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Abstract

Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during
exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we
investigated whether this mechanism rely on dynamin’s ability to remodel actin cytoskeleton. According to this idea,
inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin
network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in
chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the
pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and
increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not
additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our
data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust
the hormone quantal release to efficiently respond to physiological demands.
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Introduction

Dynamin is a mechano-GTPase encoded by three distinct genes

(DNM1, DNM2 and DNM3) that generates membrane deforma-

tion and triggers membrane fission [1]. Its best characterized

function is the scission of nascent vesicles from the plasma

membrane during endocytosis. Of the three dynamin isoforms

only dynamin-2 is ubiquitously expressed, while dynamin-1 is

exclusively expressed in neuronal tissue, and dynamin-3 is only

present in brain, testis, heart and lungs [2], [3]. Studies in knock-

out animals show that only dynamin-2 is critical during early

embryonic development [4] and that the absence of dynamin-1 or

-3 can be compensated by the other isoforms [5]. From these

findings arises the idea that the different dynamin isoforms have

overlapping roles and their relative contribution to endocytosis in

a given tissue is mostly determined by their abundance rather than

on structural specialization [5].

Dynamin participates in several cellular processes that are

dependent on the actin cytoskeleton dynamics, some of them are

actin comet [6], [7] lamellipodia formation [8], T cell activation

[9], phagocytosis [10] and different types of endocytosis [11–14].

Furthermore, a functional link between dynamin and actin has

been observed during endocytosis, where one regulates the

recruitment of the other [14] and both work synergistically to

efficiently catalyze membrane scission [12]. The exact mechanism

of the crosstalk between dynamin and actin is not completely clear,

but some evidences suggest that dynamin binds directly to actin

filaments to promote its polymerization by displacing the actin

capping protein gelsolin [15]. Additionally, dynamin can control

the stability of actin filaments in association with the actin-binding

protein cortactin, in a GTP hydrolysis-dependent way [16], [17].

In neuroendocrine cells, both actin and dynamin have been

involved in the regulation of the exocytotic process. On one hand,

cortical actin network is reorganized during exocytosis [18],

wherein it regulates the expansion of the fusion pore [19], an

intermediate structure formed during the fusion of the secretory

vesicle with the plasma membrane [20]. On the other hand,

dynamin appears to regulate both fusion pore expansion [21] and

closure [22], [23], and to control the quantal size of release events

[24–27]. These actions have been attributed to the neuronal

isoform dynamin-1 [21], [23], [25], while dynamin-2 has been

proposed to specialize in the regulation of compensatory
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endocytosis [28]. This functional divergence suggests that different

dynamin isoforms are specifically tuned to regulate different stages

of the granule life cycle rather than having overlapping roles.

Here using molecular tools that disrupt endogenous dynamin-2

function or expression we demonstrate that this isoform, which is

highly expressed in bovine chromaffin cells (BCC), controls fusion

pore expansion and quantal size. Additionally, we found that

dynamin-2 regulates the organization and Ca2+-dependent

assembly of cortical actin. Similarly to that observed with the

disruption of dynamin-2 function or expression, disturbance of

actin dynamics increased fusion pore duration and quantal size,

but these effects were no longer visible when endogenous

dynamin-2 was already disrupted. These results strongly suggest

that dynamin-2 regulates different stages of exocytosis through a

mechanism that involves actin dynamics.

Results

Dynamin-2 is Highly Expressed in Bovine Chromaffin
Cells

To evaluate the relative expression of dynamin isoforms 1 and 2

in bovine chromaffin cells (BCC), we performed RT-PCR and

western blot assays. RT-PCR showed that both isoforms are

expressed, but dynamin-1 mRNA levels are substantially lower in

BCC compared to the transcript coding for dynamin-2 (Fig. 1A).

At protein level, western blot analysis with an antibody that is

specific for dynamin-1 revealed a 100 kDa band in the bovine

brain extract, but failed to detect any protein in BCC (Fig. 1B). In

contrast, western blotting with an antibody raised against

dynamin-2 allowed us to detect a robust 100 kDa band in BCC

as well as in the bovine brain and mouse fibroblast. As these results

indicate that dynamin-2 is highly expressed in BCC, we

investigated the role of this isoform in the exocytosis.

