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Abstract
In reactive synthesis, the goal is to automatically generate an implementation from a specification
of the reactive and non-terminating input/output behaviours of a system. Specifications are
usually modelled as logical formulae or automata over infinite sequences of signals (ω-words), while
implementations are represented as transducers. In the classical setting, the set of signals is assumed
to be finite. In this paper, we consider data ω-words instead, i.e., words over an infinite alphabet.
In this context, we study specifications and implementations respectively given as automata and
transducers extended with a finite set of registers. We consider different instances, depending on
whether the specification is nondeterministic, universal or deterministic, and depending on whether
the number of registers of the implementation is given or not.

In the unbounded setting, we show undecidability for both universal and non-deterministic
specifications, while decidability is recovered in the deterministic case. In the bounded setting,
undecidability still holds for non-deterministic specifications, but can be recovered by disallowing
tests over input data. The generic technique we use to show the latter result allows us to reprove
some known result, namely decidability of bounded synthesis for universal specifications.
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1 Introduction

Reactive synthesis is an active research domain whose goal is to design algorithmic methods
able to construct a reactive system from a specification of its admissible behaviours. Such
systems are notoriously difficult to design correctly, and the main appealing idea of synthesis
is to automatically generate systems correct by construction. Reactive systems are non-
terminating systems that continuously interact with the environment in which they are
executed, through input and output signals. At each time step, the system receives an
input signal from a set In and produces an output signal from a set Out. An execution is
then modelled as an infinite sequence alternating between input and output signals, i.e., an
ω-word in (In.Out)ω. Classically, the sets In and Out are assumed to be finite and reactive

© Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.24
https://arxiv.org/abs/1905.03538
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Synthesis of Data Word Transducers

systems are modelled as (sequential) transducers. Transducers are simple finite-state machines
with transitions of type States × In → States × Out, which, at any state, can process any
input signal and deterministically produce some output signal, while possibly moving, again
deterministically, to a new state. A specification is then a language S ⊆ (In.Out)ω telling
which are the acceptable behaviours of the system. It is also classically represented as
an automaton, or as a logical formula then converted into an automaton. Some regular
specifications may not be realisable by any transducer, and the realisability problem asks,
given a regular specification S, whether there exists a transducer T whose behaviours satisfy
S (are included in S). The synthesis problem asks to construct T if it exists.

A typical example of reactive system is that of a server granting requests from a finite set
of clients C. Requests are represented as the set of input signals In = {(r, i) | i ∈ C} ∪ {idle}
(client i requests the ressource) and grants by the set of output signals Out = {(g, i) | i ∈
C} ∪ {idle} (server grants client i’s request). A typical constraint to be imposed on such a
system is that every request is eventually granted, which can be represented by the LTL
formula

∧
i∈C G((r, i) → F (g, i)). The latter specification is realisable for instance by the

transducer which outputs (g, i) whenever it reads (r, i) and idle whenever it reads idle.
It is well-known that the realisability problem is decidable for ω-regular specifications,

ExpTime-c when represented by parity automata [9] and 2ExpTime-c for LTL specifica-
tions [16]. Such positive results have triggered a recent and very active research interest in
efficient symbolic methods and tools for reactive synthesis (see e.g. [1]). Extensions of this
classical setting have been proposed to capture more realistic scenarios [1]. However, only a
few works have considered infinite sets of input and output signals. In the previous example,
the number of clients is assumed to be finite, and small. To the best of our knowledge,
existing synthesis tools do not handle large alphabets, and it is more realistic to consider
an unbounded (infinite) set of client identifiers, e.g. C = N. The goal of this paper is to
investigate how reactive synthesis can be extended to handle infinite sets of signals.

Data words are infinite sequences x1x2 . . . of labelled data, i.e., pairs (σ, d) with σ a label
from a finite alphabet, and d ∈ N. They can naturally model executions of reactive systems
over an infinite set of signals. Among other models, register automata are one of the main
extensions of automata recognising languages of data words [10, 18]. They can use a finite set
of registers in which to store data that are read, and to compare the current data with the
content of some of the registers (in this paper, we allow comparison of equality). Likewise,
transducers can be extended to register transducers as a model of reactive systems over data
words: a register transducer is equipped with a set of registers, and when reading an input
labelled data (σ, d), it can test d for equality with the content of some of its registers, and
depending on the result of this test, deterministically assign some of its registers to d and
output a finite label β together with the content of one of its registers. Its executions are
then data words alternating between input and output labelled data, so register automata
can be used to represent specifications, as languages of such data words.

