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Effective ocean management and conservation of highly migratory species depends on 

resolving overlap between animal movements and distributions, and fishing effort. 

However, this information is lacking at a global scale. Here we show, using a big-data 

approach that combines satellite-tracked movements of pelagic sharks and global fishing 

fleets, that 24% of the mean monthly space used by sharks falls under the footprint of 

pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of 

internationally protected species had the highest overlap with longlines (up to 76% and 

64%, respectively), and were also associated with significant increases in fishing effort. 

We conclude that pelagic sharks have limited spatial refuge from current levels of fishing 

effort in marine areas beyond national jurisdictions (the high seas). Our results 

demonstrate an urgent need for conservation and management measures at high-seas 

hotspots of shark space use, and highlight the potential of simultaneous satellite 

surveillance of megafauna and fishers as a tool for near-real-time, dynamic management. 

Industrialised fishing is a major source of mortality for large marine animals (marine 

megafauna)1-6. Humans have hunted megafauna in the open ocean for at least 42,000 years7, 

but international fishing fleets targeting large, epipelagic fishes did not spread into the high 

seas (areas beyond national jurisdiction) until the 1950s8. Prior to this, the high seas constituted 

a spatial refuge largely free from exploitation as fishing pressure was concentrated on 

continental shelves3,8. Pelagic sharks are among the widest ranging vertebrates, with some 

species exhibiting annual ocean-basin-scale migrations9, long term trans-ocean movements10, 

and/or fine-scale site fidelity to preferred shelf and open ocean areas5,9,11. These behaviours 

could cause extensive spatial overlap with different fisheries from coastal areas to the deep 

ocean. On average, large pelagic sharks account for 52% of all identified shark catch worldwide 

in target fisheries or as bycatch12. Regional declines in abundance of pelagic sharks have been 

reported13,14, but it is unclear whether exposure to high fishing effort extends across ocean-
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wide population ranges and overlaps areas in the high seas where sharks are most abundant5,13. 

Conservation of pelagic sharks – which currently have limited high seas management12,15,16 – 

would benefit greatly from a clearer understanding of the spatial relationships between sharks’ 

habitats and active fishing zones. However, obtaining unbiased estimates of shark and fisher 

distributions is complicated by the fact that most data on pelagic sharks come from catch 

records and other fishery-dependent sources4,15,16. 

Here, we provide the first global estimate of the extent of space use overlap of sharks with 

industrial fisheries. This is based on the analysis of the movements of pelagic sharks tagged 

with satellite transmitters in the Atlantic, Indian and Pacific oceans, together with fishing vessel 

movements monitored globally by the Automatic Identification System (AIS), developed as a 

vessel safety and anti-collision system (see Methods). Our study focused on 23 species of large 

pelagic sharks that occupy oceanic and/or neritic habitats spanning broad distributions from 

cold-temperate to tropical waters (Supplementary Table 1). All these species face some level 

of fishing pressure in coastal, shelf and/or high-seas fisheries, with the International Union for 

the Conservation of Nature (IUCN) Red List assessing almost two thirds as being Endangered 

(26%) or Vulnerable (39%), and a further quarter as Near Threatened (26%) (Supplementary 

Table 2). Regional fisheries management organizations (RFMOs) are tasked with the 

management of sharks in high seas areas, yet little or no management is in place for most 

species3,5,12-18. 

Movement patterns of sharks and fishing vessels 

Eleven of the largest shark species/taxa groups accounted for 96% of the 1,804 satellite tags 

deployed (blue Prionace glauca; shortfin mako Isurus oxyrinchus; tiger Galeocerdo cuvier; 

salmon Lamna ditropis; whale Rhincodon typus; white Carcharodon carcharias; oceanic 

whitetip Carcharhinus longimanus; porbeagle Lamna nasus; silky Carcharhinus falciformis; 
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bull Carcharhinus leucas; and hammerhead Sphyrna spp. sharks) (Supplementary Tables 35). 

Movement patterns indicated that multiple species aggregated within the same major 

oceanographic features (Fig. 1), such as the Gulf Stream (blue, shortfin mako, tiger, white and 

porbeagle sharks), the California Current (blue, shortfin mako, white and salmon sharks), and 

in the East Australian Current (blue, shortfin mako, tiger, white and porbeagle sharks), 

(Extended Data Fig. 1; Supplementary Results and Discussion 2.1). The global relative density 

map (Fig. 2a) reveals distribution patterns of pelagic sharks and locations of space use hotspots 

(defined here as those areas with ≥75th percentile of weighted daily location density; Methods). 

Major hotspots of tracked pelagic sharks in the Atlantic Ocean were in the Gulf Stream and its 

western approaches, Caribbean Sea, Gulf of Mexico and around oceanic islands such as the 

Azores (Fig. 2a; Supplementary Table 6). In the Indian Ocean, hotspots were evident in the 

Agulhas Current, Mozambique Channel, the South Australian Basin and northwest Australia, 

while Pacific hotspots were in the California Current, Galapagos Islands, and around New 

Zealand. Although tagging sites occurred as expected in some shark space use hotspots – as 

tagging rates are inherently higher in hotspots – we also identified hotspots where no tagging 

sites occurred: in the North Atlantic (outer Gulf Stream, Charlie Gibbs Fracture Zone, western 

European shelf edge and Bay of Biscay); Indian Ocean (southern Madagascar, Crozet and 

Amsterdam Islands, South Australian Basin); and the Pacific (Alaska Current, outer California 

Current, white shark ‘Café’ area11, North Equatorial Current, Clipperton Island, Kermadec 

Islands) (Extended Data Fig. 1). There was consistency between our fine-scale shark hotspots 

and coarse scale hotspots estimated from fishery-dependent catch data (Supplementary Results 

and Discussion 2.1). 

To determine the extent to which shark space use hotspots fall under the footprint of global 

industrialised fisheries we mapped the movements of fishing vessels carrying AIS transmitters, 

estimated to be fitted on 50–75% of active vessels >24 m length19-22. Firstly we mapped the 
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mean annual and mean monthly fishing effort (days) of AIS-equipped fishing vessels using 

various gear types19 during 2012–2016 (Extended Data Fig. 2; Methods) and then mapped the 

estimated global fishing effort of drifting pelagic longline and purse seine vessels separately as 

these two gears catch the majority of pelagic sharks12,15 (Fig. 2b; Extended Data Fig. 2). The 

global distribution map of longline fishing effort identifies several largescale, highuse areas 

such as the North Atlantic, southwest Indian Ocean, and the central equatorial and northwest 

Pacific regions (Fig. 2b; Extended Data Figs. 1, 2). There were also areas where industrial 

longline activity appeared sparse, for example the central and southwest North Atlantic, 

northeast Pacific, and northern Indian oceans. We focused our detailed analysis of shark 

overlap with that of longline fishing effort, as this gear catches most pelagic sharks globally15 

and since most other AIS fishing vessel gear types represented in the dataset do not target or 

generate abundant bycatch of pelagic sharks19 (Supplementary Results and Discussion 2.2). 