Endogenous Dynamin-2 Controls the Quantal Release of
Catecholamines in Chromaffin Cells

To study the role of endogenous dynamin-2 in exocytosis we

used a small interfering RNA strategy (iRNADyn2) to down-

regulate its expression [29] or a dominant negative mutant

(Dyn2K44A) to inhibit its GTPase activity [30], [31]. The

efficiency of these constructs in BCC was evaluated using an

anti-dopamine-beta-hydroxylase (DBH) antibody internalization

assay to monitor compensatory endocytosis of chromaffin granules

[32], a process known to be dependent on dynamin-2 [28].

iRNADyn2 significantly reduced the DBH internalization by 53%

compared to cells expressing the empty vector pEGFP or an

unrelated iRNA (iRNA-UnR) (Fig. S1). Similarly, Dyn2K44A

expression reduced the DBH internalization by 52% compared to

the expression of wild-type dynamin-2 (Dyn2WT); thus, the

functional efficacy of these constructs was confirmed.

Then, we analyzed the contribution of dynamin-2 to calcium-

regulated exocytosis. Catecholamine release from adrenal chro-

maffin cells was stimulated with the nicotinic agonist 1,1-dimethyl-

4-phenyl-piperazinium (DMPP) to mimic the physiological condi-

tion. The different stages of exocytosis were monitored by

amperometry. From each amperometric spike we analyzed the

quantal size (Q), which is proportional to the amount of

catecholamines released per event, and the half-width (t1/2) that

reflects the duration of the exocytotic events (Fig. 2A). Figure 2B

shows examples of amperometric spikes induced by 10 mM DMPP

in cells expressing pEGFP, Dyn2WT, Dyn2K44A and iRNA-

Dyn2, respectively. Stimulation of untransfected BCC with a 10 s

pulse of 10 mM DMPP produced 20.162.2 amperometric spikes

in 100 s (n = 45), which mean Q and t1/2 values were 0.860.1 pC

and 14.260.8 ms, respectively. The expression of iRNAUnR,

Dyn2WT or pEGFP vectors did not change significantly any of

the amperometric parameters (Fig. 2C–D and Table 1). Con-

versely, the disruption of endogenous dynamin-2 expression by

iRNADyn2 significantly increased Q (1.360.1 pC) and t1/2

(19.461.6 ms) without significant differences in the number of

exocytotic events (23.063.2) as compared with those obtained in

pEGFP or iRNAUnR transfected cells. Likewise, the expression of

Dyn2K44A significantly increased Q (1.360.1 pC) and t1/2

(18.461.9 ms) without affecting the number of amperometric

spikes (21.563.1) (Fig. 2C–D and Table 1). Finally, the expression

of the different constructs did not affect the amplitude of the

amperometric spikes (see Table 1). These data show that, under

stimulation of nicotinic receptors, dynamin-2 adjusts the amount

of hormones released via it GTPase activity.

Endogenous Dynamin-2 Controls the Expansion of the
Initial Fusion Pore

To investigate whether dynamin-2 regulates the dynamics of the

fusion pore, we analyzed the small pre-spike current, usually called

‘‘foot’’, which reflects the slow release of transmitters through an

initial fusion pore [33]. The ‘‘foot’’ duration correlates with the

stability of the fusion pore [20], while its amplitude is proportional

to its conductance [34]. In untransfected cells, 60.664.3% of

amperometric spikes exhibited foot signals with mean duration of

Figure 1. Dynamin-2 is highly expressed in bovine adrenal
chromaffin cells. Relative expression of dynamin-1 and -2 was
evaluated in BCC and PC12 cells using RT-PCR and western-blot. A: RT-
PCR results. Note that in BCC, the amount of dynamin-1 mRNA is
significantly lower as compared with the dynamin-2 transcript. Actin
was used as an amplification control. A control without reverse
transcriptase (RT) was performed in parallel to rule out genomic
contamination. Signs+or – indicate, respectively, the presence or
absence of RT during amplification. B: Western-blot results. Proteins
from bovine brain (BB), BCC, PC12 cells and primary adult mouse
fibroblasts (AMF) extracts were separated by electrophoresis on a 4–
12% polyacrylamide gel gradient and analyzed by western blot. Note
that dynamin-1 level was almost undetectable in BCC. b-actin was used
as loaded control.
doi:10.1371/journal.pone.0070638.g001
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14.661.6 ms and mean amplitude of 12.961.1 pA. Transfection

with pEGFP, iRNA-UnR or Dyn2WT did not significantly change

these values (see values in Table 1). Interestingly, disruption of

endogenous dynamin-2 by expression of iRNADyn2 or inhibition

of its GTPase activity by overexpressing Dyn2K44A prolonged the

duration of the foot signals (22.462.1 and 19.461.8 and ms,

respectively), as compared with pEGFP- or Dyn2WT-transfected

cells (14.361.4 and 11.861.1 ms, respectively) (Fig. 2E), but it did

not have any significant effect on foot frequency or foot amplitude

of the exocytotic events triggered by 10 mM DMPP (see values in

Table 1). These results indicate that endogenous dynamin-2

controls the fusion pore expansion, without influencing its

conductance.

