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Abstract

The estimation of fundamental frequency (Fp) from audio is a
necessary step in many speech processing tasks such as speech
synthesis, that require to accurately analyze big datasets, or real-
time voice transformations, that require low computation times.
New approaches using neural networks have been recently pro-
posed for Fy estimation, outperforming previous approaches in
terms of accuracy. The work presented here aims at bringing
some more improvements over such CNN-based state-of-the-
art approaches, especially when targeting speech data. More
specifically, we first propose to use the recent PaN speech syn-
thesis engine in order to generate a high-quality speech database
with a reliable ground truth Fp annotation. Then, we propose
3 variants of a new fully-convolutional network (FCN) archi-
tecture that are shown to perform better than other similar data-
driven methods, with a significantly reduced computational load
making them more suitable for real-time purposes.

Index Terms: speech analysis, Fj estimation, CNN

1. Introduction

Fundamental frequency (Fp) estimation is a necessary step in
many speech processing tasks such as TTS or singing synthe-
sis, for which it is often necessary to analyze big databases.
However, analysis errors are likely to induce undesirable arti-
facts and manual correction is difficult for such big datasets.
Until recently, all approaches used to be based on digital sig-
nal processing and heuristics, including methods based on the
auto-correlation function like YIN [1] or PYIN [2], or template
matching with the spectrum of a sawtooth signal as in SWIPE
[3], among many others.

But recently, new data-driven approaches using various
kinds of neural networks have been proposed for monophonic
Fpy estimation [4], [5], [6], [7], and for multi-pitch [8] or main
melody estimation [9], [10], outperforming previous results. A
recent trend, since the success of the wavenet model [11], is to-
wards end-to-end systems using the raw signal’s waveform as
input to the network. Following this trend, several neural net-
works for monophonic Fy analysis have been proposed, like
the CREPE model [6], or the ones proposed in [4] and [7],
using the signal’s waveform as input to a CNN, an MLP, or a
RNN, respectively. A particular advantage of such end-to-end
approaches is that once the model is trained, no parametrisation
is required from the user.

A particular use case for Fj estimation is in real-time appli-
cations and audio plugins for voice transformations [12] requir-
ing low computation times. But recent approaches like [6] are
too computationally heavy, and some more improvements are
thus still necessary in order to make such methods compatible
with real-time constraints, without reducing the accuracy.

Building up on previous studies, this paper aims at bring-
ing some improvements over data-driven state-of-the-art ap-
proaches for monophonic pitch estimation of speech sound,
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both in terms of accuracy and efficiency. Following the method-
ology described in [6], summarized in section 2, we propose
a new fully-convolutional neural network architecture that will
be described in Section 3. Then, in order to train this model
we propose to use the recent PaN speech synthesis engine [13,
Section 3.5.2] to build a high-quality speech database with a
reliable ground truth, as detailed in Section 4. Finally, we con-
ducted some evaluations to compare the performances of our
models to that of the CREPE and SWIPE algorithms, both in
terms of accuracy and computational efficiency, that will be de-
tailed in Section 5.

2. Method

For our purposes, we adopt a similar approach to the one de-
scribed in [6] for CREPE, with a few adaptations. In this ap-
proach, the F{ estimation is seen as a classification task, using
a CNN that takes a raw waveform as input and outputs a vector
of probabilities of the F{ to belong to each possible output pitch
classes. In our case, those 486 pitch classes correspond to a di-
vision of the [30-1000] Hz range into steps of 12.5 cents, assum-
ing that such a range covers all possible pitch values for vocal
sounds (including soprano singing and para-linguistic sounds
like baby cries). Note that 30Hz is very low for voice, but might
occur occasionally (e.g. in fry mode). The resolution has been
increased compared to [6] (12,5 cents instead of 25), assuming
that it might help to get more accurate results.

For training, the target vector is gaussian-blurred according
to equation 1, with a standard deviation of 25 cents, such that the
activation values y; of the bins of pitch ¢; (in cents) surrounding
a ground truth frequency crye decay accordingly (similarly to
(6D.
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The network is then trained to minimize the binary cross-

entropy between the target and predicted vectors.

