form  t (W P ) alone was active in the principle (1a), the condition (3) would be automatically realized. The form  t (W P ) is indeed exactly specified by  t P at the same t by virtue of its definition (1b), which allows to write

 t (W P ) =  P  t P •W P (5a)
where  P is the linear operator acting on the observables V P (x,p) in the space P  , antihermitian in P  , such that V P  P    P V P = (V P ) P = {V P ,H} P  P  (5b)

Unlike the form  t (W P ), the form S t (W P ) introduces a difficulty in the realization of the condition (3). We reach its value by projecting the Liouville equation into the sub-space

P K    , which gives t    t K = ( t P ) K + ( t K ) K = { t P ,H} K +  K  t K (6a)
where  K is the linear operator acting on the observables V K (x,p) in the space

K  , anti- hermitian in K  , such that V K  K    K V K = (V K ) K = {V K ,H} K  K  (6b)
The equation (6a) produces the non phenomenological density  t K (x,p) at any time t after a primordial time t* of the cosmos in the form

 t K (x,p)=  t K (x,p) + exp( K (tt*) t* K , with  t K    t * t dt' exp( K tt')){ t' P ,H} K
The expression (1c) of the form S t (W P ) for given  t K (x,p) then becomes for t>t*

S t (W P ) = S  t (W P ))  exp( K (tt*)) t* K •{W P ,H} K (7a) with S  (W P ) =  t K •{W P ,H} K =  t * t dt' exp( K tt')){ t' P ,H} K •{W P ,H} K (7b)
The equations (7a,b) are close to the Nakajima-Zwanzig equations. The next step is see the conditions under whichthe form S t (W P ), now defined by the formulae (7a,b), fulfill the condition (3), i.e. is determined exclusively by  t P (x,p) for 0<<.

II B -THE INITIAL AND STRUCTURAL CONDITIONS.

The condition (3) appears equivalent to the sum of an initial condition that involves the phenomenological information  t* K (x,p) at the time t*, and of a structural condition that involves the phenomenological space P  and the scale time . The initial condition imposes that the expression (7a) does not depend on  t* K (x,p). In view of the anti-hermitian character of the operator  K , it may be written exp( K (tt*)) t* K •{W P ,H} K =  t* K •exp( K (tt*)){W P ,H} K = 0  W P (x,p)

for times t > t* (8) 
The structural condition then imposes that the integrand exp( K tt')){ t' P ,H} K •{W P ,H,} K in the integral (7b) cancels for t*<t'<t. As anticipated above, this is obviously impossible with  = 0 in the general case where { t' P ,H} K is  0, if one takes for instance W P (x,p) =  t P (x,p). With a finite  and tt' replaced by  the structural condition means that exp( K ){ t P ,H} K •{W P ,H} K cancels for values of  between  and tt*  That cancellation must apply whatever  t P (x,p) in the space P  so that the structural condition demands in fact that exp( K ){V P , H} K •{W P ,H} K = 0 for  >   V P , W P P   

Under the conditions ( 8) and ( 9), the value (7a,b) of S t (W P ) becomes

S t (W P ) =  Θ 0 dτ exp( K )){ t P ,H} K •{W P ,H} K (10) 
One may note that the structural condition (9) allows the following specification of the time scale  : the latter is the smallest time  which complexify enough the unitary operator exp( K ) for the hermitian products exp( K ){V P ,H} K •{W P ,H} K to pass from a finite value (real since  K is real) for  < , to a practically null value for  > A consequence is that one could replace the limit  in the integral (10) by  . Another consequence is that the hermitian products exp( K ){V P ,H} K •{V P ,H} K and therefore the values of S t ( t P ) are >0. In view of the formula (2), the negentropy of the cosmos identified with  t* P • t* P is then decreasing when t increases along the arrow of time.