Dynamin-2 Controls Cortical Actin Assembly in Bovine
Chromaffin Cells

To explore the possibility that dynamin-2 actions on the

exocytosis were linked to dynamin’s ability to remodel actin

cytoskeleton, we first evaluated the effect of dynamin disruption on

the actin organization. In order to analyze the cortical actin

distribution in BCC we visualized actin filaments (F-actin) at the

plasma membrane level using total internal reflection fluorescence

microscopy (TIRFM) in living cells transfected with the fluorescent

dye Life-act-ruby. Life-act-ruby is a peptide that binds F-actin with

low affinity and thus constitutes a powerfull tool to visualize actin

organization in vivo without affecting its polymerization/depoly-

Table 1. Amperometric parameters of exocytotic events
induced by 10 mM DMPP in cells transfected with pEGFP, UnR-
iRNA, iRNADyn2, Dyn2WT or Dyn2K44A.

pEGFP
UnR-
iRNA iRNADyn2

Dyn2
WT

Dyn2
K44A

Number of
events

17.761.7 24.263.6 23.063.2 20.262.4 21.563.1

Q (pC) 0.8360.08 0.8760.09 1.3360.08* 0.7860.09 1.3360.12{

t1/2 (ms) 13.661.1 13.060.8 19.461.6* 11.561.0 18.461.8{

Imax (pA) 51.563.8 55.165.1 59.465.6 65.367.9 62.463.7

Foot frequency
(%)

63.365.5 57.963.7 57.863.6 61.6610 63.468.3

Foot amplitude
(pA)

12.461.3 13.661.0 11.360.9 11.661.1 12.161.6

Foot duration
(ms)

14.361.4 11.060.6 22.462.1* 11.861.1 19.461.8{

Number of
cells

35 28 29 15 18

Data are means 6 SEM of averages, where n is the number of cells. Imax
corresponds to the spike amplitude.
*p,0.05 compared with pEGFP-transfected cells;
{p,0.05 compared with Dyn2 WT-transfected cells (Kruskal-Wallis test).
doi:10.1371/journal.pone.0070638.t001

Figure 2. Endogenous dynamin-2 regulates the quantal release and expansion of the fusion pore. Exocytosis was evoked with 10 mM of
the nicotinic agonist DMPP and monitored using amperometry. A: A typical amperometry trace in a single control chromaffin cell stimulated with
10 mM DMPP. B: Scheme of an amperometric spike with the analyzed parameters: quantal size (Q), half width (t1/2) and foot duration. C: Typical
amperometric spikes induced by 10 mM DMPP in cells transfected with pEGFP, Dyn2WT, Dyn2K44A or iRNADyn2. D–F: Data show average values 6
SEM of Q (C), t1/2 (D) and foot duration (E) of amperometric events in cells transfected with pEGFP (n = 35), iRNA-UnR (n = 28), Dyn2WT (n = 15) in
white bars, and cells transfected with iRNADyn2 (n = 29) or Dyn2K44A (n = 18) in gray bars. All amperometric parameter values correspond to the
median values of the events from individual cells, which were subsequently averaged per treatment group. Thus, n corresponds to the number of
cells in each treatment group. Note that the down-regulation of dynamin-2 (iRNADyn2) or the inhibition of its GTP-ase activity (Dyn2K44A)
significantly increased Q, t1/2 and foot duration of the exocytotic events evoked by 10 mM DMPP. *p,0.05 (Kruskal-Wallis test).
doi:10.1371/journal.pone.0070638.g002
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merization dynamics [35]. Under these experimental conditions,

cortical actin was observed as a network of fibers of different

thickness. This pattern was maintained in cells expressing pEGFP,

iRNAUnR or Dyn2WT (Fig. 3). However, the expression of

iRNADyn2 or Dyn2K44A, as well as the inhibition of dynamin

GTPase activity with dynasore, modified this pattern displaying a

punctuated actin staining, similar to that observed in the presence

of the actin-disrupting drug cytochalasine D (CytoD) (Fig. 3).