The number of Atlantic AIS longline fishing effort days was positively correlated with the 

number of observed baited longline hooks deployed in the Atlantic (observed hooks, 

Spearman’s r = 0.182, p = 0.008; n = 241; see Methods), confirming AIS longline fishing effort 

days were indicative of actual fishing effort19.  

Spatial overlap of sharks and fishing effort  

To explore the spatial heterogeneities of sharks and vessels, we used generalised additive 

models to determine how shark relative density of location estimates and longline fishing effort 

were affected by environmental covariates (see Methods; Supplementary Table 7). 

Distributions of pelagic shark density and fishing effort of pelagic longline vessels were best 

explained by the same drivers, with both demonstrating strong relationships with habitat types 

characterised by surface and subsurface temperature gradients (fronts23; thermoclines) and/or 

high primary productivity (Supplementary Table 8, Extended Data Fig. 3; Supplementary 
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Results and Discussion 2.3). The similar environmental drivers identified predict high spatial 

overlap because sharks are known to aggregate in biologically productive features like fronts 

to enhance foraging opportunities5,6,23, a behaviour that fishers exploit to increase their chances 

of making higher catches of commercially valuable epipelagic fishes, including sharks5,6.  

We calculated the spatial overlap of tracked sharks with longline fishing effort for a mean 

month within the datasets (Methods). Overlap was defined as shark and fishing effort spatial 

co-occurrence within a 1 × 1 grid cell in an average month (Methods) (for grid-cell size 

analysis see Supplementary Table 9, Extended Data Fig. 4, Supplementary Results and 

Discussion 2.4). Overlap between tracked sharks’ space use was dominated by pelagic longline 

gear (Fig. 2; compare longline distribution in Fig. 2b with all AIS fishing vessels in Extended 

Data Fig. 2a). Globally, the distribution of longline fishing activity in the dataset overlapped 

24% of the mean monthly space use of tracked sharks at the 1  1 scale (mean monthly overlap 

= 23.7%  32.7 S.D.; median = 4.5%, n = 1,681 tracks). This estimate is unlikely to be biased 

by a majority of our tags being deployed in the northwest Atlantic or northeast Pacific oceans 

because there was relatively low AIS-monitored longline fishing effort in both regions (Figs. 

1a, 2a-c). Across four regions where the majority of sharks were tracked, mean monthly spatial 

overlap of the 11 most frequently tracked species/taxa groups with longline fishing effort was 

8% (east Pacific), 24% (Oceania), 37% (North Atlantic) and 38% (southwest Indian Ocean) 

(Supplementary Table 10). Overlap patterns between ocean regions, and for species within 

regions, were not driven by the numbers of tags deployed (Supplementary Results and 

Discussion 2.1). Overlap varied across species and oceans, reflecting the heterogeneous 

distributions of space use by sharks and longline fishing activity (Extended Data Figs. 6, 7). 

For example, monthly spatial overlap, averaged across all oceans, ranged from 49% for the 

blue shark, down to 1.3% for the salmon shark. Among oceans, the overlap of space use by 

blue sharks – the pelagic shark most commonly caught by open-ocean longline fleets17 – was 
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76% in the North Atlantic, decreasing to 14% in the east Pacific (median overlap values given 

in Supplementary Tables 10, 11). 

To estimate the potential exposure of sharks in different ocean regions to longline fishing effort, 

we calculated the mean monthly fishing effort that individual sharks were exposed to in each 

grid cell they occupied during a corresponding month, standardised to account for variations 

in individual track durations (hereafter termed fishing exposure index, FEI; see Methods). As 

expected across all oceans and species, sharks were exposed to highly variable longline fishing 

effort (Supplementary Table 10). Given this, we tested whether FEI was indicative of actual 

sharks captured and landed by fisheries. We compared the median monthly individual species 

FEI for North Atlantic shark species (the ocean for which we had the most species and tracks) 

with official records from the Food and Agriculture Organization of the United Nations (FAO) 

on mean annual North Atlantic landings of those species (Methods). We found a significant 

positive relationship between landings and individual species mean FEI (linear regression, r2 

= 0.45, n = 8 species/taxa group, F = 6.72, F0.05(1),1,7 = 5.59, p < 0.05) (Extended Data Fig. 5), 

implying the index reflects fishing-induced shark mortality. 

Hotspots of spatial overlap of shark relative density and longline fishing effort were evident 

for example in the Gulf Stream and stretching eastward to the Azores, western European shelf 

edge, west African upwelling, California Current (and white shark Café11), Agulhas Current, 

the southern Great Barrier Reef, and New Zealand shelf waters (Fig. 2c). This demonstrates 

that high fishing effort is focused on extensive shark hotspots globally (compare 

Supplementary Tables 6 and 12). Nonetheless, significant areas of the high seas used by pelagic 

sharks may exist that are largely free from AIS-monitored fishing activity of longline and purse 

seine vessels and which could be targeted for shark conservation measures (Supplementary 

Results and Discussion 2.7). Identifying such areas can only be addressed with the fishery-

independent distributions presented here. However, a general characteristic of large areas with 
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low longline fishing activity was also one of lower shark densities (<75th percentile of relative 

density; Fig. 2a), indicating sharks were not remaining in these areas but moving through them, 

potentially as part of foraging excursions or migrations for reproduction9,11. The lower relative 

density of sharks suggests lower productivity – supported by our modelling results (model 1; 

Extended Data Fig. 3) – and consequently poorer fishing opportunities, which may explain the 

apparent low fishing effort. The results also show that very few large hotspots of space use by 

pelagic sharks occurred in areas free from AIS fishing vessels, particularly longline and purse 

seine gears (Fig. 2c; Extended Data Fig. 2c, d).  

Determining spatial risk to sharks from fishing 

The extent of spatial overlap between shark relative density distribution and longline fishing 

effort indicates which species are more at risk from fishing and how this risk is distributed (Fig. 

3). Since we demonstrate that a large proportion of shark fishing mortality as represented by 

landings is related to longline fishing effort in shark space use areas, it follows that sharks 

having both high fishing overlap and FEI (greater susceptibility) will be at greater risk of 

capture than those with low overlap and low FEI (Fig. 3). We found the main commercially 

valuable pelagic sharks were grouped within the highest potential risk zone in the North 

Atlantic and east Pacific (blue and shortfin mako sharks) (Fig. 3a,b; see Supplementary Results 

and Discussion 2.5 for significance tests and results for other species). In the North Atlantic, 

shortfin mako and blue sharks were at significantly greater risk compared to other tracked 

sharks because mean monthly space use overlap of 62% (median, 71%) and 76% (median, 

81%) respectively, co-occurred with high mean FEI (Fig. 3a; Extended Data Figs. 6,7; 

Supplementary Table 10). However, exposure risk varied between oceans because although 

spatial overlap of blue shark remained relatively high in the southwest Indian Ocean and for 

blue and shortfin mako sharks in Oceania (mean, 18–47%; median, 11–33%; Supplementary 

Table 10), individual species FEI means were lower in those overlapping areas (Fig. 3a, c, d). 
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Among sharks generally considered less commercially valuable, including tiger and bull 

sharks, we found risk from longlines was high in some but not all regions. Bull sharks used 

spatially limited near-shore habitats in tropical regions within the southwest Indian Ocean, and 

in those areas they were at increased risk due to high mean overlap (94%) and high mean FEI 

(Fig. 3c; Supplementary Table 10). This greater susceptibility could lead to high localised 

catches, which, if replicated elsewhere, could explain why bull sharks are one of the ten most 

commonly traded species in the Hong Kong fin market24. In contrast, tiger sharks were exposed 

to lower overlap and lower mean FEI in all ocean areas except Oceania, where they were within 

the highest potential risk zone (Fig. 3a-d; Supplementary Results and Discussion 2.5, 2.6).   