Contributions. We consider two classical semantics for register automata, non-deterministic
and universal, both with a parity acceptance condition, which give two classes of register
automata respectively denoted NRA and URA. Since NRA are not closed under complement
(already over finite data words), NRA and URA define incomparable classes of specifications.
The request-grant specification given previously with an infinite number of clients is expressible
by an URA [12]: whenever a request is made by client i (labelled data (r, i)), universally trigger
a run which stores i in some register and verifies that the labelled data (g, i) eventually occurs
in the data word; but no NRA can define it. On the contrary, consider the specification S0:
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“all input data but one are copied on the output, the missing one being replaced by some data
which occurred before it”, modelled as the set of data sequences d1d1d2d2 . . . didjdi+1di+1 . . .

for all i ≥ 0 and j < i (finite labels are irrelevant and not represented). S0 is not definable
by any URA (it would require to guess j, which can be arbitrarily smaller than i), but it is
expressible by some NRA making this guess.

However, we show (unsurprisingly) that the realisability problem by register transducers
of specifications defined by NRA is undecidable. The same negative result also holds for
URA, solving an open question raised in [12]. On the positive side, we show that decidability
is recovered for deterministic (parity) register automata (DRA). One of the difficulties of
register transducer synthesis is that the number of registers needed to realise the specification
is, a priori, unbounded with regards to the number of registers of the specification. We show
it is in fact not the case for DRA: any specification expressed as a DRA with r registers is
realisable by a register transducer iff it is realisable by a transducer with r registers.

A way to obtain decidability is to fix a bound k and to target register transducers with
at most k registers. This setting is called bounded synthesis in [12], which establishes that
bounded synthesis is decidable in 2ExpTime for URA. We show that unfortunately, bounded
synthesis is still undecidable for NRA specifications. To recover decidability for NRA, we
disallow equality tests on the input data and add a syntactic requirement which entails
that on any accepted word, each output data is the content of some register which has
been assigned an input data occurring before. This defines a subclass of NRA that we call
(input) test-free NRA (NRAtf). NRAtf can express how output data can be obtained from
input data (by copying, moving or duplicating them), although they do not have the whole
power of register automata on the input nor the output side. Note that the specification
S0 given before is NRAtf-definable. To show that bounded synthesis is decidable for NRAtf,
we establish a generic transfer property characterising realisable data word specifications in
terms of realisability of corresponding specifications over a finite alphabet, thus reducing
to the well-known synthesis problem over a finite alphabet. Such property also allows us
to reprove the result of [12], with a rather short proof based on standard results from the
theory of register automata, indicating that it might allow to establish decidability for other
classes of data specifications. Our results are summarised in Table 1.

Table 1 Decidability status of the problems studied.

DRA NRA URA NRAtf

Bounded Synthesis ExpTime Undecidable (k ≥ 1) 2ExpTime 2ExpTime
(Thm. 13) (Thm. 3) ([12] and Thm. 12) (Thm. 16)

General Case ExpTime Undecidable Undecidable Open
(Thm. 6) (Thm. 2) (Thm. 4)

Related Work. As already mentioned, bounded synthesis of register transducers is consid-
ered in [12] where it is shown to be decidable for URA. We reprove this result in a shorter
way. Our proof bears some similarities with that of [12], but it seems that our formulation
benefits more from the use of existing results. The technique is also more generic and we
instantiate it to NRAtf. NRAtf correspond to the one-way, non-deterministic version of the
expressive transducer model of [5], which however does not consider the synthesis problem.

The synthesis problem over infinite alphabets is also considered in [6], in which data rep-
resent identifiers and specifications (given as particular automata close to register automata)
can depend on equality between identifiers. However, the class of implementations is very
expressive: it allows for unbounded memory through a queue data structure. The synthesis
problem is shown to be undecidable and a sound but incomplete algorithm is given.

C O N C U R 2 0 1 9
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Finally, classical reactive synthesis has strong connections with game theory on finite
graphs. Some extension of games to infinite graphs whose vertices are valuations of variables in
an infinite data domain have been considered in [8]. Such games are shown to be undecidable
and a decidable restriction is proposed, which however does not seem to match our context.

2 Data Words and Register Automata

For a (possibly infinite) set S, we denote by Sω the set of infinite words over this alphabet.
For 1 ≤ i ≤ j, we let u[i:j] = uiui+1 . . . uj and u[i] = u[i:i] the ith letter of u. For u, v ∈ Sω,
we define their interleaving 〈u, v〉 = u[1]v[1]u[2]v[2] . . .

Data Words. Let Σ be a finite alphabet and D a countably infinite set, denoting, all over
this paper, a set of elements called data. We also distinguish an (arbitrary) data value d0 ∈ D.
Given a set R, let τR0 be the constant function defined by τR0 (r) = d0 for all r ∈ R. A labelled
data (or l-data for short) is a pair x = (σ, d) ∈ Σ×D, where σ is the label and d the data.
We define the projections lab(x) = σ and dt(x) = d. A data word over Σ and D is an infinite
sequence of labelled data, i.e. a word w ∈ (Σ×D)ω. We extend the projections lab and dt
to data words naturally, i.e. lab(w) ∈ Σω and dt(w) ∈ Dω. We denote the set of data words
over Σ and D by DW(Σ,D) (DW when clear from the context). A data word language is a
subset L ⊆ DW(Σ,D). Note that in this paper, data words are infinite, otherwise they are
called finite data words, and we denote by DWf (Σ,D) the set of finite data words.