One can give a convenient geometric form to the initial and structural conditions [START_REF] Zwanzig | [END_REF] and (9), and thereby to the basic condition (3), by introducing the subspace 0  of the space K  , formed of observables 0 V ~(x,p) such that

V P  P   0 V ~ = (V P ) K = {V P ,H} K  0  (11a)
The subspace 0  has the property that the phenomenological distribution  t P (x,p) within the space P  induces during a small interval dt a variation d t K = ( t P ) K of the non-

phenomenological distribution  t K (x,p) in the space K  , which is localized within 0  . It allows building up an essential set of subspaces n  of K  , with nZ Z Z, formed by observables n V ~(x,p) such that 0 V ~  0   n V ~ = exp(n   0 V ~  n  ~ (11b)
where   is the operator, again anti-hermitian, which acts on the observables V K  K  defined by the equation (6b).

The set of spaces n  allows giving a geometric form to the structural condition (9) by identifying the time  with nn' ,with nn'>0, and using the anti-hermicity of  K to write exp(n' K   exp(n' K ) * . It thus comes exp(n K ){V P , , H} K •exp(n' K ){{W P ,H} K = 0  V P , W P A geometric form of the initial condition (8) can be found by making in the latter t-t*= n with n < 0. One thus obtains  t* K  n  for n < 0. Taking into account the orthogonality [START_REF] Halliwell | Physical Origins of Time Asymmetry[END_REF] of the spaces n  , it appears that the initial condition means in fact that [START_REF] Lebowitz | [END_REF] which implies that the subspace  0 n n  is empty .

 t* K   0 n n 
One must stress that the condition (13) applies only to observers times t >t*, i..e. to an observer who enjoys the pphenomenological determinism  t P (x,p)   t' P (x,p) for t'> t in the part t > t* of the time interval t occupied by the cosmos. One may notice that the condition ( 13) is for instance satisfied if  t* K =  t*  t* P = 0, i.e. if the initial fundamental distribution  t* =  t* P  t* K coincides with its phenomenological projection  t* P , which means also that the negentropy of the cosmos defined as the squared norm  t* P • t* P has at time t* the value  t • t . That situation agrees with the consensual view [START_REF] Davies | Physical Origins of Time Asymmetry[END_REF][START_REF] Halliwell | Physical Origins of Time Asymmetry[END_REF][START_REF] Lebowitz | [END_REF] that the state of the cosmos at its initial time is the origin of the arrow of time provided the entropy is minimum at that time.

It is obvious that the structural condition [START_REF] Halliwell | Physical Origins of Time Asymmetry[END_REF] cannot by itself define an arrow of time. It is the initial condition (13),  t* K   0 n n  that introduces, for observers located in the part t > t* of the time interval occupied by the cosmos, the phenomenological determinism  t P (x,p)   t' P (x,p) for t'> t > t* and an arrow of time running from t* to observers' times t > t*. On the other hand the condition [START_REF] Lebowitz | [END_REF] gives no information on a possible phenomenological determinism for observers in the part t < t* of the time interval occupied by the cosmos. At this point, our formalism aiming at understanding the phenomenological determinisms in our very simple cosmos introduces an interesting speculation : one readily shows indeed that a phenomenological determinism  t P (x,p)   t' P (x,p) for t'<t<t* applies for observers in that part t<t* if the condition

 t* K   0 n n  ~ is satisfied. If it is the case, an
arrow of time flying from t* to times t or t'<t* occurs for t<t*. We have considered above the phenomenological determinisms  t P (x,p)   t' P (x,p) for t'>t>t*. To simplify we will generally continue below.

II C  THE ROLE OF THE RESTRICTION  phen >> 

The initial and structural conditions equivalent to the basic condition (3), now expressed in the geometric forms ( 12) and ( 13), entail that the form S t (W P ) is given by the formula (10).