High risk was evident for internationally protected sharks under CITES (Convention on 

International Trade in Endangered Species) Appendix II and RFMO regulations. The porbeagle 

shark (IUCN Red List Endangered globally) and white shark (Vulnerable globally) have low 

population sizes compared to historic levels (Supplementary Table 2). In the North Atlantic 

and Oceania we found porbeagle in the highest risk zone (Fig. 3a,d), indicating high potential 

for incidental bycatch mortality. White sharks were in the highest risk zone in all oceans where 

they were tracked with mean spatial overlap ranging from 15% (east Pacific; median, 13%) to 

64% (southwest Indian Ocean; median 65%), except the North Atlantic where mean FEI was 

just below the average FEI for all species (Fig. 3; Supplementary Table 10). Our results 

showing high risk for porbeagle and white sharks from longlining across broad regions 

highlight the need for continued protection  including sufficient scientific observer coverage 

on vessels to underpin accurate data reporting  so that stock rebuilding can continue25, which 

for porbeagle is estimated to take a further 30 years18. 

Decreasing the grid cell size in spatial analyses can lead to concomitant decreases in percentage 

spatial overlap estimates19, which could potentially affect the species risk exposure patterns we 
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found. However, a grid-cell size analysis showed that the patterns of species occurrence within 

the high or low risk zones remained remarkably consistent irrespective of the spatial scale at 

which they were observed (Extended Data Fig. 4), or the subset of tracking years analysed 

(Extended Data Figs. 8, 9; Supplementary Results and Discussion 2.4). 

Temporal variation in risk 

The highest levels of exposure risk of sharks to longline fisheries were not constant through 

time but varied seasonally as shark and fishing vessel space use shifted in relation to each other 

(Fig. 4; Extended Data Fig. 10). Overall for species with sufficient data (plotted in Fig. 4), the 

mean monthly overlap of species space use with mean FEI showed sharks spent 4–6 months 

per year in the lowest risk zone and 2–6 months in the highest, with differing patterns of 

changing risk from fishing evident across species (Fig. 4). For example, highest risk for 

southwest Indian Ocean white and North Atlantic blue sharks occurred at discrete times in the 

year. For Indian Ocean white sharks, this pattern arises from long-range seasonal movements 

(Dec–Feb, Jun/Jul, Oct) into annually persistent areas with high mean FEI. For blue sharks, the 

discrete pattern appears driven by sharks and longline vessels co-occurring maximally in boreal 

winter and summer, with lower exposure risk occurring in boreal spring and autumn as sharks 

migrate north before returning south5. Longline fisheries also made this seasonal south-north-

south movement, but lagged behind movements of blue sharks and thus exhibited lower mean 

overlap and FEI during those times (Extended Data Fig. 10a-d). Similarly, annual risk patterns 

of east Pacific white and Australian tiger sharks were driven by migratory behaviour, with 

highest risk occurring for three consecutive months in boreal (white) and austral (tiger) spring 

as sharks arrive in areas with higher than average exposure to longline fishing effort (Fig. 4c, 

e). In contrast, shortfin mako sharks in the North Atlantic were exposed to high mean overlap 

(60%) and high mean FEI continually through the boreal summer and autumn (Jul–Oct), 
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principally due to occupation of a space use hotspot located where the Gulf Stream and 

Labrador Current converge that results in persistent high overlap with high longline effort (Fig. 

4b; Extended Data Fig. 10e-h). Shortfin mako and vessel tracking indicates that fishery-

induced mortality within this hotspot is therefore likely to be high. This was confirmed by the 

high overall return rate of satellite tags (19.3%) attached to Atlantic shortfin makos (n = 119 

tags; tracking duration: mean  SD = 161.5 d  156.9; median = 109 d) that were returned to 

us after sharks were captured by Atlantic longline fleets during the study. To our knowledge, 

this is the highest species-specific return rate for sharks yet recorded on an ocean scale, as 

opposed to regional scale, study26,27 (Fig. 2c; Supplementary Table 13; Supplementary Results 

and Discussion 2.6). 

Discussion 

Our results show that globally important habitat areas for threatened pelagic sharks overlap 

significantly with industrial fishing activity in both space and time. Given the high fishing 

effort in hotspots of many species for significant portions of the year, and the very few tracked 

hotspots free from exploitation, our study reveals exposure risk of sharks to fisheries in the 

high seas is spatially extensive – stretching across entire ocean-scale population ranges for 

some species. Overall, the patterns suggest a future with limited spatial refuge from industrial 

longline fishing effort that is currently centred on ecologically important oceanic shark 

hotspots. The distribution maps reported here are, therefore, a first but essential underpinning 

for a conservation blueprint for pelagic sharks in the high seas. Our study highlights the scale 

of fishing overlap with shark hotspots and argues for more effective and timely monitoring, 

reporting and management of pelagic sharks as a result. To enhance the recovery of vulnerable 

species, one solution is designation of largescale marine protected areas (MPAs)28 around 

ecologically important space use hotspots of pelagic sharks23, notwithstanding the need for 
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more complete reporting of catch data with enforcement to support stricter conventional 

management by catch prohibitions, quotas or minimum sizes5,16. This study outlines shark 

hotspot locations where AIS-monitored fishing effort appears currently relatively low, which 

is where shark conservation could be maximized, while minimizing impact on fishing activity 

not directed at sharks (Supplementary Results and Discussion 2.6, 2.7). Although it would be 

challenging to develop a legally binding treaty for managing high seas fauna20, burgeoning 

technology for global surveillance and enforcement now offers valuable additional options for 

a step change in ocean management6,29.  