These effects were unrelated to the inhibition of endocytosis since

the expression of Eps15ED95/295, a mutant of the epidermal

growth factor receptor substrate 15 (Eps15) that admittedly

inhibits compensatory endocytosis in chromaffin cells [32], had

no effect on the actin cytoskeleton organization (Fig. 3).

Previously, we proposed a de novo formation of actin filaments in

the course of exocytosis in chromaffin cells [18], [36]. Therefore,

we next evaluated the effects of the pharmacological inhibition of

dynamin GTPase activity on de novo actin filament formation in

permeabilized cells. As shown in Figure 4A G-actin polymerized

into the pre-existing cortical F-actin, forming a ring beneath the

plasma membrane. The new formation of cortical actin filaments

was critically dependent on the Ca2+ levels, being maximal at a

range of 1 to 10 mM free Ca2+ (Fig. 4B–C), which is the range of

Ca2+ concentration known to favor exocytosis in permeabilized

chromaffin cells [37]. Interestingly, this Ca2+-dependent cortical

actin polymerization was abolished in the presence of the inhibitor

of dynamin GTPase activity dynasore, alike to that observed in the

presence of CytoD or in the absence of ATP (Fig. 5A–B).

Overall these data suggest that the GTP-ase activity of

dynamin-2 is required for the proper cortical actin organization

during exocytosis in bovine chromaffin cells.

Actin Dynamics Regulates the Late Stages of Exocytosis
In order to analyze how the disruption of actin polymerization

affects the exocytosis, we evaluated the effect of CytoD on the

amperometric parameters. Similarly to that observed with

iRNADyn2 and Dyn2K44A, CytoD treatment significantly

increased Q (1.6260.16 pC) and t1/2 (19.861.98 ms) of the

exocytotic events induced by 10 mM DMPP. Furthermore,

compared with control cells, CytoD also increased foot duration

(21.561.76 ms). These data confirm that cortical actin polymer-

ization controls both, expansion of the initial fusion pore and

catecholamine quantal release.

We also analyzed the effects of CytoD in cells expressing

pEGFP, iRNADyn2 or Dyn2K44A. Similarly to what occurs in

untransfected cells, CytoD treatment in pEGFP-transfected cells

increased significantly Q (1.560.1 pC), t1/2 (20.261.5 ms) and

foot duration (21.561.6 ms) of the exocytotic events (Fig. 6A–C).

However, in cells transfected with iRNADyn2 or Dyn2K44A, the

CytoD treatment did not induce any additional increase in Q, t1/2

or foot duration (Fig. 6A–C), suggesting that endogenous

dynamin-2 and F-actin work through a common mechanism

regulating the fusion pore expansion and the quantal release of

hormones in BCCs.

Discussion

Dynamin-2 is a widely ubiquitously expressed GTPase whose

mutations cause severe hereditary neuropathies and myopathies in

humans [38]. The cellular mechanisms underlying these diseases

are still unclear, and do not necessarily include a dysfunction on

clathrin-dependent endocytosis [39], [40], therefore, the knowl-

edge of the spectrum of dynamin-2 functions is pivotal. In the

present work we demonstrate that dynamin-2 is robustly expressed

in chromaffin cells, and that it is involved not only in endocytosis

but also in exocytosis and actin cytoskeleton dynamics.

The fusion pore dynamics appears to adjust the type and

amount of transmitters released during exocytosis [41]. Once

opened, the fusion pore can close again [34], [42], or expands and

then reseals after dilation [43], thus controlling the amount of

molecules being released. The ability of dynamin to generate

membrane curvatures and trigger membrane fission [44] has

encouraged several authors to propose that this GTPase is

Figure 3. Impaired function or expression of dynamin-2 change F-actin organization pattern. Cells were transfected with Life-act-ruby
(n = 11) or co-transfected with Life-act-ruby and pEGFP (n = 34), iRNA-UnR (n = 9) Dyn2WT (n = 21), Dyn2K44A (n = 31), iRNADyn2 (n = 38) or
Eps15ED95/295 (n = 17) plasmids and visualized by TIRF microscopy 48 h later. To evaluate the effects of a pharmacological inhibition of dynamin,
cells transfected with Life-act-ruby were treated with 100 mM dynasore (n = 28), or the vehicle DMSO (n = 25) during 1 hr at 37uC. The 81.8% of control
cells exhibited a ‘‘normal’’ pattern with clear cortical actin fibers. This value was not significantly different in cells expressing pEGFP (73.6%), iRNA-UnR
(88.9%) or Dyn2WT (85.7%) constructs. However, the expression of Dyn2K44A or iRNADyn2, as well as the treatment with dynasore, modified the
cortical actin organization and 80.6%, 92.1% and 71.4% of the cells, respectively, exhibited a ‘‘punctuate’’ pattern. The treatment with 4 mM CytoD
during 10 minutes at 37uC produced exactly the same effect: 84.6% of the cells displayed a ‘‘punctuate’’ pattern. Eps15ED95/295 expression did not
alter actin organization (82.4% of cells exhibited a normal pattern), indicating that dynamin, but not of endocytosis disruption, modified the actin
cytoskeleton pattern. Scale bar = 5 mm.
doi:10.1371/journal.pone.0070638.g003