The latter does not guarantee of course that S t (W P ) at time t is determined by the values  t P with 0<< and therefore that the phenomenological determinism  t P (x,p)   t' P (x,p) for t'>t>t* exists. That existence demands the restriction (4), i.e., that the time scale  is much smaller than the time scale  phen of  t P (x,p) variations. The accuracy of the phenomenological determinism then depends on the value of the small ratio  phen . A qualitative link between this ratio and that accuracy is found by showing that there exists a series S of powers of  phen , which formally defines " at all orders in  phen » an operator  phen acting in the phenomenological space P  , such that S t (W P ) =  phen  t P =( P +  phen )  t P . The latter then plays for the phenomenological distribution  t P (x,p) in the sub-space P  , along the appropriate arrow of time exclusively, the role of the Liouville equation t p) (x, ρ t   =  t along both time directions for the fundamental distribution  t ,(x,p). However the existence of the operator  phen can only be an approximation as it would mean that S t (W P ) is exactly determined by  t P at the same time t, which is forbidden by the formula (10). Accordingly the series S cannot be convergent: it can only be an asymptotic series that diverges beyond a rank of order ( phen ) p , where the critical integer p increases when the ratio  phen gets smaller. Nevertheless, limited to the powers ( phen ) p with p < p, it produces at each time t, for each observable W P a form  phen  t P •W P determined by  t P which is equal to S t (W P ) to within an error of order ( phen ) p . It is thus the basis of an accurate phenomenological determinism  t P (x,p)   t' P (x,p) for t' > t >t*. This procedure is similar to the derivation of an adiabatic invariant [14,[START_REF] Lichtenberg | Regular and Stochastic Motion[END_REF].

We may summarize the above as follows. The phenomenological determinism 

 t P (x,

III -DEMONSTRATION OF THE EXISTENCE OF THE PHENOMENOLOGICAL DETERMINISM  t P (x,p)   t' P (x,p) for t'> t > t* IN AN HAMILTONIAN COSMOS



The initial condition [START_REF] Lebowitz | [END_REF] and the restriction  phen >> must merely be realized, and do not require to be demonstrated. The achievement by the cosmos of the structural condition [START_REF] Halliwell | Physical Origins of Time Asymmetry[END_REF] implies the existence of an appropriate phenomenological space P  and of an appropriate time scale , which is not obvious: it is essential to demonstrate that this existence is an unavoidable consequence of the fundamental determinism. ..., then

Z 0 (t) = Z 0 (0) + t , Z 0 (t) = Z 0 (0) (14a) Z  (t) =  exp((tZ  (0) , Z  (t)=  exp((t)Z  (0) (14b) Z  (t) =  exp(i(tZ  (0) , Z  (t) =  (Z  (t)) * = exp(i(tZ  (0) (14c)
where the Lyapounov exponents (>0,(are real , and their counterparts  i(  0 are purely imaginary, complex conjugate. In fact, the equations (14b,c) apply with precision very near the reference trajectory T at the center of D, but that precision decreases at increasing distance from T. The transverse dimensions  in Z  Z  or  in Z  Z  , of The Lyapounov exponents  ( and their counterparts  i() are the same everywhere on the surface H(x,p) = E, in accordance with the Oseledec theorem [START_REF] Rv | [END_REF]. Their intrinsic character on that surface applies partially to the representation Z 0 (x,p), Z 0 (x,p), Z  (x,p), …. in each domain D, in the following sense. Let (X,P) be any point of the surface H(x,p) = E, what implies that Z 0 (X,P) =0. One finds that there exists for each value of the labels  or a vector field (x,p)  (X,P) … single valued and analytic in (X,P), which is equal to the derivative α Z P) (X,   , … of (X,P) expressed in terms of Z 0 (x,p), Z 0 (x,p), Z  ( x,p), ...,

α Z P) (X,   = (x,p)  (X,P) ,  Z P) (X,   = (x,p)  (X,P) (15a)  Z P) (X,   = (x,p)  (X,P) ,  Z P) (X,   = (x,p)  (X,P) (15b)
The vector fields (x,p)  (X,P), (x,p)  (X,P), (x,p)  (X,P),… are not the same everywhere on the surface H(x,p) = E like the exponents  and  but their value at each point (X,P) depends only on (X,P) independently of the domain D where (X,P) is located. However the expressions of Z  (X,P) , … in terms of (X,P) in each domain D around a trajectory T, obtained by integrating the differential equations (15a,b) with the initial condition that Z  (X,P), … are null on T are specific to D.