Register Automata. Register automata are automata recognising data word languages.
They were first introduced in [10] as finite-memory automata. Here, we define them in a
spirit close to [18], but over infinite words 1, with a parity acceptance condition.

A register automaton (RA) is a tuple A = (Σ,D, Q, q0, δ, R, c), where:
Σ is a finite alphabet of labels, D is an infinite alphabet of data
Q is a finite set of states and q0 ∈ Q is the initial state
R is a finite set of registers. We denote TstR = 2R and AsgnR = 2R. 2

c : Q → {1, . . . , d}, where d ∈ N is the number of priorities, is the colouring function,
used to define the acceptance condition
δ ⊆ Q× Σ× TstR × AsgnR ×Q is a set of transitions.

A transition (q, σ, tst, asgn, q′) is also written q
σ,tst,asgn−−−−−−→
A

q′. We may omit A in the latter
notation. Intuitively such transition means that on input (σ, d) in state q the automaton: it
first checks that tst is exactly the set of registers containing d: for all r ∈ tst, d is the current
content of register r and for all r /∈ tst, d is not in register r, then it assigns d to all the
registers in asgn (asgn might be empty), and finally transitions to state q′.
A is said to be deterministic (resp. complete) when, given any state, any label and any

possible test, at most (resp. at least) one transition can be taken: ∀q ∈ Q,∀σ ∈ Σ,∀tst ∈
TstR,∃≤1asgn ∈ Asgn,∃≤1q′ ∈ Q such that q σ,tst,asgn−−−−−−→ q′ (resp. ∀q,∀σ, ∀tst,∃≥1asgn,∃≥1q′

s.t. q σ,tst,asgn−−−−−−→ q′). Since tests are mutually exclusive, this syntactically ensures that for any
state and in any register configuration, the transition to take is determined by the input
l-data (respectively that a transition can always be taken, regardless the input l-data). The
class of deterministic register automata will be denoted DRA.

1 In the terminology of [13], it corresponds to multiple-assignment register automata with registers initially
filled, i.e. the class MF , with the additional requirement that all are filled with the same data.

2 Those sets are identical but have distinct semantics.
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Configurations and Runs. A configuration is a pair (q, τ) ∈ Q×(R→ D). Given tst ∈ TstR
and d ∈ D, we say that τ, d satisfies tst, denoted τ, d |= tst if τ−1(d) = tst. Given a
transition t = p

σ,tst,asgn−−−−−−→ p′, we say that (q, τ) enables t on reading (σ′, d) if q = p,
σ′ = σ and τ, d |= tst. Let next(τ, asgn, d) be the configuration τ ′ defined by τ ′(i) = d if
i ∈ asgn, and τ ′(i) = τ(i) otherwise. We extend this notation to configurations as follows: if
γ = (q, τ) enables t on input (σ, d), the successor configuration of (q, τ) by t on input (σ, d) is
next(γ, asgn, d) = (p′,next(τ, asgn, d)). We also write next(γ, t, σ, d) to denote the successor
of (q, τ) by transition t when (q, τ) enables t on input (σ, d). The initial configuration is
(q0, τ

R
0 ). Then, a run over a data word (σ1, d1)(σ2, d2) . . . is an infinite sequence of transitions

t0t1 . . . such that there exists a sequence of configurations γ0γ1 · · · = (q0, τ0)(q1, τ1) . . . such
that γ0 is initial and for all i ≥ 0, γi+1 = next(γi, ti, σi, di). To a run ρ, we associate its
sequence of states states(ρ) = q0q1 . . .

Languages Defined by RA. Given a run ρ, we denote, by a slight abuse of notation, c(ρ) =
max{j | c(ql) = j for infinitely many ql ∈ states(ρ)} the maximum color that occurs infinitely
often in ρ. Then, in the parity acceptance condition, ρ is accepting whenever c(ρ) is even. We
consider two dual semantics for RA: non-deterministic (N) and universal (U). Given an RA A,
depending on whether it is considered nondeterministic or universal, it recognises LN (A) =
{w | there exists an accepting run ρ on w} or LU (A) = {w | all runs ρ on w are accepting}.

We denote by NRA (resp. URA) the class of register automata interpreted with a non-
deterministic (resp. universal) parity acceptance condition, and given A ∈ NRA (resp.
A ∈ URA), we write L(A) instead of LN (A) (resp. LU (A)). We also denote by DRA the class
of deterministic parity register automata.