Dynamin-2 Regulates Exocytosis by Actin Dynamics
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Figure 4. Calcium-dependent cortical actin polymerization in permeabilized chromaffin cells. Cultured chromaffin cells were
permeabilized in buffer KGEP (mM: 139 K+-glutamate, 20 Pipes, 5 EGTA, 2 ATP-Mg and 0.01 free calcium, pH 6.6) during 6 minutes with 20 mM
digitonin in the presence of 0.3 mM Alexa-Fluor488-G-actin conjugate (AF488-G-actin), fixed and visualized by confocal microscopy. A: Total F-actin
was stained using 1 mM phalloidin-rodhamine B (red) and nuclei were stained with 5 mg/ml DAPI (blue). Note that newly synthesized actin was
incorporated into pre-existing cortical filaments. B–C: The new formation of cortical actin filaments was assessed by quantifying AF488-G-actin
staining mean intensity at the cell periphery in the presence of increasing free Ca2+ concentrations. Note that maximal cortical actin polymerization
was observed at a range of 1–10 mM of free Ca2+. Scale = 10 mm. Data are means of cortical actin fluorescence intensity from at least 12 cells per each
Ca2+ concentration (12 cells for 0.01 mM Ca2+, 13 cells for 0.1 mM Ca2+, 15 cells for 1 mM Ca2+,and 18 cells for 10 mM Ca2+).
doi:10.1371/journal.pone.0070638.g004

Figure 5. Inhibition of dynamin GTP-ase activity suppresses Ca2+-dependent de novo cortical actin polymerization. A: Representative
images of F-actin formation in cells permeabilized in the presence of 10 mM free Ca2+. Note that no new polymerized cortical actin was observed
when the permeabilization was performed in the absence of ATP-Mg (n = 16) or in the presence of 4 mM CytoD (n = 27) or 100 mM dynasore (n = 28)
Scale bar = 10 mm B: Quantification of G-actin staining mean intensity at the cell periphery. Data are means of cortical actin fluorescence intensity
*p,0.05 compared with cells treated with DMSO (ANOVA).
doi:10.1371/journal.pone.0070638.g005

Dynamin-2 Regulates Exocytosis by Actin Dynamics

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e70638



responsible of resealing the secretory vesicle after expansion of the

fusion pore [22], [23], [27]. This should explain why dynamin

disruption increases the quantal size and the duration of the

exocytotic events, which is consistent with our findings and

previous reports [24], [26]. Nonetheless, other explanations are

also plausible. For instance, it has been described that in

chromaffin cells vesicular catecholamine content changes in

tandem with granule size [45], [46]. This could induce a change

in both, the quantal size and foot duration [47]. Previously, we

observed that acute disruption of dynamin-synaptophysin associ-

ation increases the quantal size without modifications in granule

volume [26] supporting the idea that dynamin does not influence

the granule size. In the current work, we found no changes on the

mean diameter of chromaffin granules in cells treated during 1 h

with dynasore (Fig. S2), additionally discarding a role of dynamin

in regulating granule size. As dynamin-2 regulates granule

formation from the Golgi apparatus in neuroendocrine cells

[48], we checked whether disruption of dynamin-2 function might

affect the number of granules. Our analysis yielded values of

0.6360.04 and 0.5560.05 granules/mm2 for control and dyna-

sore-treated cells respectively, demonstrating that dynasore does

not affect the number of granules. However, the role of dynamin-2

on granulogenesis in BCC would require further investigations and

the use of more potent inhibitors like dyngo4A [49], [50].

Another interesting possibility is that dynamin disruption favors

compound exocytosis, a specialized form of secretion in which

vesicles undergo fusion with each other before or during exocytosis

[51], producing release events with larger quantal size. However,

electron microscopy examination of 10 mM DMPP-stimulated and

dynasore-treated cells did not reveal granule-granule fusion (Fig.