We will consider in the following the observables V(x,p), Z 0 (x,p), Z 0 (x,p), Z  (x,p), … on the surface H(x,p) = E formed of points denoted by (X,P). We have Z 0 (X,P) = 0 and V(X,P) is a singled valued and analytical function of the remaining observables Z 0 (X,P), Z  (X,P), Z  (X,P), Z  (X,P), Z  ( X,P). We may accordingly write

V(X,P) =  h V(Z 0 , Z  , Z  , h)exp(ih  Z  + ih  Z  ) (16a)
In that formula, the symbol h represents a sequence {h  , h  } of N' wavenumbers h  in Z  and of N' wavenumbers h  in Z  of V(x,p). It is of course displayed by V(x,p) if and only if V(Z 0 , Z  , Z  , h) does not cancel. The formula (16a) thus attributes to an observable V(X,P), in each domain D, a definite set of sequences h = {h  , h  }. We admit that the wavenumbers h  , h  are resonant within the transverse dimensions  of the domain D in Z  or Z  , i.e. that there exist integers   and   such that

h     Δ(α) π , h     Δ(α) π (16b)
Because of the canonicity of the representation Z 0 (x,p), Z 0 (x,p), Z  (x,p), …in each domain

D, the hermitian product V(x,p)•V'(x,p) =  D p xd d N N V(x,p)(V'(x,p)) within D is
proportional to the same integral expressed in terms of Z 0 , Z 0 , Z  ….We are thus led to the following criterion of orthogonality : « the observables V(X,P) and V'(X,P) are orthogonal if they display in each D sequences {h  ,h  } and {h'  ,h'  } which are not identical » (17a)

If Z  (X,P) or Z  (X,P) varies by , the formulae (15a,b) impose that the point (X,P) is displaced by (x,p)  (X,P) or (x,p)  (X,P). The formulae (16a,b) moreover impose that an observable V(X,P) that displays the sequences {h  ,h  } varies by a sum of terms proportional to exp(ih  ) or exp(ih  ). It then appears that if (X,P) varies by (x,p)  (X,P)

or (x,p)  (X,P), an observable V(X,P) has variations proportional to exp(ih  ) or exp(ih  ). The fact that the vectors (x,p)  (X,P) and (x,p)  (X,P), are specified by (X,P) independently of the domain D where (X,P) is located, therefore applies also to the wave numbers h  , h  . These wavenumbers displayed by a given observable V(X,P), single valued and analytic in (X,P) in a given domain D, are determined by (X,P) independently of D. In two domains D that contain a same point (X,P) the sequences {h  , h  } displayed by an observable V(X,P) are identical. By iteration one arrives to the following statement:

« the sequences {h  , h  } displayed by a given observable V(X,P), in a domain D are the same in all domains D on the same surface H(x,p) = E » (17b)

Of course, the intrinsic character of the wave numbers h  , h  on the surface H(x,p) = E displayed by a given observable V(X,P) does not apply to the functions V(Z 0 , Z  , Z  , h) in the formula (16a). A working hypothesis consists in imposing that the phenomenological observables V P (x,p) forming P  , whenever expressed in each domain D in terms of the representation Z 0 (x,p), Z 0 (x,p), Z  (x,p), Z  (x,p), Z  (x,p)), Z  (x,p), have a very weak dependence on Z  (x,p) and. Z  (x,p). The information carried by the observables V P (x,p) is then essentially due to their dependence on Z  (x,p), Z  (x,p), i.e. is essentially carried by the elliptic differential motions of the cosmos. The observables V P (x,p)) accordingly display wave numbers h  and h  which are all quasi null. The space P  is thus defined by the statement « the sequences h = {h  , h  } displayed by the observables V P (x,p) that form the space P  , have all quasi-null components » (18)

By virtue of the criterion of orthogonality (17a) the non-phenomenological observables V K (x,p) that form the space K  orthogonal to P  display on the contrary sequences {h  , h  } which contain non-null wave numbers h  or h  . The sub-space 0  of K  derived from P  via the equations (11a), is formed of observables 0 V ~(x,p) = V P = V P ,H} equal to the derivative  dt dV P along the hamiltonian trajectories. We may obtain this derivative in each domain D by using the laws of motion (14a,b,c), insofar of course as they are exact, which is only the case near the reference trajectory T at the center of D. The

expression (16a)  h V P (Z 0 , Z  , Z  , h)exp(ih  Z  + ih  Z  ) of an observable V P (X,P) leads to the following identity 0 V ~(x,p) = V P =  h 0 V ~(Z 0 , Z  , Z  , h) exp(ih  Z  + ih  Z  ) (19) 
where 0

V ~(Z 0 , Z  , Z  , h) = ( 0 Z   +i  Z     Z   ) + ih  ih  ))V P (Z 0 , Z  , Z  , h) function V P (Z 0 , Z  , Z  , h
) has all its components {h  , h  } close to 0. This property implies that the function 0 V ~(Z 0 , Z  , Z  , h) has also all its components {h  , h  } close to 0.