From the predicted vector ¢, the resulting pitch estimate, in
cents, is then computed following equation 2, similarly to what
is done in CREPE!.
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This value can then be converted back from cents to Hz to obtain
the final Fp.

yi = exp(— (€))

3. Network architecture

The CREPE architecture proposed in [6] is a rather simple CNN
architecture composed of 6 convolutional layers followed each
by max pooling and relu activations, and a final dense layer with
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sigmoid activations that produces the prediction vector. How-
ever, this architecture has several drawbacks which will be dis-
cussed in the following.

A first drawback is related to the zero-padding applied to
the input of each convolutional layer (mode “same” in keras),
which is necessary in order to keep the same size between the
input and output of the layer. This may appear as a minor is-
sue when using small filters compared to the size of the input
(as is often the case in image processing for instance). But in
the CREPE architecture, the filters used are quite long (e.g. 512
samples in the first layer for an input of size 1024), and this
border effect is thus not negligible. In particular, in the layers
3 to 6 of the CREPE architecture, the size of the filters (64) is
superior to the temporal dimension of their inputs (8 to 64, de-
pending on the layer). Thus, most of the convolution operations
in these layers results in multiplications with zeros, from which
one would not expect the model to benefit, and which also raises
the number of computations. To overcome this problem, a so-
lution is to use only ’valid’ convolutions, for which no padding
is applied. However, in this case the output of a convolution is
smaller than its input, and the network architecture needs to be
adapted to take this into account.

A second limitation is due to the final dense layer of CREPE
which can only accept fixed-sized inputs, which implies to do
the prediction on a frame basis. For this purpose, the input
sound is split into overlapping frames that are fed individually to
the network which predicts one Fp value for each frame (the de-
gree of overlap depending on the expected time resolution of the
produced Fp curve). Each convolution is thus computed sev-
eral times on the overlapping parts of each succeeding frames
sharing the same values, which implies some redundancy in the
computation.

Instead of doing the prediction on a frame basis, we thus
propose here to use a Fully-Convolutional Network (FCN) ar-
chitecture. For this purpose, it is possible to replace the final
dense layer by an equivalent convolutional one whose length is
equal to the temporal dimension of the input tensor, and whose
number of filters is equal to the size of the expected ouput vector
(in our case 486) [14]. Since a convolutional layer does not re-
quire a fixed-sized input, this configuration allows running the
convolutions only one time on the whole input signal instead
of frame-wise, thereby saving a lot of calculation. Then, the
network will not output a single vector, but a 3D tensor contain-
ing the output prediction vectors at each temporal step, with the
pitch classes arranged along the depth dimension (as illustrated
in figure 1).

Beside this fully-convolutional approach, one way to re-

duce the computation load of a CNN is to reduce the number
of parameters (i.e. the number of layers, the number of filters
in each layer, or the size of those filters). In the implementation
of CREPE, it is suggested to use less filters to reduce the size of
the model. But it may also be beneficial to try reducing the size
of the filters and number of layers.
In the CREPE architecture, the filters in the first layer are par-
ticularly long (512), such that they cover at least 1 full period of
the signal (1 period of a 30Hz sinusoid at 16 kHz is 500 sam-
ples). However, there is no evidence that this is necessary, and
the network might be able to learn as well using smaller filters.
In addition to reducing the number of filters in each layer, we
thus also propose to reduce their size.

Finally, the CREPE model is trained on 16 kHz audio.
However, only a few harmonics are necessary to infer a pitch.
Reducing the sampling rate may also help to reduce the neces-
sary computation, by getting read of unnecessary details in the

signal. As we limit the target pitch range to [30-1000] Hz, we
chose to reduce the sampling rate to 8 kHz, which still allows to
preserve at least the 4 first harmonics (including the fundamen-
tal).

Based on all those considerations, we propose here a new
fully-convolutional architecture, described in figure 1, that in-
corporates all the previously-exposed proposals. The proposed
model is composed of 7 convolutional layers. Max pooling is
included only after the first 3 convolutional layers (including
more max pooling layers after the 3 one would require to use a
much bigger input size, which is undesirable for latency). Each
layer is followed by batch normalization [15], and its output
is passed through relu activations, except for the last layer for
which sigmoid activations are used. The number of filters in
each layer and their sizes are detailed in figure 1. All convolu-
tional layers are applied with a stride of 1. The minimal input
to the network to obtain 1 Fy value is a 1953-samples excerpt
from an audio signal sampled at 8 kHz. Note that because no
padding is applied before the convolutions, the temporal dimen-
sion is reduced after each convolutional layer even without max
pooling. The relation between the output size [, and input
size l;, of a convolutional layer and the size of the filters [ is
lout = lin — Iy + 1. The choice of the input size of the net-
work has thus been determined according to this relation, after
the network architecture (number and positions of the convolu-
tional and max pooling layers, and size of the filters) has been
fixed. Because of the size reduction implied by the 3 pooling
layers, the time step between each output prediction is equal to
8 samples (= 23). The temporal resolution of the prediction
(1ms) is thus greatly increased compared to a frame-based pre-
diction.