3 Synthesis of Register Transducers

Specifications, Implementations and the Realisability Problem. Let Σi and Σo be two
finite alphabets of labels, and D a countable set of data. A relational data word is an element
of w ∈ [(Σi × D).(Σo × D)]ω. Such a word is called relational as it defines a pair of data
words in DW(Σi,D)× DW(Σo,D) through the following projections. If w = x1

i
x1
o
x2
i
x2
o
. . . ,

we let inp(w) = x1
i
x2
i
. . . and out(w) = x1

o
x2
o
. . . We denote by RW(Σi,Σo,D) (just RW

when clear from the context) the set of relational data words. A specification is simply a
language S ⊆ RW(Σi,Σo,D). An implementation is a total function I : (Σi×D)∗ → Σo×D.
We associate to I another function fI : DW(Σi,D) → DW(Σo,D) which, to an input
data word wi = x1

i
x2
i
· · · ∈ Σi × D, associates the output data word fI(wi) = x1

o
x2
o
. . .

such that ∀i ≥ 1, xi
o

= I(x1
i
. . . xi−1

i
). I also defines a language of relational data words

L(I) = {〈wi, fI(wi)〉 | wi ∈ DW(Σi,D)}.
We say that I realises S when L(I) ⊆ S, and that S is realisable if there exists an

implementation realising it. The realisability problem consists, given a (finite representation
of a) specification S, in checking whether S is realisable. In general, we parameterise
this problem by classes of specifications S and of implementations I, defining the (S, I)-
realisability problem, denoted Real(S, I). Given a specification S ∈ S, it asks whether S is
realisable by some implementation I ∈ I. We now introduce the classes S and I we consider.

Specification Register Automata. In this paper, we consider specifications defined from
register automata alternately reading input and output l-data. We assume that the set of
states is partitioned into Qi (called input states, reading only labels in Σi) and Qo (called
output states, reading only labels in Σo), where q0 ∈ Qi and F ⊆ Qi, and such that the

C O N C U R 2 0 1 9
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transition relation δ alternates between these two sets, i.e. δ ⊆ ∪α=i,o(Qα × Σα × TstR ×
AsgnR × Qα), where i = o (resp. o = i). We denote by DRA (resp. NRA, URA) the
class of specifications defined by deterministic (resp. non-deterministic, universal) parity
register automata.

Register Transducers As Implementations. We consider implementations represented as
transducers processing data words. A register transducer is a tuple T = (Σi,Σo, Q, q0, δ, R)
where Q is a finite set of states with initial state q0, R is a finite set of registers, and
δ : Q × Σi × TstR → AsgnR × Σo × R × Q is the (total) transition function (as before,
TstR = AsgnR = 2R). When processing an l-data (σi, d), T compares d with the content of
some of its registers, and depending on the result, moves to another state, stores d in some
registers, and outputs some label in Σo along with the content of some register r ∈ R.

Let us formally define the semantics of a register transducer T , as an implementation IT .
First, for a finite input data word w = (σ1

i
, d1

i
) . . . (σn

i
, dn

i
) in (Σi ×D)∗, we denote by (qi, τi)

the ith configuration reached by T on w, where (q0, τ0) is initial and for all 0 < i < n, (qi, τi)
is the unique configuration such that there exists a transition δ(qi−1, σ

i
i
, tst) = (asgn, σo, r, qi)

such that τi−1, d
i
i
|= tst and τi = next(τi−1, d

i
i
, asgn). We let (σi

o
, di

o
) = (σo, τi(r)) and

IT (w) = (σn
o
, dn

o
). Then, we denote fT = fIT

and L(T ) = L(IT ). Note that if T is
interpreted as a DRA with exactly one transition per output state and whose states are
all accepting (i.e. have even maximal parity 2), then L(IT ) is indeed the language of such
register automaton. We denote by RT[k] the class of implementations defined by register
transducers with at most k registers, and by RT =

⋃
k≥0 RT[k] the class of implementations

defined by register transducers.

Synthesis from Data-Free Specifications. If in the latter definitions of the problem, one
considers specifications defined by RA with no registers, and implementations defined by RT
with no registers, then the data in data-words can be ignored and we are in the classical
reactive synthesis setting, for which important results are known:

I Theorem 1 ([9]). Given a (data-free) specification S defined by some (register-free)
universal or non-deterministic parity automaton, the realisability problem of S by (register-
free) transducers is ExpTime-c.

4 Unbounded Synthesis

In this section, we consider the unbounded synthesis problem Real(RA,RT). Thus, we
do not fix a priori the number of registers of the implementation. Let us first consider
the case of NRA and URA, which are, in our setting, the most natural devices to express
data word specifications. By reducing the universality of NRA over finite words (which is
undecidable [14]) to our synthesis problems, we show:

I Theorem 2. Real(NRA,RT) is undecidable.

I Theorem 3. For all k ≥ 1, Real(NRA,RT[k]) is undecidable.

Now, we can show that the unbounded synthesis problem is also undecidable for URA,
answering a question left open in [12].