Satellite monitoring of marine megafauna1,5,11,30, oceanographic features (eddies, fronts)6,23 and 

global fishing vessel distributions19 could provide signals of shifting space use by wide-ranging 

sharks and other marine megafauna due to environmental changes that, in turn, could inform 

designation of new temporary time-area closures to industrial fishing6 and tracking of fishers’ 

displacement activities20. The potential of near real time, synoptic measurements of marine 

megafauna, fishing activity and the marine environment, particularly given the remoteness and 

vast extent of the high seas, suggests technology-led conservation measures will be crucial 

tools for reversing the observed declines in iconic ocean predators3 such as pelagic sharks12-

14,29. Conservation technology could develop in the future toward incorporation of adaptive 

management strategies6,29 that are actionable in real time to assess risks in the overlap between 

fishing vessels and sharks across the global ocean. 
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The Methods, including statements of data availability and Nature Research reporting 

summaries, along with additional references are available in the online version of this paper.  
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Fig. 1. Movements of oceanic and neritic pelagic sharks. (a) Daily state-space model 

locations estimated from locations obtained via satellite transmitters deployed on 1,681 sharks 

from 23 species between 2002–2017. Extent of individual shark species space use areas are 

illustrated for the species with the greatest numbers of tags deployed across multiple ocean 

regions: blue Prionace glauca (b), shortfin mako Isurus oxyrinchus (c), tiger Galeocerdo 

cuvier (d), and white Carcharodon carcharias (e) sharks. Shark images created by M. Dando. 
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Fig. 2. Spatial distributions and overlap of sharks and longline fishing vessels. (a) 

Distribution of the mean monthly weighted, normalized location density of tracked sharks in 1 

× 1 grid cells (shark hotspots were defined by cells with ≥75th percentile of relative density). 
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(b) Mean annual distribution of fishing effort (mean days per grid cell) of AIS tracked 

longlining vessels in 2012–2016 (see Methods). (c) Distribution of the mean monthly overlap 

and level of fishing effort (days) sharks were exposed to in overlapping areas for all species 

within 1 × 1 grid cells (see Methods). Hotspots of spatial overlap of shark density and fishing 

effort were defined as cells with ≥75th percentile of mean FEI. Blue circles denote locations 

where tagged sharks were caught by commercial fishers mainly using pelagic longlines and 

coastal nets. 
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Fig. 3. Estimated exposure risk of sharks to capture by longline fishing activity. Plots (left) 

showing spatial overlap of sharks and longline fishing effort against species mean monthly 

fishing exposure index (FEI) indicate species subject to high overlap and FEI (higher than 

average overlap and FEI; higher risk red zone on plot) and those with lower overlap and FEI 
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(lower than average overlap and FEI; lower risk green zone) for (a) North Atlantic, (b) eastern 

Pacific and (c) southern Indian oceans, and (d) for the Oceania region. Lines separating the 

coloured zones are fixed at the average values of spatial overlap (y axis) and FEI (x axis) for 

all species combined. For each ocean, the amount of fishing effort individual shark species 

were exposed to (mean FEI; see Methods for details) are given on right panels. Shark species 

identification codes (e.g. PGL) used on panels are given in Fig. 1. Error bars denote  one 

standard deviation of the mean. 
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Fig. 4. Temporal changes in shark exposure risk to longline fishing. Monthly mean spatial 

overlap of sharks and longline fishing effort versus monthly mean FEI for all individuals of 

that species for the four most data-rich species in a relative year: (a) blue, (b) shortfin mako, 

(c, d) white, and (e) tiger sharks. Lines separating the coloured zones are fixed at the respective 

individual species average values of spatial overlap (y axis) and FEI (x axis) in a relative year. 

Horizontal bars denote months in different fishing exposure risk zones (red, highest risk; green, 

lowest). Error bars denote  one standard deviation of the mean. 
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Extended Data Fig. 1. The locations of shark tag deployment sites in relation to shark 

space use hotspots, ocean currents, physical features and fishing areas. (a) Red circles 

denote the locations where satellite transmitters were attached and sharks released, and blue 

squares in the eastern Pacific denote annual median deployment locations of tags by the 

Tagging of Pacific Predators (TOPP) program (ref. 11). Shark space use hotspots are shown as 

the 75th (blue dotted lines) and 90th percentiles (red dotted lines) of the mean monthly relative 

density of estimated shark locations within 1 × 1 grid cells given in Fig. 2a. Schematic maps 

of major ocean currents (b) and physical features overlaid on FAO fishing areas (c) referred to 

in this paper. Coloured arrows in b denote thermal regime of currents, with warmer colours 
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indicating higher water temperature. Abbreviations in c denote: CGFZ, Charlie Gibbs Fracture 

Zone; GBR, Great Barrier Reef; PNG, Papua New Guinea. 
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Extended Data Fig. 2. Spatial distribution of fishing vessels and overlap with sharks. (a) 

Distribution of AIS tracked fishing vessels’ effort (mean annual days spent per grid cell) 

between 2012 and 2016 (see Methods). (b) Distribution of the mean monthly overlap and level 

of all vessels’ fishing effort (days) sharks were exposed to in overlapping areas for all species 
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within 1 × 1 grid cells (see Methods). Spatial overlap hotspots were defined as 1 × 1 grid 

cells with ≥75th percentile of mean FEI. Note the similar overlap pattern of sharks and all 

mapped AIS fishing vessels as that determined for sharks and longline vessels in Fig. 2c. (c) 

Distribution of AIS purse seine vessels’ fishing effort using mean annual days spent per grid 

cell between 2012 and 2016 (see Methods). (d) Distribution of the mean monthly overlap and 

level of purse seine vessels’ fishing effort (days) sharks were exposed to in overlapping areas 

for all species within 1 × 1 grid cells (see Methods). Spatial overlap hotspots were defined as 

1 × 1 grid cells with ≥75th percentile of mean FEI. 
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Extended Data Fig. 3. Environmental modelling results. Estimated relationships between 

mean monthly relative density of all sharks (top panel) and AIS fishing effort of all vessels 

(middle panels) and longlines only (bottom panels) with all environmental variables in the 

highest ranked (Model 1) of the generalised additive models (GAM) tested. Third column 

shows the interaction results between the two variables described in the first and second 

columns. Asterisks indicate significance level for each smooth term included in the GAM, 

representing p < 0.001 (***). 
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Extended Data Fig. 4 Effect of grid cell size on risk exposure patterns of sharks to longline 

fisheries. (a) North Atlantic, (b) east Pacific, (c) southwest Indian oceans and (d) Oceania. 