This means that the formula (19) expresses an observable which belongs to the space P  and accordingly cannot contribute to the sub-space 0  of the space K   P  . The space 0  is therefore formed by observables 0 V ~(x,p) = (V P ) K = V P ,H}) K produced by the laws of motion of the cosmos prevailing in addition to the laws (14a,b,c) in the periphery of D. It must be considered as an independent data associated to the space P  . We may assume to

The expression (20b) implies that, when  increases from 0 to Λ(α) 1 , the observable =  t K ) P of phenomenological distribution  t P by the the nonphenomenological information distribution  t K It is very important that again the subspace 0  of K  alone is involved. We have indeed , that the cosmos is quasi inexistent at the limit containing the primordial time t* between the two possibilities of existence for t > 0 and for t < 0. If that explication is correct, it explains also the fact that an observer may anticipate a phenomenological information  t P (x,p) and even organize an advantageous improvements of its environment within P  at the condition to leave irretrievable the state of the cosmos before the considered improvement.

 t K )•V P =  t K ) P •V P =  t K •V P ) K =  t K • 0 V ~  V P  P  Since 0 V ~  0  is orthogonal to n  if
If the condition ( 13) is not realized, and the red arrows replace the green arrows, a non- , where the form S t ( t P ) given b by the formula (10) is positive. The fact that the non-phenomenological information is inaccessible to the observers gives a content to the consensual view that the irreversible decrease of the negentropy occurs at the benefit of indelible correlations which dissolve in an immense ocean of degrees of freedom [START_REF] Prigogine | Entre le temps et l'éternité[END_REF].

The above functioning allows to soften the initial condition (13) : we may replace the latter imposing that 

V  CONCLUSION

We have considered in this article as a physical fact of first importance the existence in an hamiltonian cosmos of a phenomenological determinism, which allows the observers to anticipate with a substantial accuracy a specific phenomenological fraction  t P (x,p of the fundamental Boltzmann-Gibbs distribution  t (x,p). Unlike the fundamental determinism governing exactly in both time directions the fundamental distribution  t (x,p), the phenomenological determinism governs the phenomenological distribution  t P (x,p) exclusively in a preferred time direction identifiable with an arrow of time perceived by the observers. We have selected by the statement (18) a phenomenological sub-space P  of observables such that the projection of  t (x,p) into P  plays the role of  t' P* (x,p). This phenomenological determinism applies if t is beyond an initial time t* where the fundamental distribution  t* (x,p) realizes the simple condition (13) or (22). Apart from that poorly binding initial condition, the phenomenological determinism  t P (x,p)   t' P (x,p) for t'>t>t*. is a pure consequence of the fundamental determinism  t (x,p)   t' (x,p)  (t,t').

The key mechanism that ensures the existence of the phenomenological determinism is that the phenomenological distribution t P (x,p)  P  may experience during a short time interval  a forward and backward transfer of information between the phenomenological space P  and the non-phenomenological space K  orthogonal to P  . Those transfers play an essential role in the evolution in time of the phenomenological distribution  t P (x,p). The existence of the phenomenological determinism comes from the fact that, just after the time , the non-phenomenological distribution  t K (x,p) produced in the space K  by  t P (x,p) becomes at an exponential rate complexified in (x,p) and thereby unable to influence the evolution in time of  t P (x,p). That evolution at time t is thus practically determined by the value of  t P (x,p) just before the same time t. This means, under the restriction (4), that the time scale  is much smaller than the time scale  phen of the evolution of  t P (x,p) around (x,p), the autonomy of the evolution of  t P (x,p) along the arrow of time and thereby the existence of the phenomenological determinism  t P (x,p)   t' P (x,p) for t'>t>t*.