I Theorem 4. Real(URA,RT) is undecidable.
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Proof. We present a reduction from the emptiness problem of URA over finite words (which
is undecidable by a direct reduction from the universality problem of NRA, undecidable
by [14]) to our synthesis problem.

First, consider the relation S1 = {(u#v, u#w) | u ∈ DWf , v ∈ DW, each data of u appears
infinitely often in w}. S1 is recognised by a 1-register URA which, upon reading a data d
in u, stores it in its register and checks that it appears infinitely often in w by visiting a
state with maximal parity 2 every time it sees d (all other states have parity 1). Note that
for all k ≥ 1, S1 ∩ {(u#v, u#w) | u ∈ DWf , v, w ∈ DW and |dt(u)| ≤ k} is realisable by a
k-register transducer: on reading u, store each distinct data in one register, and after the #
outputs them in turn in a round-robin fashion. However, S1 is not realisable: on reading the
# separator, any implementation must have all the data of dt(u) in its registers, but the size
of dt(u) is not bounded (u can have pairwise distinct data and be of arbitary length).

Then, let A be a URA over finite data words. Consider the specification S = S1 ∪ S2 ∪ T ,
where S2 = {(u#v, u#w#(a, d0)ω) | u ∈ DWf , v ∈ DW, w ∈ L(A)} and T = {(u,w) | u /∈
DWf#DW, w ∈ DW}. S has total domain, and is recognisable by a URA. Indeed, URA are
closed under union, by the same product construction as for the intersection of NRA [10],
and each part is URA-recognisable: S1 is, as described above, S2 is by simulating A on the
output to check w ∈ L(A) then looping over (a, d0), and T simply checks a regular property.

Now, if L(A) 6= ∅, let w ∈ L(A), and k its number of distinct data. Then S is realisable
by a k-register transducer realising S1 when the number of data in u is lower than or equal
to k, and, when it is greater than k, by outputting u#ŵ#(a, d0)ω where ŵ is a membership-
preserving renaming of w using k distinct data of u (this can always be done thanks to the
so-called “indistinguishability property” stated in [10]). Conversely, if L(A) = ∅, then S is
not realisable. If it were, S ∩ DWf#DW = S1 would be too, as a regular domain restriction,
but we have seen above that this is not the case. Thus, S is realisable iff L(A) = ∅. J

However, we show that restricting to DRA allows to recover the decidability, modulo
one additional assumption, namely that no output transition of the specification is such
that tst = ∅ (the output data is different from all register contents). We denote by DRA∅
this class of DRA. Such assumption rules out pathological, and to our opinion uninteresting
and technical cases stemming from the asymmetry between the class of specifications and
implementations. E.g., consider the single-register DRA in Fig. 1a (finite labels are arbitrary
and not depicted). It starts by reading one input data d and stores it in r, asks that the
corresponding output data is different from the content d of r (with tst = ∅ depicted here
6=r), then accepts any output over any input (transitions > are always takeable). It is
not realisable because transducers necessarily output the content of some register (hence
producing a data which already appeared). On the other hand, having tests tst = ∅ does
not imply unrealisability, as shown by the DRA of Fig. 1b: it starts by reading one data d1,
asks to copy it on the output, then reads another data d2, and requires that the output is
either distinct from d1 or equal to it, depending on whether d2 6= d1. It happens that such
specification is realisable by the identity.

1 2 3

4

>, ↓ r 6= r

> >

(a) An unrealisable DRA.

1 2 3 5

4

6

7

>, ↓ r ↑ r

6=r
, ↓
r

=r, ↓ r

6=r

=r

> >

(b) A similar DRA, suprisingly realisable.

Figure 1 Pathological DRA specifications.
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24:8 Synthesis of Data Word Transducers

To check for realisability of DRA∅-specifications with r-registers, we show that it suffices
to target transducers with r registers only.

I Proposition 5. Let S be a specification defined by a DRA∅ with r registers. If S is realisable
by a register transducer, then it is realisable by a transducer with r registers.

Proof. Let S = (Σi,Σo,D, QS , qS0 , δS , RS , c) be a DRA∅ specification realisable by a register
transducer I = (Σi,Σo,D, QI , qI0 , δI , RI). Without loss of generality, we assume that S does
not conduct assignments on the output and that S is complete. Now, from S, we extract a
transducer I ′ realising S with RS registers, using I as a guide to make choices for the output.
To this end, we simulate I synchronously with S. However, we cannot properly simulate I,
since we only have RS registers, which are used to simulate S. Instead, we keep constraints
in memory.