Note that regardless of grid cell size at which the individual species mean spatial overlap and 

FEI were calculated the species occurring in the highest (red) and the lowest risk zones (green) 

remain remarkably conserved, indicating a general pattern not dependent on the scale at which 
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these data were analysed. Shark-species identification codes are given in Fig. 1. Error bars are 

± 1 S.D. An additional comparison of 2 × 2 with 1 × 1 grid cell size is given in Supplementary 

Fig. 4. 
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Extended Data Fig. 5. Relationship between North Atlantic fisheries’ shark landings and 

shark density-longline fishing exposure index. Plot showing shark landings from the North 

Atlantic (mean, 20072016), extracted from the Food and Agriculture Organization of the 

United Nations (FAO) total capture production database, was dependent upon the North 

Atlantic longline fishing effort as estimated with the individual species FEI (70% shark tracked, 

2007–2017; AIS, 20122016) (see Methods). Using linear regression, we tested the null 

hypothesis (H0) that  = 0 after normalising landings (in metric tonnes) by log transformation 

and for median FEI per species. Regression analysis gave the equation: Log(landings) = 1.364 

+ 8732 FEI, with a regression coefficient (b) standard error of 3369. We computed r2 = 0.45, 

F = 6.72 and F0.05(1),1,7  = 5.59, therefore rejecting H0 at the 5% level of significance with p < 

0.05. Full scientific names are given in Fig. 1. 
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Extended Data Fig. 6. Relative density and spatial overlap distributions for individual 

shark species. Mean monthly relative density of shark species (left panels) tracked in 2002–

2017 in comparison with species mean FEI per grid cell for the 5 most data-rich species/taxa 

groups occurring in multiple oceans (right panels): (a) blue, Prionace glauca; (b) shortfin 
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mako, Isurus oxyrinchus; (c) tiger, Galeocerdo cuvier; (d) whale shark, Rhincodon typus; and 

(e) white, Carcharodon carcharias. Red boxes denote areas shown in Fig. 3. Shark images 

created by M. Dando. 
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Extended Data Fig. 7. Relative density and spatial overlap distributions for individual 

shark species (continued). Mean monthly relative density of shark species (left panels) tracked 

in 2002–2017 in comparison with species mean FEI per grid cell for the next 5 most data-rich 

species/taxa groups occurring in multiple oceans (right panels): (f) oceanic whitetip, 
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Carcharhinus longimanus; (g) porbeagle, Lamna nasus; (h) silky, Carcharhinus falciformis; 

(i) bull, Carcharhinus leucas; and (j) hammerhead sharks, Sphyrna spp. (comprising: 

scalloped, S. lewini; great, S. mokarran; and smooth, S. zygaena). Shark images created by M. 

Dando. 
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Extended Data Figure 8. Between years’ patterns in global spatial density of pelagic 

sharks. Mean monthly spatial density was calculated for each two year period across species. 

We used consecutive two-year groups to reduce gaps in coverage. Note that there were broad-

scale shark tracks in the east Pacific in all eight 2-year periods (2002–03 to 2016–17), in the 

North Atlantic between 2006-07 and 2016-17, in the southwest Indian Ocean in 2010-11 to 

2014-15, and in Oceania between 2004-05 and 2014-15. This indicates temporal consistency 

of shark tracks was present within the ocean regions studied suggesting spatial hotspots 

identified were more likely to be persistent between years. 
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Extended Data Figure 9. Risk exposure patterns of sharks from longline fisheries between 

20122016. (a) North Atlantic, (b) east Pacific, (c) southwest Indian oceans and (d) Oceania. 

Note that species patterns of exposure to risk in highest (red) and lowest risk zones (green) in 

the years 20122016, that matched shark density data with AIS longline fishing effort data 

directly, were very similar to patterns found for shark density (200217) and AIS longline 

fishing effort (species mean FEI) (201216) (shown in Fig. 3), indicating no important effect 

of temporal mismatched datasets on the results.  
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Extended Data Fig. 10. Seasonal shifts in sharks, longline vessels and overlap-fishing 

effort patterns. Mean quarterly relative spatial density of sharks (left map in each subpanel), 

longline fishing effort (days) (middle map), and mean fishing exposure index per grid cell 

(fishing effort sharks were exposed to in overlapped areas) (right map) for North Atlantic blue 

sharks (PGL) in (a) December – February, (b) March – May, (c) June – August and (d) 
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September to November, and for shortfin mako sharks (IOX) in (e) December – February, (f) 

March – May, (g) June – August and (h) September to November. 
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Methods 

Study animals and tagging. From 2002–2017 we tagged 1,804 pelagic sharks with satellite 

transmitters at multiple tagging sites in the Atlantic, Indian and Pacific oceans (Extended Data 

Fig. 1), including 649 in the North Atlantic, 588 in the eastern Pacific, 151 in Oceania and 153 

in the southwest Indian Ocean, with 60% of deployments occurring between 2010 and 2017 

(Methods; Extended Data Fig. 1, Supplementary Tables 3–5). The number of tagged 

individuals varied among species and ranged from one to 280. Two satellite-transmitter tag 

types (position-only ARGOS, Advanced Research and Global Observation Satellite 

transmitter; and PSAT, Pop-off Satellite Archival Transmitter) were used. Sharks were 

captured with baited hooks (longlines, rod-and-line angling, or with handlines), in purse seine 

during commercial fishing operations, or tagged free-swimming in the water. Tags were 

attached to the first dorsal fin or in the dorsal musculature. All animal handling procedures 

were approved by institutional ethical review committees and completed by trained personnel 

(see Supplementary Information for details). Data were provided by the data owners to the 

senior author and quality checked prior to archiving in a database. Poor quality data were 

reported for 123 tags (72 ARGOS and 51 PSAT) due to, for example, early tag failure, 

premature tag pop-off, or a high percentage of locations estimated with high spatial error, e.g. 

raw computed geolocations over land, all of which resulted in poor state-space model fits 

leading to short or unreliable track reconstructions. Hence, analyses were restricted to the 

remaining 1,681 tracks from 1,066 ARGOS and 615 PSAT tags on sharks from 23 species 

ranging in total duration per species from 20 to 57,037 days with a median of 4.1 years total 

track time per species (Supplementary Table 3). The number of sharks tracked within each 

region is given in Supplementary Table 14.  

Track processing. Movements of PSAT-tagged sharks were estimated using either satellite 

relayed data from each tag or from archival data after the tags were physically recovered. Data 
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were provided as: (i) raw shark positions that were previously reconstructed using software 

provided by the tag manufacturers (e.g. Wildlife Computers, Redmond, USA; Microwave 

Telemetry, USA), where daily maximal rate-of-change in light intensity was used to estimate 

local time of midnight or midday for longitude calculations, and day-length estimation for 

determining latitude31,32; or (ii) filtered positions where a state-space model (SSM) (unscented 

Kalman filter with sea surface temperature, UKFSST)33 had been applied to correct the raw 

geolocation estimates and obtain the most probable track. In the first case, raw positions were 

corrected using the UKFSST SSM (UKFSST R package) in addition to a bathymetric correction 

applied to the initial Kalman position estimates (analyzepsat R add-on). A daily time-series of 

locations was estimated using a continuous-time correlated random walk (CTCRW) Kalman 

filter34 (crawl R package). UKFSST geolocations were parameterised with standard deviation 

(S.D.) constants which produces the smallest mean deviation from concurrent ARGOS 

positions35. In the latter case, the CTCRW SSM was applied to produce regular time-series.  

For ARGOS transmitter tags, data were provided as raw ARGOS (Doppler frequency shift) 

position estimates. Location class (LC) Z data – assigned for a failed attempt at obtaining a 

position – were discarded from the dataset. The remaining raw position estimates (LC 3, 2, 1, 

0, A and B) were analysed point-to-point with a 3 m s-1 speed filter to remove outlier locations. 

Subsequently, the CTCRW SSM was applied to each individual track, producing a single 

position estimate per day using model parameters implemented in the crawl R package34. 