The physical importance of that phenomenological determinism comes from the fact that it is the cause of the irreversible thermodynamic behavior of the cosmos along the arrow of time perceived by the observers, and explains the various physical facts linked to that behavior. The first of these physical facts is that the observer may anticipate phenomenological information in the space P  at the condition of leaving irretrievable the state of the cosmos before that anticipation. In addition, the phenomenological determinism defies the phenomenological information carried by  t P (x,p) as the only one accessible to the observers. The non-phenomenological information  t K (x,p) that  t P (x,p) permanently produces in the space K  accumulates undamped in the latter along the arrow of time with an exponentially increasing complexity in (x,p). The quantity of accessible information contained in  t P (x,p) thus appears as the negentropy present at each time in the cosmos, ineluctably decreasing along the arrow of time at the benefit of the quantity of inaccessible information contained in  t K (x,p). The decrease of that negentropy gives a natural basis to generalized H theorems.
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  property obviously implies the orthogonality of the spaces n  ' ~n   n  for n'  n (12) 

  III A-USE OF A CANONICAL REPRESENTATION OF THE DIFFERENTIAL MOTIONOF THE COSMOS WITH RESPECT TO AN HAMILTONIAN TRAJECORY.We will rely for that demonstration on a canonical representation, established in a companion article[Samain and Garbet, 2019], of the phase space in finite domains D around and along any hamiltonian trajectory T running over the surface H(x,p) = E, where the cosmos is localized. That representation is expressed by N pairs of canonically conjugate observables, among which a first pair Z 0 (x,p), Z 0 (x,p) specifies, via Z 0 (x,p), the temporal position of (x,p) along T and, via Z 0 (x,p) = H(x,p) E, the transverse distance between (x,p) and the surface H(x,p) = The N1 other pairs consist of a set Z  (x,p), Z  (x,p) labeled by  running from 1 to N' and of another set Z  (x,p), Z  (x,p) labeled by  running from 1 to N'' = NN'1, which specify the transverse distance between (x,p) and T within the surface H(x,p) = E. They highlight the basic components of the differential motion of the cosmos with respect to T which are found to exist, namely, hyperbolic components taken into account by the pairs Z  (x,p), Z  (x,p), which are real, and elliptic components taken into account by the pairs Z  x,p), Z  (x,p)= (Z  (x,p)) * which are complex conjugate. The hyperbolic components produce a stochastic exponential divergence / convergence of neighboring trajectories characterized by Lyapounov exponents ()>0 / ()<0. On the contrary, the elliptic components maintain an oscillating distance between neighboring trajectories, characterized by purely imaginary exponents  i(  0. The representation Z 0 (x,p), Z 0 (x,p), Z  (x,p), Z  (x,p), Z  (x,p), Z  (x,p) in a domain D allows expressing the laws of motion of the cosmos within D as follows : let the point (x,p) t on a trajectory be represented by Z 0 (t), Z 0 (t), Z  (t),

D

  at a given level Z 0 along T , and thereby the transverse dimensions in (x,p) of D on the surface H(x,p) = E, are such that the accuracy of the equations (14b,c) is still acceptable at the periphery of D. These transverse dimensions in (x,p) are expected to be a fraction of the variation scales of the potential V(x) and of the level of momentum p entering the hamiltonian H(x,p) = V(x,) + p 2 /2. Let us stress that Z  respectively Z  increases as exp(|(t)|), i.e. as exp(|(Z 0 |), for Z 0 > 0 respectively Z 0 < 0. This implies that the cosmos trajectories necessarily escape from the domain D after a longitudinal variation of |Z 0 | of the order of the time scale Λ(α) 1 . That time scale thus appears as the longitudinal dimension in Z 0 of the domains D.

  III B -DEFINITION OF THE PHENOMENOLOGICAL SPACE P -DEDUCTION OF THE SPACE K  ORTHOGONAL TO P  AND OF THE SUBSPACE 0

1 .

 1 the domain D in the direction Z 0 increasing from 0 to Λ(α) At the same time. exp( n V ~is propagated transversally towards the center of D in the directions of decreasing Z  , and independently towards the periphery of D in the directions of increasing Z  . That latter propagation makes of course exp( n V ~ disappear into the environment of D. That loss is compensated by the entrance into D of fresh exp( n V ~ coming from the environment in the direction of decreasing Z  . Those propagations are represented on the figure 1.