However, this model imposes a minimum latency of a half
input size duration, i.e. 1223(/)2 = 0.122s, which is quite big for
real-time purposes. In order to reduce this latency, we propose
two alternative models based on the same architecture. The first
proposed alternative is to remove the 2"¢ convolutional layer
in figure 1 (including the max pooling). This alternative model
requires an input of size > 929, which reduces the latency to
982090/02 ~ 0.058s. The second alternative is to keep the same
architecture as in figure 1, but reducing the size of the filters in
all layers to 32. In this case, the minimum input size is 993 (la-
tency of 989030/02 ~ 0.062s). We call those 3 models respectively
FCN-1953, FCN-993, and FCN-929 according to their respec-
tive input sizes.

With the proposed architectures, the number of parameters
has been reduced from about 22.2 - 10° for CREPE to about
12.3 - 10° for FCN-1953 and FCN-929, and 6.7 - 10° for FCN-
993, while getting similar or better results in our evaluations, as
will be described in section 5. Moreover, the proposed fully-
convolutional approach allows to significantly reduce the com-
putation time. The proposed architectures have been imple-
mented in keras, and a python implementation with pre-trained
models are made available online’.

4. Database
4.1. Data generation

For the purpose of proper training and objective evaluations,
we need a database with a perfect ground truth Fy annotation.
Though many databases of voice recordings are available, ob-
taining a reliable £y ground truth is less straightforward, as ex-

Zhttps://github.com/ardaillon/FCN-f0
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Figure 1: Architecture of the proposed fully-convolutional network FCN-1953. All convolutions are valid with stride 1. For the
alternative model FCN-929, the 2nd layer is removed and the input size is 929. For the alternative model FCN-993, all filters are of

size 32 except in the last layer, and the input size is 993.

isting estimators are likely to make errors, and manual correc-
tion is not precise and not applicable to big databases.

For this purpose, a first approach, proposed in [7], [16],
consists in using a specific database, such as the PTDB-TUG
database [17], that includes laryngograph recordings on which
one of the already available F{ estimators is applied to obtain a
good estimation of the ground truth. (However, our experience
with one such database revealed that the laryngograph record-
ings where sometimes too corrupted to obtain a reliable ground
truth).

A second solution, proposed in [6], [18], consists in using
synthesis to have a perfect control over the Fp of the resulting
signals. In this case, a database of real recordings is first ana-
lyzed using a pre-existing estimator to get annotations that will
be used as a ground truth, but that are likely to contain errors.
Then, instead of correcting these annotations, the sound is re-
synthesized based on this ground truth F{ annotation, such that
the resynthesis perfectly matches the corresponding Fj track,
including the potential errors.

Since proper laryngograph recordings are rarely available
and given that the synthesis approach allows more control over
the ground truth, we chose this second approach. However, the
synthesis method used in [6] is purely harmonic, using a bank
of oscillators, and thus doesn’t include any unvoiced compo-
nent. Though this approach may be acceptable for some musi-
cal instruments, it seems oversimplistic for vocal sounds, and is
likely to result into too homogeneous and unrealistic data that
doesn’t account well for all the complexity and variability of
vocal sounds.

Many available vocoders allow to synthesize speech with
a good quality. It seems thus benefitial to use one of them in
order to improve the quality of the dataset for speech. We pro-
pose here to use the recent PaN vocoder for this purpose [13,
Section 3.5.2]. Basically, the PaN model uses the target Fp val-
ues to generate a sequence of pulses based on the LF model
of glottal source [19]. In order to model various voice quali-
ties, a constant random Rd value has been chosen in the range
[0.3-2.7] for each synthesized file. Then, the vocal tract filter is
applied on the pulses. Finally, the unvoiced component, sepa-
rated from the original sound, is added to the voiced source to
generate the complete signal. Since the separation of the voiced
and unvoiced components is not perfect, some sinusoids may
sometimes remain in the unvoiced residual. In order to avoid

this problem, the phases in the residual signal are randomized.