Shark tracking data from the Tagging of Pacific Predators (TOPP) program were downloaded 

from the Animal Tracking Network (ATN) hosted by the Integrated Ocean Observing System 

(<https://bit.ly/2G7BlHn>; downloaded September 2017). Both ARGOS and light-based 

geolocation data in ATN had already been filtered with a Bayesian based SSM36. Briefly, the 

SSM was fitted to each track individually, using the WinBUGS software that conducts 

Bayesian statistical analyses using Markov chain Monte Carlo (MCMC) sampling37. For each 
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track, two MCMC chains each of length 10,000 were run and a sample of 2,000 from the joint 

posterior probability distribution was obtained by discarding the first 5,000 iterations and 

retaining every 5th of the remaining iterations. SSM fits were posteriorly inspected for obvious 

problems (e.g. unrealistic movements11). Because two different SSMs were applied to data 

used in this study, we tested for possible biases in the spatial density analysis (see below) by 

comparing 1 × 1º density grid maps obtained with both UKFSST and Bayesian-based filtered 

tracks using a subset of 83 ARGOS-linked tracks in the North Atlantic (blue shark, n = 27; 

mako, n = 42; white, n = 3; oceanic whitetip, n = 11). Differences in spatial grid density 

between the two methods were negligible (Supplementary Fig. 1). Thus, tracks with daily 

locations were reconstructed for 1,681 individuals totalling 281,724 tracking days 

(Supplementary Table 3).  

Spatial density analysis. To obtain unbiased estimates of shark spatial density, gaps between 

consecutive dates in the raw tracking data were interpolated to one position per day. Long 

temporal gaps without tag-reported location data in a reconstructed track can result in extensive 

interpolated movements driven by the underlying random walk model rather than a shark’s 

movement pattern11. Although the frequency of long temporal gaps without data (>20 days) in 

our dataset was low (Supplementary Table 15), nonetheless, any tracks with gaps without data 

exceeding 20 d were split into segments prior to interpolation, thus avoiding the inclusion of 

unrepresentative interpolated location estimates5. Similarly, location estimates derived for 

periods without data exceeding 20 d were also discarded from TOPP data11.  

To account for biases in spatial location density associated with (i) variable track lengths and 

(ii) shorter tracks near the tagging location, we broadly followed the basic time weighting 

procedure of Block et al.11. In this study, each daily location estimate of an individual was 

weighted by the inverse of the number of all individuals with location estimates for the same 

relative day of their track: 
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    𝑤𝑖𝑡  =  1
𝑛𝑡

⁄    for      𝑖 ∈  𝐼   (1) 

where wit is the weight for the tth location estimate of the ith individual’s track, nt is the number 

of total individuals with a tth location estimate, and I is the set of individuals of all species. We 

calculated weights for all individuals irrespective of species to estimate the global relative 

spatial density of pelagic sharks (i.e. Fig. 2a; see below). Periods with gaps without data >20 d 

were not included when weighting the locations. To minimize bias in estimates of spatial 

density patterns when sample sizes were lower, the modified weighting procedure of Block et 

al.11 was implemented such that location weights after a threshold day of the relative track were 

fixed equal to the weight on the day corresponding to the 85th percentile of track lengths. Under 

this weighting scheme, individual location estimates closer to the tagging location tended to 

receive a lower weight than later locations as, due to tag failure, transmission of satellite 

locations are more likely earlier in the track of an individual shark. Therefore, longer tracks 

received a higher total weight than shorter tracks because of the lower number of long tracks 

and consequently the lower value of nt towards the end of the track. Hence, calculated spatial 

densities were more representative of the actual distributions and less affected by tag loss, 

failure or a spatial bias towards deployment location. 

The weights for all individuals (equation 1) were normalised so that they summed to unity. 

Therefore, within the study area, all individuals contributed equally to the described global 

spatial density patterns: 

𝐷𝑖𝑡 =  ∑ ∑ 𝑤𝑖𝑡
𝑇𝑖
𝑡=1𝑖 ∈ 𝐼    (2) 

where Dit is the relative density contribution of the tth location estimate for individual i, and Ti 

is the number of location estimates for individual i. The relative density contributions for all 

location estimates for all individuals (Dit) were then summed within each grid cell of the study 

area for each month of a relative year, which gave 12 spatial relative density maps to compare 
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with monthly longline fishing effort. The mean annual Dit per grid cell for a relative year was 

calculated from the 12 monthly relative densities per grid cell to provide the global relative 

density of tracked sharks mapped in Fig. 2a. Hammerhead (3 species) and mako (2 species) 

shark species were analysed as taxa groups: Sphyrna spp. and Isurus spp., respectively. The 

spatial coverage of 1  1 grid cells occupied by sharks per ocean region was between 53% 

(East Pacific) and 25% (Oceania) of total grid cells (Supplementary Table 5). Spatial relative 

densities of locations were also calculated for each of the ten most data-rich species separately 

at a 1 × 1º grid cell size (Extended Data Figs. 6, 7). We followed the same procedure as that 

given above but instead weighted by the inverse of the number of total individuals of a single 

species on the same relative day of their track, and with the weights for each species normalised 

to one.  

To examine how the broad spatial distribution of sharks between years may have changed we 

re-calculated the relative density contributions for all location estimates for all individuals (Dit) 

together within each of eight consecutive two-year classes starting in 2002 (Extended Data Fig. 

8). Each daily location within a class was weighted by the inverse of the number of individuals 

with location estimates for the same relative day of the 2 years (e.g. 1st January 2012 is the 

relative day number 1 of all tracks in each of two years that were active on that date). Similar 

to the weighting scheme applied to the main data, periods with gaps without data >20 d were 

not included when weighting the locations. After the 85th percentile of the track length, daily 

weights were fixed as before. Total weights for all individuals within each two-year class were 

normalised to one. In addition, due to a mismatch in the years of data availability between 

sharks and fishing vessels, exposure risk (overlap and fishing exposure index, FEI) was re-

calculated for the period between 2012 and 2016 that was common to both sharks and longline 

fishing vessels (Extended Data Fig. 9). Relative density of all individuals (Dit) was re-
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calculated based on the weighting scheme described above, considering only individuals whose 

tracks were within the 2012 – 2016 period. 

Fishing vessel geolocation data. The Automatic Identification System (AIS) was developed 

as a vessel safety and anti-collision system with global coverage, rather than to track fishing 

vessels for fishery management purposes19-22. However, its global coverage of locations of 

many thousands of ships through time enables fishing effort distribution to be analysed19-22. 

Here, fishing effort (hours of fishing) data gridded at 0.01 by flag state and estimated gear 

type were obtained from Global Fishing Watch (GFW) (available at 

<https://bit.ly/2GmF7Me>). GFW used raw AIS vessel tracking data obtained from 

ORBCOMM via their AIS-enabled satellite constellation (<https://bit.ly/2TuAdkb>) to 

calculate fishing effort and derive the gridded data, described in detail in Kroodsma et al.19. 