Constraints. A constraint represents the equality relations between the registers in RS and
those in RI (note that such idea is pervasive in the study of registers automata, e.g. to
recognise the projection over finite labels). Thus, a constraint is a subset C ⊆ RS×RI , which
is intended to be a set of equalities between the content of registers in RS and in RI . Then,
knowing tests tstS , tstI and assignments asgnS , asgnI performed by S and I respectively
allows to update the constraints: we define

next(C, tstS , asgnS , tstI , asgnI) = C\((asgnS ×RI) ∪ (RS × asgnI))
∪((tstS ∪ asgnS)× (tstI ∪ asgnI))

For instance, assume RI = {r1, r2} and RS = {s1, s2}, and at some point in a run, we
have3 C = {(s2, r1), (s2, r2)}, i.e. s2 = r1 = r2 and s1 6= r1 (inequalities are implicit, since
C is an exhaustive list of equalities). Now, S reads some data d which satisfies the tests
tstS = {s1} in S and tstI = ∅ in I (such tests are consistent because s1 6= r1, r2), and
conducts assignments asgnS = ∅ and asgnI = {r2}. Then, on the one hand, s1 = r2 (both
contain d), and on the other hand s2 = r1 (since the content of those registers did not change).
Moreover, r1 6= r2 since r2 has been reassigned and s1 6= r1 still holds. This is represented
by the set of constraints C ′ = {(s1, r2), (s2, r1)}, and indeed, next(C, {s1},∅,∅, {r2}) = C ′.

Abstracting the behaviour of I modifies its language (it somehow simplifies it), but we
will see that what we build is still an implementation.

Definition of I′. We build I ′ = (Σi,Σo,D, Q, q0, δ, R
S), where Q = QS×QI ×2RS×RI and

q0 = (qS0 , qI0 , RS ×RI); we now define δ. For each state (qS
i
, qI , C) ∈ Q, for each input test

(σi, tstSi ) ∈ Σi×TstRS , we construct a transition t = (qS
i
, qI , C) σi,tstS

i
,asgnS ,σo,so−−−−−−−−−−−−→
I′ (q′S

i
, q′

I
, C ′)

whenever there exist the following transitions of S and I:

tS
i

= qS
i

σi,tstS
i
,asgnS

−−−−−−−−→
S

qS
o

tS
o

= qS
o

σo,tstS
o−−−−→

S
q′
S
i

tI = qI
σi,tstI ,asgnI ,σo,ro−−−−−−−−−−−→

I
q′
I

such that, for some fixed arbitrary order on RS , we have:

(i) tstI = {r ∈ RI | ∃s ∈ tstS
i
, (s, r) ∈ C}

(ii) C ′ = next(C, tstS
i
, asgnS , tstI , asgnI)

(iii) tstS
o

= {s ∈ RS | (s, ro) ∈ C ′}
(iv) so = min tstS

o

3 For readability, we confuse a register with its content.
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Item (i) ensures with the help of constraints that in any reachable configuration of I ′,
there exists at least one input data which satisfies both tstS

i
and tstI , which allows I ′ to

synchronise S with I. Note that this does not means that I ′ is the synchronous product
of S and I on any input: since I ′ only has the registers of S, it cannot discriminate data
as subtly as I, and might thus adopt a different behaviour. For instance, it can be that
upon reading some input data word, at some point, I would store some input data d in some
register r that S would not, and use it later on in a test tstI = {r} to take different actions,
while neither I ′ nor S could discriminate between those choices: on reading d, I ′ simulates
S with tstS

i
= ∅ and synchronously simulates in I the transition with input test tstI = ∅.

Nevertheless, we show the existence of some relational data word common to I and I ′ for
each run of I ′ (which is also a run of S). This is sufficient to conclude that I ′ realises S,
because then each run of I ′, interpreted as a run of S, is accepting. Then, items (iii) and
(iv) ensures the same property as item (i) does, but this time on output positions.

We shall see that for a transition t such that (qS , qI , C) is accessible on some finite input
data word, tS

i
, tS

o
and tI exist and are unique. So, for a run ρ = t1t2 . . . of I ′, we define

ρS = tS
i1t

S
o1t

S
i2t

S
o2 . . . and ρI = tI1t

I
2 . . .

Proof of Correctness. Let us show that I ′ is indeed a transducer realising S: we show that
for all ui ∈ DW(Σi,D), there exists a unique sequence of transitions ρ in I ′, a unique output
data word uo ∈ DW(Σo,D) (we denote u = 〈ui, uo〉) and a w ∈ L(I) such that:

1. ρI is the run of I over w
2. ρS is the run of S over w

3. ρ is the run of I ′ over u
4. ρS is the run of S over u

Note that the above properties imply lab(u) = lab(w), but it can be that u 6= w, which is
consistent with the observations we made. Let us show that they entail the result we need:
let ui ∈ DW(Σi,D) be some input data word. By property 3, fI′(ui) exists and is unique,
so I ′ has total domain. Now, by denoting ρS the run of S over u = 〈ui, fI′(ui)〉, we know
by property 2 that there exists w ∈ L(I) such that ρS is the run of S over w. Then, ρS is
accepting because I realises S so w ∈ L(S), hence u ∈ L(S). Thus, I ′ realises S.