S3). Hence, the most plausible explanation for the effects of

dynamin-2 disruption on the quantal size is that this GTPase

favors the closure of an already expanded fusion pore, restricting

the amount of transmitter released. However, we remain puzzled

on how dynamin can accelerate the expansion of the fusion pore,

as observed here (Fig. 2) and by other authors (21).

Both dynamin-1 and -2 favor diverse types of fusion processes

including acrosomal reaction [52], cell to cell fusion [53], [54] and

fusion of virus with host cells [55], [56]. In these processes, as in

exocytosis [21], dynamin appears to act facilitating the expansion

of the fusion pore [52], [56]. The mechanism is still elusive but

likely relies on dynamins ability to sense curvature and remodel

membranes, and probably requires the participation of other

molecules. Here we propose that dynamins action on the fusion

pore expansion depends on the cortical actin dynamics, which is

also involved in the aforementioned fusion processes [57–60].

In secretory cells, cortical actin is reorganized during the

exocytotic process [18]. Moreover, as observed by us (Fig. 6) and

by other authors [19], [61],actin cytoskeleton disruption with

CytoD prolongs the fusion pore lifetime and increases the quantal

size of the exocytotic events. These effects were not related with

changes on the granule size evaluated by capacitance measure-

ments [19] or by electron microscopy (Fig. S2). Here, we show for

the first time that new actin filaments are assembled beneath the

plasma membrane in a process that depends on the Ca2+

concentration (Fig. 4), as well as on dynamins GTP-ase activity

(Fig. 5), supporting the idea that dynamin-2 plays a pivotal role in

the rearrangement of cortical actin during exocytosis.

The fact that CytoD effects on the exocytosis were no longer

visible when the endogenous dynamin-2 was disrupted (Fig. 6),

additionally suggests that dynamin-2 works through/or in

association with F-actin in regulating both fusion pore expansion

and quantal size. We have previously reported that de novo actin

polymerization at the exocytotic sites is under the control of the

GTPase Cdc42 and its effector, the nucleation promoting factor

(NPF) N-WASP [36]. Interestingly, N-WASP and dynamin-2 are

known to be functionally linked to regulate actin dynamics during

membrane trafficking processes [62], [63]. Recently, Samasilp and

Figure 6. Dynamin-2 and actin polymerization regulate the fusion pore expansion and quantal size in BCC. Chromaffin cells were
incubated with 4 mM CytoD during 10 minutes at 37uC. After that the exocytosis was evoked with 10 mM DMPP. A–C: Data show average values 6
SEM of Q (A), t1/2 (B) and foot duration (C) of amperometric spikes induced by 10 mM DMPP in cells transfected with pEGFP (n = 27), Dyn2K44A (n = 13)
or iRNADyn2 (n = 16). All amperometric parameter values correspond to the median values of the events from individual cells, which were
subsequently averaged per treatment group. Thus, n correspond to the number of cells in each treatment group. Note that the CytoD treatment
(grey bars) significantly increased Q, t1/2 and foot duration of the exocytotic events in cells transfected with pEGFP, without additional effects in cells
transfected with Dyn2K44A or iRNADyn2. * p,0.05 compared with the untreated cells (Kruskal-Wallis test).
doi:10.1371/journal.pone.0070638.g006
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co-workers observed in mouse chromaffin cells that disrupting the

association of dynamin with syndapin, a synaptic partner of

dynamin that binds to its proline-rich domain, limits the expansion

of the fusion pore [64]. Since syndapin also modulates actin

polymerization through N-WASP [65] and interacts with

dynamin-2 [66], [67], it might be a regulator of the cross-talk

between dynamin-2 and other actin-binding proteins.

Based on our results it is tempting to suggest a model in which

dynamin-2, probably in concert with NPFs such as N-WASP,

would promote a localized actin assembly at exocytosis sites during

nicotinic receptor activation. As actin polymerization per se can

generate propulsive or retractile forces to shape membranes [68],

the local actin rearrangement induced by dynamin-2 may provide

the force that drives the expansion of the initial fusion pore. The

participation of motor proteins such myosin II on the fusion pore

expansion [19], [61], [69] is probably required too. Later, F-actin

and dynamin-2 in concert could generate retractile forces to

constrict a slightly expanded fusion pore, favoring the resealing of

the vesicle. Since, as compared with dynamin-1, dynamin-2

exhibits a significantly higher propensity to self-assembly, an

enhanced catalytic activity [70], [71] and a greater sensitivity to

membrane curvature [72], this isoform is likely to be a better

candidate than dynamin-1 to regulate the characteristics of

exocytosis in chromaffin cells, where it is robustly expressed (Fig. 1).