Briefly, GFW uses two neural network algorithms to categorize different types of fishing gear, 

e.g. drifting longlines, purse seines, in addition to estimating the spatio-temporally resolved 

locations where fishing gears were most likely deployed by individual vessels19. We used the 

GFW gridded fishing effort data in the years 2012 to 2016 for all gear types, and for estimated 

drifting pelagic longlines and purse seines. The GFW gear-type classification algorithms are 

being continuously refined to correct for acknowledged contamination of some gear types with 

others in some regions19, e.g. drifting longlines with bottom-set longlines off New Zealand. 

For each type in this study, we summed the number of hours fishing in a month (expressed as 

days, where 24 h of fishing effort = 1 day) within each 1  1 grid cell to provide 12 monthly 

global fishing effort maps. The mean annual fishing effort per grid cell in a relative year was 

calculated from the 12 monthly fishing effort maps. Global distributions of fishing effort for 

all gear types, longlines and purse seines were mapped separately and overlaid by shark spatial 

relative density of locations for all individuals (Dit) to determine spatial overlap intensity 

(fishing effort sharks were exposed to; see FEI below). AIS data coverage increased from 2012 
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to 2016 as more satellite AIS receivers were launched and commenced operation19. However, 

the global spatial distribution of longline vessel fishing effort was broadly similar across years 

(Supplementary Fig. 2) and variation in annual maximum fishing effort displayed no increasing 

trend over time, indicating our calculated mean annual fishing effort for 2012–2016 did not 

overestimate spatial overlap or fishing effort but can be considered conservative 

(Supplementary Fig. 2). To test that the numbers of AIS longline fishing days per grid cell were 

representative of actual fishing effort as measured by the numbers of baited hooks deployed by 

longline vessels, we correlated Atlantic AIS fishing days with ICCAT observed hook data 

(downloaded from https://bit.ly/2GmrYTt). We compared the total number of observed hooks 

in ICCAT data at a 5  5 grid cell size (the finest spatial resolution for these ICCAT data) with 

the total number of fishing days in the AIS dataset, also at 5  5. To calculate the AIS fishing 

effort days in each 5  5 grid cell we summed the days in the 1  1 cells that fell within each 

5  5 cell. Data were used from 2015, the most recent year for which we had both ICCAT 

hook data and comprehensive AIS longline coverage.  

Shark and fishing effort environment modelling. To model shark and fishing vessel 

distributions in relation to environmental variables, data were extracted from online databases 

(Supplementary Fig. 3). The environmental variables were selected based upon their 

demonstrated importance in affecting shark occurrence and included: (i) sea water temperature 

(ºC) (abbreviation used in models: sea surface temperature, SST; temperature at 100 m, 

TEM_100) known to influence the presence of many pelagic shark species5,11; (ii) maximum 

thermal gradient (ΔºC/100 km) (TGR) influences shark spatial density5, and was calculated 

here based on the SST data and using maximum gradient maps by determining where for each 

pixel a geodetic–distance-corrected maximum thermal gradient was identified; (iii) sea water 

salinity (psu) (SAL), an important determinant of habitat use in some sharks1,38; (iv) sea surface 

height above geoid (m) (SSH) that influences shark presence5 and catches by fisheries6; (v) 
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ocean mixed layer depth thickness or thermocline depth (m) (MLD) that affects pelagic shark 

foraging behaviour39; (vi) mass concentration chlorophyll a in sea water (mg m-3) (CHL) as a 

proxy for productivity that often characterises preferred habitats of sharks5,39; (vii) mole 

concentration of phytoplankton expressed as carbon in sea water concentration (mmol m-3) 

(PHY) as a direct measure of productivity; (viii) net primary production of biomass expressed 

as carbon per unit volume in sea water per day (g m-3 d-1) (NPP) quantifying productivity; and 

(ix) mole concentration of dissolved molecular oxygen in sea water (mmol m-3) (DO) that can 

strongly influence shark space use1. Environmental datasets i to v were downloaded from 

Copernicus Marine Environment Monitoring Service (CMEMS) Global Ocean Physics 

Reanalysis product (https://bit.ly/2MOJeSy; downloaded November 2017) and datasets vi to ix 

from CMEMS Global Ocean Biochemistry Hindcast product (https://bit.ly/2TwNbOq; 

downloaded November 2017). CMEMS data were available for 2002 to 2014 from the surface 

to 5,500 m as monthly datasets. Overall averages (2002-2014) were calculated at a 1 × 1 grid 

cell resolution for surface and 100 m depth layers (with the exception of SSH and MLD; 

Supplementary Fig. 3). Most of these variables and interactions are also considered important 

for explaining fishing patterns5,6. 

We developed and compared a set of generalised additive models (GAMs) with a gaussian 

family and an identity link using the log-transformed relative density of locations of all 

individual sharks (Dit) as response variable. We used the relative density of sharks rather than 

presence/absence data because our main aim was to highlight the areas where highest overlap 

with fishing effort might occur. Because we were interested in identifying areas (grid cells) 

with the highest overlap, and understanding how general environmental variables might 

influence shark density in specific locations, we considered the relative density for all 23 shark 

species combined without considering random effects per species. All environmental variables 

were standardised (mean-centred and divided by the standard deviation) and colinearity 
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checked prior to inclusion in the models. Highly skewed environmental variables were logged 

before standardisation, this included most predictors at the surface (except for SAL and SSH) 

and also NPP (for sharks only) and TGR at 100 m (TGR_100). All possible combinations of 

16 variables were not undertaken due to colinearity. Rather, we focused on testing ecologically 

relevant hypotheses. A description of the general hypothesis tested with each model included 

in the model set is given in Supplementary Table 7. Including models with a reduced number 

of variables was necessary as some variables were colinear and those variables were included 

in other models. Because sharks respond to surface and subsurface thermal gradients which 

often support higher biological productivity5,6,11,39, we tested for interactions between MLD 

and SST, CHL and MLD at 100 m (MLD_100), CHL at 100 m (CHL_100) and TEM at 100 m 

(TEM_100), MLD and TGR at the surface, MLD and CHL_100, CHL_100 and TEM_100, and 

between SAL and TEM_100.  

GAM with a Tweedie distribution and log link function provided the best modelling approach 

for the fishing effort data (including zeros in grid cells), as this distribution includes a family 

of probability distributions including normal, gamma, Poisson and compound Poisson-gamma. 

We considered two response variables separately: fishing effort (days of fishing per grid cell) 

of all AIS fishing vessels, and fishing effort of AIS longline vessels only. We did not consider 

presence/absence data since our aim was to understand how environment influenced variations 

in fishing effort. In our model set we included different combinations of a total of the same 16 

explanatory environmental variables used for shark density modelling (see previous section; 

Supplementary Table 7), and also a null (all terms equal to zero), intercept-only model. The 

dimension basis for all terms was limited to 5 (i.e., k = 5) to assist controlling for overfitting40. 