The proof of properties 1-4 is rather technical, and can be found in [7]. J

Such result allows us to reduce unbounded synthesis to bounded synthesis for DRA∅.
Bounded synthesis is in ExpTime for DRA (Thm. 13) and is the topic of the next section.

I Theorem 6. Real(DRA∅,RT) is decidable in ExpTime.

5 Bounded Synthesis: A Generic Approach

In this section, we study the setting where target implementations are register transducers
in the class RT[k], for some k ≥ 0 that we now fix for the whole section. For the complexity
analysis, we assume k is given as input, in unary. Indeed, describing a k-register automaton
in general requires O(k) bits, and not O(log k) bits. We prove the decidable cases of
the first line of Table 1 (page 3), by reducing the problems to realisability problems for
data-free specifications.

Abstract Actions. We reduce the problem to a finite alphabet problem. Since we synthesise
k-register transducers, we take the input and output actions of the transducers as symbols of
our finite input and output alphabets. Let Rk = {1, . . . , k} and Tstk = Asgnk = 2Rk . The
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finite input actions are Ak
i

= Σi × Tstk which corresponds to picking a label and a test over
the k registers, and the output actions are Ak

o
= Σo × Asgnk ×Rk, corresponding to picking

some output symbol, some assignment and some register whose content is to be output.
An alternating sequence of actions a = (σ1

i
, test1)(σ1

o
, asgn1, r1) · · · ∈ (Ak

i
Ak
o
)ω abstracts

a set of relational data words of the form w = (σ1
i
, d1

i
)(σ1

o
, d1

o
) · · · ∈ RW(Σi,Σo,D) via a

compatibility relation that we now define. We say that w is compatible with a if there exists
a sequence of register configurations τ0τ1 · · · ∈ (Rk → D)ω such that τ0 = τRk

0 and for all
i ≥ 1, τi, dii |= testi, dio = τi(ri) and τi+1 = next(τi, dii, asgni). Note that this sequence is
unique if it exists. We denote by Comp(a) the set of relational data words compatible with a.
Given a specification S, we let WS,k = {a | Comp(a) ⊆ S}. The set WS,k can be seen as a
specification over the finite input (resp. output) alphabets Ak

i
(resp. Ak

o
).

I Theorem 7 (Transfer). Let S be a data word specification. The following are equivalent:
1. S is realisable by a transducer with k registers.
2. The (data-free) word specification WS,k is realisable by a (register-free) finite transducer.

Proof. Let T be a transducer with k registers realising S. The transducer T can be seen as
a finite transducer T ′ over input alphabet Ak

i
and output alphabet Ak

o
. Indeed, since the

transition function of T is total, it is also the case of T ′ (this is required by the definition of
transducer defining implementations).

Let us show that WS,k is realisable by T ′, i.e. L(T ′) ⊆ WS,k. Take a sequence a =
a1e1a2e2 · · · ∈ L(T ′). We show that Comp(a) ⊆ S. Let w ∈ Comp(a). Then, there exists a
run q0q1q2 . . . of T ′ on a since a ∈ L(T ′). By definition of compatibility for w, there exists
a sequence of register configurations τ0τ1 · · · ∈ (Rk → D)ω satisfying the conditions in the
definition of compatibility. From this we can deduce that (q0, τ0)(q1, τ1) . . . is an initial
sequence of configurations of T over w, so w ∈ L(T ). Finally, L(T ) ⊆ S, since T realises S.

Conversely, suppose that WS,k is realisable by some finite transducer T ′ over the input
(output) alphabets Ak

i
(Ak

o
). Again, the transducer T can be seen as a transducer with

k registers over data words. We show that T realises S, i.e., L(T ) ⊆ S. Let w ∈ L(T ).
The run of T over w induces a sequence of actions a in (Ak

i
Ak
o
)ω which, by definition of

compatibility, satisfies w ∈ Comp(a). Moreover, a ∈ L(T ′). Hence, since T ′ realises WS,k, we
get Comp(a) ⊆ S, so w ∈ S, concluding the proof. J

5.1 The case of URA specifications
In this section, we show that for any S a data word specification given as some URA,
the language WS,k is effectively ω-regular, entailing the decidability of Real(URA,RT[k]),
by Theorem 7 and the decidability of (data-free) synthesis. Let us first prove a series of
intermediate lemmas.

We define an operation ⊗ between relational data words w ∈ RW(Σi,Σo,D) and sequences
of actions a ∈ (Ak

i
Ak
o
)ω as follows: w ⊗ a ∈ RW(Ak

i
, Ak

o
,D) is defined only if for all i ≥ 1,

lab(w[i]) = lab(a[i]) where lab(a[i]) is the first component of a[i] (a label in Σi ∪ Σo), by
(w ⊗ a)[i] = (a[i], dt(w[i])).

I Lemma 8. The language Lk = {w ⊗ a | w ∈ Comp(a)} is definable by some NRA.