4.2. Dataset description

To create our own dataset, we first merged the BREF [20] and
TIMIT [21] datasets. Then, the CREPE algorithm [6] with the
provided pre-trained model has been used to estimate the Fj
accross the whole database. Finally, each sound has been re-
synthesized using the PaN synthesis engine. This ends up into
a total of 11616 short sentences spoken by many male and fe-
male voices in English and French languages. Then, in order to
better span the targeted range of Fp values ([30-1000] Hz), the
same dataset is also generated one octave lower and one octave
higher. Files that contain Fp values outside of the target range
are excluded from the training and evaluation data. The sounds
have been first generated at a 16 kHz sampling rate, and then
subsampled to 8 kHz, as required by our models.

5. Evaluation
5.1. Methodology

For evaluation purposes, we split our database into 3 subsets
for training, validation and evaluation (with the proportions
60/20/20). Since the same synthesis are replicated at 3 different
sets of transpositions in the database, the same split is applied
to them, so that the content of the samples present in the 3 sub-
sets are completely different, independently of their pitch, and
a similar pitch distribution is selected for the 3 subsets.

With this methodology, we compare the results of our mod-

els against that of the CREPE and the SWIPE algorithms. For
the CREPE model, we evaluate both the pre-trained model pro-
vided by the authors ("CREPE”), and another version re-trained
in similar conditions than our models ("CREPE-speech”). Note
that the CREPE and SWIPE algorithm are trained and evaluated
on the 16 kHz database, while 8 kHz is used for our models.
In [6], the CREPE algorithm has been shown to outperform both
the SWIPE and pYIN algorithms. However, this evaluation has
only been conducted on synthetic data. In order to attest that the
results are not biased by the synthetic quality of our database,
we thus also evaluate the results on a manually-annotated subset
of 100 real recordings taken from the test split.

The results are evaluated in terms of Raw Pitch Accuracy
(RPA) using the mir_eval [22] python package, with 25, 50, and



Table 1: Raw Pitch Accuracy values (mean and std) on the synthesized and manually corrected databases

FCN-1953 FCN-993 FCN-929 CREPE CREPE-speech SWIPE
PaN-synth (25 cents) | 93.62 +3.34% | 94.31 +3.15% | 93.50 £3.43% | 77.62+9.31% | 86.92 +8.28% | 84.56 = 11.68%
PaN-synth (50 cents) | 98.37 +1.62% | 98.53 +1.54% | 98.27 £ 1.73% 91.23 £ 6.0% 97.27 +2.09% 93.1 £7.26%
PaN-synth (200 cents) | 99.81 +0.64% | 99.79 £0.65% | 99.77 £0.73% | 95.65 £5.17% | 99.25 £ 1.07% 97.51 + 4.9%
manual (50 cents) 88.32 £6.33% | 88.57+£5.77% | 88.88 +5.73% | 87.03 £7.35% | 88.45+5.70% 85.93 £7.62%
manual (200 cents) 97.354+3.02% | 9731 £2.56% | 97.36 +2.51% | 92.57 +5.22% | 96.63 £2.91% 95.03 £+ 4.04%

Table 2: Minimum latency and mean computation time over 100
trials for a 2.51s sound, on a GPU and single core CPU

FCN-1953 | FCN-993 | FCN-929 | CREPE | SWIPE
latency 0.122s 0.062s 0.058s 0.032s 0.128s
GPU 0.016s 0.010s 0.021s 0.092s X
CPU 1.65s 0.89s 3.34s 14.79s 0.63s

200 cents thresholds. Note that 50 cents corresponds to about
only 3Hz for a F;, of 100Hz, while the width of a sinusoid on
the spectrogram display used for manual correction is > 15Hz.