We then used the Akaike’s information criterion (AIC)41 to compare the models in the model 

set for all sharks and fishing vessels. We assessed the relative strength of evidence for each 

model using the weights of AIC, and the goodness of fit of each model by calculating the 



Nature 572, 461-466 (2019) doi: 10.1038/s41586-019-1444-4 (Accepted version) 

59 
 

percentage of deviance explained (%DE). All models were implemented in R using the mgcv 

package42. 

Shark/vessel spatial overlap and effort. The spatial overlap (%) between an individual 

tracked shark and fishing effort was calculated as the number of grid cells that sharks and 

fishing effort (days) occurred in the same 1 × 1 grid cells in an average month, as a function 

of all shark grid cells occupied and standardised for shark track length, and summarised as: 

Spatial overlap (%) = 100 (no / nc) 

where no is the number of grid cells occupied by an individual tracked shark that overlap with 

grid cells with fishing effort, and nc is the total number of grid cells occupied by an individual 

tracked shark. The mean monthly spatial overlap of an individual shark was determined from 

monthly spatial overlap values, and the mean monthly spatial overlap per species was 

calculated by averaging the mean monthly individual spatial overlap values across all 

individuals of a species within each ocean region. A fixed 1 × 1 geographic grid cell (where 

1 = 110.6 km) was chosen as it was the approximate length of high seas longlines, i.e. 100 km 

long with an average of 1,200 baited hooks5 that attract fish over long distances19, it was similar 

to the broad light-based geolocation error field of PSAT tags (n = 615 sharks; 37% of the total 

tracks) after SSM processing that we used here, generally shown to be 0.4 – 1.5 latitude (45 

– 167 km; refs. 31, 43-45), and it exceeded the upper 95% confidence intervals of the mean 

daily movement distances of the widest ranging sharks tracked (Supplementary Table 16). In 

addition, the 1 × 1 grid cell size was suitable to reduce the effects of gaps in AIS coverage 

that at smaller grid sizes could potentially result in significant unrecorded fishing effort per 

grid cell19-22. To examine the effect of grid cell size on spatial overlap estimates19,46 we 

calculated the overlap of all sharks tracked with ARGOS transmitters, where locations 

estimated from SSMs were fitted to ARGOS observations (e.g. 2.4 – 5.5 km spatial accuracy47), 
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with longline fishing effort at 2  2, 1  1, 0.75  0.75, 0.50  0.50, 0.25  0.25 and 0.10 

 0.10 grid cell sizes (Extended Data Fig. 4; Supplementary Fig. 4). 

An estimate of an individual shark’s exposure to fishing effort within each grid cell occupied 

during its observed track was termed fishing exposure index (FEI) and calculated as: 

𝐹𝐸𝐼 =  
∑ 𝑓𝑖

𝑛
𝑖=1 𝑑𝑖

𝑛
.    (3) 

Here FEI pertains to an individual shark per month in a given year. The term fi is the fishing 

effort (vessel days) in grid cell i occupied by a shark during its track; di is the relative density 

contribution for all location estimates for an individual shark summed in grid cell i of its track 

(i.e. location estimates of an individual were weighted by the inverse of the number of total 

individuals of a single species on the same relative day of their track, and with the weights for 

each species normalised to one; see Spatial Density Analysis); and n is the number of grid cells 

occupied by an individual shark during its track in a given month of a given year. Individual 

mean FEI was calculated for an individual shark by averaging an individual shark’s monthly 

FEI values through time (over the duration of its observed track in monthly steps). To estimate 

the typical exposure within a species, individual species mean FEI was calculated by averaging 

individual shark mean FEI values for that species within each ocean region (Figs. 3, 4). 

To map the mean monthly spatial variation in overlap and fishing effort (fishing exposure) 

within the space used by sharks (Fig. 2c), we calculated the product of Dit and fi in each grid 

cell in each month of a relative year across individual sharks (regardless of species), and 

averaged across the 12 months within each grid cell. In addition, for comparing temporally 

matched shark-vessel spatial overlap and fishing effort in 2012 – 2016, we repeated the 

calculation above but including only those individuals (species) present within these years by 

multiplication of fi with the re-calculated Dit for those years only (see Spatial Density Analysis 

for details). 
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To test for differences in exposure risk of sharks to fishing activity between different species 

within the general fishing areas designated by the Food and Agriculture Organization of the 

United Nations (FAO) (Extended Data Fig. 1c), we undertook statistical analysis of exposure 

risk calculated for each shark as the product of the mean monthly spatial overlap and mean 

monthly fishing effort. Since data were not normal (Shapiro-Wilk normality test, p < 0.05), a 

Kruskal–Wallis (KW) test was performed (with pairwise Wilcoxon rank sum tests as a post-

hoc test). Because of differences in the number of tagged individuals per species, groups of 

>25 sharks per species were randomly selected and the KW test performed. This procedure 

was repeated 1,000 times and the percentage of times that significant differences were observed 

were recorded. Species with fewer than 25 individuals tracked were removed from the analysis. 

Given the lower numbers of sharks tracked in the southwest Indian Ocean and Oceania regions 

(Supplementary Table 14), statistical tests were restricted to the North Atlantic and eastern 

Pacific regions. In the Atlantic selected species were: P. glauca (n = 152), Isurus spp. (n = 

120), G. cuvier (n = 131), C. carcharias (n = 26), C. longimanus (n = 99), L. nasus (n = 46), 

C. leucas (n = 38) and Sphyrna spp. (n = 40); Pacific, species were: P. glauca (n = 112), I. 

oxyrinchus (n = 113), L. ditropis (n = 172), R. typus (n = 77) and C. carcharias (n = 59). 

Shark landings. Mean annual pelagic shark landings (t) by species/taxa groups were obtained 

from the FAO database (<FAO.org/fishery/statistics/global-capture-production/query/en>; 

downloaded September 2018) and related to the median monthly FEI of each species/taxa 

group. Landings reported for the North Atlantic (northwest, northeast, western central and 

eastern central Atlantic) between 2007 and 2016 were used in the analysis since it spanned the 

main period that most sharks were tracked (70% between 2007–2017) and longline fishing 

effort was monitored (2012–2016). Data were extracted for eight species or taxa groups that 

are regularly caught by shelf and/or high-seas fisheries in the North Atlantic, the region in 

which most tags were deployed. The species/taxa groups were: P. glauca, I. oxyrinchus, C. 
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longimanus, C. leucas, L. nasus, G. cuvier, C. carcharias, and hammerheads (Sphyrna spp.) 

comprising S. lewini, S. mokarran and S. zygaena. 

Reporting summary. Further information on fieldwork, source code and data analyses are 

available in the Nature Research Reporting Summary linked to this paper. 

Data availability. The source code used to undertake analyses and to prepare figures, in 

addition to the derived data underlying Fig. 2 maps (shark relative spatial density; longline 

fishing effort; and shark– longline overlap and FEI) and Fig. 3 plots (spatial overlap and FEI) 

are freely available on GitHub (github.com/GlobalSharkMovement/GlobalSpatialRisk).  
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