Figure 1 

 1 Figure 1  Propagation of the observable exp( n V ~ in a quadrant Z  Z  f a domain D limited by the outer

  after t* empty of information.

Figure 2 .

 2 Figure 2. Schematic motion of the phenomenological and non-phenomenological information when the initial condition (13) is fulfilled (green arrows) and not fulfilled (red arrows).

  That time orientation defines the arrow of time, that, apart from a few exceptions, we will assume below pointing in the direction + of the time axis. That time asymmetry could not occur if the phenomenological information
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	consequence of the fundamental determinism t 			t'	 (t,t') and of a simple initial
	condition involving the fundamental information * t  at an initial time t*. We use throughout
	this paper the Boltzmann-Gibbs framework. However, the analysis given below is readily
	transposed to the quantum framework of first generation via the Wigner formalism. We admit
	that the phenomenological information	P  is expressed by a normalized phenomenological t
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	the phenomenological determinism	P   t	t'	P
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								P  was identical to the t
	fundamental information t  . It therefore implies that, P t 	remains only a fraction of t 
	whatever the level of complexity of the phenomenological laws. A plausible interpretation of
	these facts is that there exists at each time t a phenomenological information	P  on the state t
	of the cosmos, accessible to observers and the only one to be accessible, which enters a
	phenomenological determinism	P   t	P  for t' > t having the following properties : t'
	1/ the information		t	P	determines accurately the phenomenological information	t'	P

t   (t,t') could perhaps be used directly by observers if they could handle all the details of the fundamental information t  . It is never the case: observers have only access at a time t to a phenomenological fraction  . However, a physical fact inherent to the nature is that the observers are able, via a set of phenomenological laws that they have elaborated, to deduce from that phenomenological information  to which they have access at times t'>t. An essential complementary physical fact is that observers cannot use their phenomenological laws from t to t'<t. They accordingly cannot deduce from  accessible at times t'<t.

 for t'>t along the arrow of time, but not for t'<t against the arrow.

2/ the information P t



is only a fraction of the fundamental information P t  , which is the only one to which the observers may have access.

ON THE SUBSPACE P  AND INITIAL CONDITION AT TIME t* THAT ENSURE THE EXISTENCE OF A PHENOMENOLOGICAL DETERMIISM  t P (x,p)   t' P (x,p) FOR t' > t > t*

  

	p) is the mere projection of the fundamental distribution  t (x,p) into a specific sub-space P  of the vector space  formed by all the observables. The knowledge of  t P (x,p) is then equivalent to the knowledge of the average values <V P > t = V P • t = V P • t P of all the phenomenological observables V P x,p) that belong to the sub-space P  . That simplification is in the line of the Nakajima-Zwanzig equations, which give, for any sub-space P  of  , the value of  t' P (x,p) at a time t' in terms of all the values of  t P (x,p) at times t between a time t* where the distribution is  t* (x,p) and the time t' [8]. We will go further by showing that a consequence of the fundamental determinism and of an appropriate initial condition at time t* is that it is possible to build up, for each hamiltonian H(x,p) and each energy surface H(x,p) = E, a specific space P  and a time t* such that the projection  t P (x,p) accurately determines the projection  t' P (x,p) at any time t' > t > t* and therefore enters a phenomenological determinism  t P   t' P for t' > t > t*. We establish in the § II the conditions that the realization of that phenomenological determinism imposes to the subspace P  and to the time t*. With the help of a canonical representation of the differential motion cosmos with respect to any hamiltonian trajectory, established in a companion article [9], we select in § III a subspace P  which satisfies those conditions. We thus prove that the existence of a phenomenological determinism  t P   t' P for t' > t > t* in our hamiltonian cosmos is a consequence of the fundamental determinism     t'  t, and of a simple initial condition on the fundamental distribution at a time t*. We summarize in § IV the physical meaning of that phenomenological determinism. subspace P  of the vector space  of all observables, and thus produces the phenomenological distribution  t P (x,p) submitted to the phenomenological determinism  t P II  PRESCRIPTIONS The fundamental distribution phenomenological distribution  t (x,p) is projected on the   t' P for t' > t > t*. This procedure introduces the subspace K  of  orthogonal to P  .