5.2. Training procedure

All models are trained using mini-batch gradient descent with
the Adam optimizer [23], with mini-batches composed of 32 ex-
amples randomly selected from the training set. An initial learn-
ing rate of 0.0002 is used, and a reduction by a factor 0.75 is
applied when the validation loss doesn’t decrease for 5 epochs,
where an epoch consists of 500 batches, with a minimum value
0.0000025. The training is stopped when the validation accu-
racy has not improved for 32 epochs. Note that while an FCN
can accept an input of arbitrary length, the input segments used
for the training stage remain of fixed size, such that the tem-
poral dimension of the output tensor is always equal to 1 dur-
ing training. The input segments are normalized by their mean
and variance prior to be fed to the network for training. (How-
ever, during inference, since the size of the input is not fixed,
each sample is normalized individually by the mean and vari-
ance computed over a sliding window). Unlike in [6], we did
not use dropout for training our models.

5.3. Results

The obtained RPA values (with mean and variance) are shown
in table 1, both for the synthetic speech test split ("PaN-synth”)
and the manually-corrected subset of real recordings (“man-
ual”). As can be seen, our models always perform better than
the SWIPE and CREPE algorithms (except for the manual 50
cents case where the variance is the largest). The difference
is particularly important with the 25 cents threshold, wich is
probably partly due to the adapted target range and finer output
resolution compared to CREPE. Regarding CREPE, the impor-
tant difference of results between the default model and the one
trained on our database ("CREPE-speech”) outlines the impor-
tance of using an appropriate database according to the targeted
data for training. The 3 variants of the proposed architecture
gave relatively similar results in all cases.

Besides the accuracy, we also compared the computation
time for the different approaches. The mean computation time
over 100 analysis of a sound of duration 2.51s for each algo-
rithm, both on a GPU and on a single core CPU, are reported
in table 2, along with the minimum latency (half of input length
divided by sampling rate. The biggest window size used by the
SWIPE algorithm is 4096). We can see that both our model

FCN-1953 and FCN-993 could be applied in real-time even on
a single core CPU and FCN-993 allows reducing the compu-
tation time by a factor 16 compared to the CREPE algorithm.
However, although the FCN-929 model has the lowest latency,
it is also about 2 times slower than FCN-1953. This is due to
the removal of the 2" max pooling layer in this case, which im-
plies a finer output time resolution of 4 samples instead of 8, and
thus about twice more computations. While both models obtain
similar accuracy, it is thus more efficient to use smaller filters
rather than removing one layer of the network to reduce the la-
tency. (However, complementary experiments showed that re-
sults start to degrade when the filters get too small.)

About the manual database, one can observe that the results
are much lower than on the synthetic one for all algorithms (in-
cluding swipe which is not data-driven), when using a threshold
of 50 cents for the evaluation. However, they are already much
better when evaluating with a 200 cents threshold. This may
be explained by the inaccuracy of the manual correction which
doesn’t allow obtaining a very precise ground truth. Another
possible explanation for those differences is that some files con-
tain rough voice quality which is not present in the training
database, and for which the ground truth Fp is ambiguous.
Finally, those results reveal that our FCN models (along with
”CREPE-speech”) tend to give much more consistent result
across all the evaluation data, compared to SWIPE that is better
for high-pitched sounds than for low-pitched ones, according to
complementary analysis.

In overall, the best alternative in terms of accuracy, speed
and latency would be the FCN-993 model.

6. Conclusion

We presented a new Fully-Convolutional Network (FCN) archi-
tecture for monophonic Fj estimation. An evaluation showed
that our model ouperformed the CREPE and SWIPE ap-
proaches on synthetic and real speech data, in terms of accu-
racy. Furthermore, thanks to the fully-convolutional approach
and the reduction of the model size, the computation time of our
proposed models is significantly reduced compared to CREPE,
making it applicable in real-time. However, there is still room
for improvements to further reduce the latency. Further inves-
tigations would be necessary in order to evaluate the robust-
ness of our model to different types of noise, and compare
its results with other state-of-the-art models like [7]. While a
voiced/unvoiced decision could be made by setting a threshold
on the maximum value of the output vector, this approach did
not work robustly in our experiments. It would thus be better
if the network could output directly a voicing decision addi-
tionally to the fO values, which should be investigated in fu-
ture work. Finally, another remaining problem is in the case of
rough sounds containing subharmonics, where the ground truth
Fp is ambiguous. One possible approach to avoid this ambi-
guity would be to detect the pulse positions instead of the Fj
directly.
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