The mechanism proposed here could be physiologically relevant

during mild stimulation for controlling the kinetics and amount of

hormones released during exocytotic events.

Methods

Molecular Biology
Dynamin-2 wild type-GFP (Dyn2WT), dynamin-2 K44A-GFP

(Dyn2K44A) and EPS15 (ED95/295)-GFP were kindly provided

by Dr. Alexandre Benmerah (Institut Cochin, Paris). The pEGFP-

iRNA vector, a bicistronic plasmid that expresses both EGFP and

an iRNA targeted against the sequence of dynamin-2 (iRNA-

Dyn2); and iRNA-UnR were previously described [29]. For iRNA

cloning, a bovine DNA fragment encoding the sequence of

dynamin-2 (GAAGAGCTGATCCCGCTGG), separated from its

reverse complement by a short spacer, was annealed and cloned in

the BglII and HindIII sites in front of the H1 promoter of the

pEGFP-iRNA plasmid. Efficiency of iRNA-induced silencing of

dynamin-2 expression was addressed by western blot analysis in

Hela cells (Fig. S4).

RT-PCR and Western-blot Assays
Total RNA from cultured bovine chromaffin and PC12 cells

were prepared using the GenElute Mammalian total RNA

miniprep kit (Sigma). The RNA (2 mg) was transcribed into cDNA

using oligo (dT) 12–18 and SuperScriptII Reverse Transcriptase

(Invitrogen). 1 ml of the cDNA was used for amplification of the

PLSCR1 transcripts by PCR using Taq DNA polymerase (Sigma)

and specific primers (forward primers 59-GATATGGTAGT-

CAGTGAGCTCACG-39 and 59-GACCTGGTTATCCAG-

GAGCTAATCA-39, reverse primers 59-AACACGCTCAGGG-

TACACGCCA-39 and 59-

GGTCCATGGAGAAGGTGTTCTC-39 for dynamin-1 and -2,

respectively). PCR reactions were run for 35 cycles and PCR

products (605 bp for Dynamin-1 and 645 bp for dynamin-2) were

analyzed on 1% agarose gel. A control without Reverse

Transcriptase was performed in parallel to rule out genomic

contamination.

The expression of dynamin isoforms from BCC, bovine brain

tissue and from PC12 cells was evaluated by western-blotting using

specific antibodies for dynamin-1 (Santa Cruz #sc-12724) and

dynamin-2 (BD#610264). The respective extracts were separated

by electrophoresis on a 4–12% SDS-polyacrylamide gel gradient

and then proteins were electrotranferred to nitrocellulose mem-

branes. Chemiluminescence was developed using the Super Signal

West Dura Extended Duration Substrate system (Pierce). Immu-

noreactive bands were detected using the image acquisition system

Chemi-smart 5000 and quantified using Bio-1D software (Vilber

Lourmat).

Chromaffin Cells Culture, Transfection and Amperometric
Detection of Exocytosis

Bovine adrenal chromaffin cells were isolated as previously

described [73] and incubated at 37uC in a 5% CO2. Cells were

kept at 37uC at least 24 hours before the experiments. Transient

transfections were performed using an Amaxa Nucleofector II

Device (Lonza, Switzerland), according to the manufacturer’s

instructions.

Amperometric recordings were performed as previously de-

scribed [74] using carbon fibers of 5-mm diameter (Thornel P-55;

Amoco Corp) and an AXOPACTH 1C-patch clamp amplifier

modified according to the manufacturer instructions (Molecular

Devices Corporation). The amperometric signal was low-pass

filtered at 1 KHz and digitized at 5 Hz with a PCI-6030 E

analogue to digital converter (National Instruments Corp.),

controlled by a WinEDR software (University of Stratchclyde,

UK). During recording, cells were perfused with a KREBS/

HEPES solution (mM: 140 NaCl, 5.9 KCl, 1.2 MgCl2, 2 CaCl2,

10 Hepes-NaOH, pH 7.4) and exocytosis was evoked by 10 s

pressure ejection of 10 mM DMPP.

Internalization Assays
Anti-DBH antibody internalization assay was performed as

previously described [32]. Briefly, 48 h after transfection with

dynamin-2 constructs, cells were washed in Locke’s solution

(140 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM

KH2PO4, 1.2 mM MgSO4, 11 mM glucose and 15 mM HEPES,

pH 7.2) and stimulated with 59 mM KCl for 30 s at 37uC. Then,

the cells were incubated with a polyclonal anti-DBH antibody (1/

1000) for 30 min at 4uC, washed with Locke’s solution at 37uC for

15 min, fixed and processed for immunofluorescence using an

Alexa-555-conjugated secondary antibody. The distribution of

DBH-containing granules was analyzed by Euclidean Distance

Map [32].