  p)   t' P (x,p) for t'>t t* is based on a phenomenological space P  of observables on which the fundamental distribution Boltzmann-Gibbs  t (x,p) is projected. It thus produces the

	phenomenological distribution  t P (x,p) submitted to a phenomenological determinism. The
	existence of the latter first demands the realization of a structural condition, namely the
	existence of a small time scale  which allows the orthogonality (12) of the sub-spaces n 
	orthogonal to P  derived from P  via the formulae (11a,b). The initial condition (13) then
	imposes a particular structure to the fundamental distribution  t (x,p) at the initial time t* of
	the cosmos. On the other hand a good accuracy of the phenomenological determinism
	demands that  is much smaller than the time scale  phen of the gross evolution of the
	phenomenological distribution  t P (x,p). The evolution of  t P (x,p) is specified by the
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	equation	t ρ t   = 			

t , = { t ,H},in the space  formed by all observables.

   (0), h  (1), etc in Z  are multiplied by O(2). The corresponding exponential increase as O(2 n ) of the wave numbers h  (n) of the information

	 K goes after an interval + from	( 	) 0	to	) 1 (  , then from	) 1 ( 	to	) 2  , etc, via small (
	green arrows, its wave numbers h contained in the spaces ) n (  obviously implies that they cannot be handled by the observers.
	That information is both inaccessible by the observers and without influence on the evolution
	of the phenomenological information  t P (x,p). That point is in fact the key mechanism by
	which the fundamental determinism  t (x,p)   t' (x,p)  (t',t) generates the
	phenomenological determinism  t P (x,p)   t' P (x,p) for t'>t>t*. The mere fact that the
	0 spaces  n 	 ~are empty may seem surprising if not impossible. The explication is perhaps n
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However, the phenomenological information  t P within P  permanently produces via the long green arrow from P  to 0  new components  K into the space 0  . A component  K

  with  t P . The autonomy of the phenomenological evolution is then broken and the determinism  t P   t' P for t'> t > t* is impossible. One still note the gradual decrease along the arrow of time of the quantity of
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phenomenological information  t K is present in the space   

  ~ is empty at the time t* for n < n*, being n* any finite positive integer,(22)One recovers indeed at the time t*n*  the genuine condition  t P (x,p)   t' P (x,p) for t' > t > t*n* exists. In the line of the speculation introduced at the end of § IIB, a phenomenological determinism  t P (x,p)   t' P (x,p) for t <t <t*n* exists if at the time t*
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simplify that it displays sequences h where most of the h  h  , h  } s have the smallest values Δ(α) π  compatible with the constraint (16b).

We now exploit the relations (11b) between the observables n V ~(x,p) = ((exp(n K ) 0 V ~)(x,p) that form the sub-spaces n  of K  by ignoring in a first step the role of the space P  .That role will be taken into account in § IV. We may then replace the operator  K defined by the formula (6b) by the Liouville operator (exp(which only differs from  K by when involving the space P  . We will use the fact that the value of an observable (exp(V(x,p) at the point (x,p) is equal to the value of V(x,p) at the hamiltonian image (x,p)( of (x,p) before the time . We apply that formula to an observable n V ~(x,p) with n  0, written in the form (16a

by using the laws of motion (1a,b,c). It comes, on that basis

Since the observables n V ~ belong to the space K   P  , the sequences {h  , h  } involved in the expression (20a) contains non null wave numbers {h  , h  } and the observable expressed by the formula (20b) belongs by virtue of the criterion of orthogonality [START_REF] Prigogine | Entre le temps et l'éternité[END_REF] to the space K  .

In this case, tt may be accepted as the actual value of exp( n . All those results, combined with the criterion of orthogonality [START_REF] Prigogine | Entre le temps et l'éternité[END_REF] show that, with our choice (18) of the phenomenological spaces P  and our choice  of the order of Λ(α) 1 , the sub-spaces n  satisfy as desired the structural constraint [START_REF] Halliwell | Physical Origins of Time Asymmetry[END_REF], so that the existence of the phenomenological determinism  t P (x,p)   t' P (x,p) for t' > t > t* is granted, provided the initial condition ( 13) is realized.