Electron Microscopy
Cultured chromaffin cells were incubated for 10 minutes at

37uC with 4 mM CytoD or for 1 hour with 100 mM dynasore,

fixed for 1 h with 2.5% glutaraldehyde and 2% paraformaldehyde

in 0.1 M sodium cacodylate and then rinsed and post fixed for 2 h

with 1% osmium tetroxide and 0.5% potassium ferrocyanide

(reducer osmium) to enhance membranes. Cells were dehydrated

and embedded in Epon Resin (Embed-812, EMS). Ultrathin

sections were obtained with a Reichert Ultracut-E ultramicro-

tome, mounted on copper grids and contrasted with uranyl acetate

followed by lead citrate. Samples were observed in a Zeiss EM 900

transmission electron microscope operating at 50 kV. Images for

analyses were recorded with a 7,000 X magnification. For the

quantitative morphometric analysis of the chromaffin granules we

included vesicles with an electron dense core and an intact vesicle

membrane. Three different investigators made independent

measurements from the same images and resulting vesicle sizes

were averaged. The area of chromaffin granules was determined
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using the public domain Image J software (NIH, Bethesda, MD,

USA). Granules diameter was calculated assuming a spherical

shape [diameter = 2*(area/p)0.5 ] and corrected using a previously

published algorithm [75]. The secretory granules were counted

using an ImageJ macro that allows automatically select dark

objects. Erroneously selected objects were manually removed to

obtain a corrected number of granules.

TIRF Microscopy to Visualize F-actin Organization in vivo
To obtain high resolution in vivo images of the cortical actin

organization pattern we used TIRFM. Briefly, living plated

chromaffin cells, transfected with Life-act-ruby or co-transfected

with Life-act-ruby and GFP-dynamin-2 constructs, were incubated

in a Krebs-Hepes solution, mounted in a chamber and maintained

at 37uC on the stage of a Nikon inverted microscope (TE2000E)

equipped with a 100X 1.49 N.A oil immersion objective, a white

light TIRF and an intensilight illumination system. Images were

acquired using a CCD cooled camera (Nikon Digital Sight DS-

2MBWc) driven by the ACT2U 1.72 software (Nikon Instruments,

Inc). The depth of the evanescence wave was estimated by the use

of two independent tools: 1) 1 mm-diameter microspheres stabi-

lized in a 1% agarose gel, and 2) a cell line transfected with a GFP

tagged-membrane protein to visualize the forward transport

vesicles. We determined that the maximal distance from the glass,

in which the structures can be visualized, goes from 200 to 500 nm

approximately. TIRF images were analyzed and processed using

the Image-J software (NIH, USA).

De novo Actin Polymerization in Permeabilized Cells
To evaluate de novo actin polymerization, cells were permeabi-

lized during 6 minutes with 20 mM digitonin in KGEP buffer

(mM: 139 K-glutamate, 20 PIPES, 5 EGTA, 2 ATP-Mg2+ and

different free calcium concentration, pH 6.6) in the presence of

0.3 mM Alexa Fluor 488 G-actin conjugate (Molecular Probes)

and then fixed with 4% paraformaldehyde for confocal micros-

copy visualization (upright Eclipse Nikon 80i). Total F-actin was

stained using 1 mM phalloidin-rodhamine B. Confocal images

were analyzed and processed using the Image-J software (NIH,

USA).

Data Analysis and Statistics
Amperometric spikes were analyzed using macros for IGOR

(Wavemetrics) specifically designed to filter, identify and analyze

individual amperometric spikes. All used macros can be down-

loaded from the web-site: http://webpages.ull.es/users/rborges/.

The analysis was restricted to spikes with amplitudes .10 pA. For

foot-signal, the analysis was restricted to spikes with foot

amplitudes .1 pA and foot durations .3 ms. Data of ampero-

metric spikes were averaged by individual cell, thus, data

presented correspond to means 6 SEM of cell averages from at

least three different cultures. For amperometric data and image

analysis ‘‘n’’ refers to the number of tested cells. Statistical

comparisons were performed utilizing the Kruskal-Wallis test for

nonparametric data or ANOVA test for parametric data. Results

are expressed as mean 6 standard error of the mean (SEM).
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