Proof. We define an NRA with k registers which roughly follows the actions it reads on its
input. Its set of states is {q}∪AsgnR, with initial state q. In state q, it is only allowed to read
labelled data in Ak

i
×D. On reading (σi, tst, d), it guesses some assignment asgn, performs
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the test tst and the assignment asgn and goes to state asgn. In any state asgn ∈ AsgnR, it is
only allowed to read labelled data of the form (σo, asgn, r, d), for which it tests whether d is
equal to the content of r. It does no assignment and moves back to state q. All states are
accepting (i.e. have maximal even parity 2). Such NRA has size O(2k2). J

Let S be a specification defined by some URA AS with set of states Q. The following
subset of Lk is definable by some NRA, where S denotes the complement of S:

I Lemma 9. The language LS,k = {w ⊗ a | w ∈ Comp(a) ∩ S} is definable by some NRA.

Proof. Since S is definable by the URA AS , S is NRA-definable with the same automaton,
denoted now AS , interpreted as an NRA. Let B be some NRA defining Lk (it exists by
Lemma 8). It now suffices to take a product of AS and B to get an NRA defining LS,k. J

Given a data word language L, we denote by lab(L) = {lab(w) | w ∈ L} its projection on
labels. The language WS,k is obtained as the complement of the label projection of LS,k:

I Lemma 10. WS,k = lab(LS,k).

Proof. Let a ∈ (Ak
i
Ak
o
)ω. Then, a /∈WS,k ⇔ Comp(a) 6⊆ S ⇔ ∃w ∈ RW, w ∈ Comp(a)∩S ⇔

∃w ∈ RW, w ⊗ a ∈ LS,k ⇔ a ∈ lab(LS,k). J

We are now able to show regularity of WS,k.

I Lemma 11. Let S be a data word specification, k ≥ 0. If S is definable by some URA
with n states and r registers, then WS,k is effectively ω-regular, definable some deterministic
parity automaton with O(2n216(r+k)2

) states and O(n.4(r+k)2) priorities.

Proof. First, LS,k is definable by some NRA with O(2k2
n) states and O(r + k) registers

by Lemma 10, obtained as product between the NRA AS and the automaton obtained in
Lemma 8, of size O(2k2). It is known that the projection on the alphabet of labels of
a language of data words recognised by some NRA is effectively regular [10]. The same
construction, which is based on extending the state space with register equality types, carries
over to ω-words, and one obtains a non-deterministic parity automaton with O(n.4(r+k)2)
states and d priorities recognising lab(LS,k). It can be complemented into a deterministic

parity automaton with O(2n2.16(r+k)2

) states and O(n.4(r+k)2) priorities using standard
constructions [15]. J

We are now able to reprove the following result, known from [12]:

I Theorem 12. For all k ≥ 0, Real(URA,RT[k]) is in 2ExpTime.

Proof. By Lemma 11, we construct a deterministic parity automaton PS,k for WS,k. Then,
according to Theorem 7, it suffices to check whether it is realisable by a (register-free)
transducer. This is decidable by Theorem 1. The way to decide it is to see PS,k as a
two-player parity game and check whether the protagonist has a solution. Parity games
can be solved in time O(mlog d) [3] where m is the number of states of the game and
d the number of priorities. Overall, solving it requires doubly exponential time, more
precisely in O(2n316(r+k)2

). J

In [11], it is shown that the complexity of the problem is actually only singly exponential in k,
and such analysis extends to our construction. Similarly, when the specification automaton
is deterministic, we can show that:

I Theorem 13. Real(DRA,RT[k]) is in ExpTime.
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5.2 The case of test-free NRA specifications
Unfortunately, by Theorem 3, the synthesis problem for specifications expressed as NRA is
undecidable, even when the number of registers of the implementation is bounded. And indeed,
if we mimic the reasoning of the previous section, Lemma 10 does not allow to conclude because
LS,k is definable by a URA but the string projection of a URA is not ω-regular in general. E.g.,
consider L = {(r, d1) . . . (r, dn)(g, d′1) . . . (g, d′m) | ∀i 6= j, di 6= dj ∧ ∀1 ≤ i ≤ n,∃j, d′j = di},
which consists in a word w ∈ rn with pairwise distinct data followed by a word w ∈ gm which
contains at least all the data of w (it is over finite words for simplicity but can be extended
to ω-words). L is recognised by the URA which, on reading (r, di), universally triggers a run
checking three properties: firstly, once a label g is read, only g’s are read, secondly, (r, di)
does not appear again, and thirdly, (g, di) appears at least once. Now, it is readily seen that
lab(L) = {rngm | m ≥ n}, which is not regular. Here, we defined L over finite words for
simplicity but it is easily extended to an ω-language which is not ω-regular.

Thus, in this section, we consider a restriction on NRA which do not perform tests on
input data. A test-free register automaton is a tuple A = (Σi,Σo,D, Q, q0, δ, R, c) such that
δ ⊆ Q× Σi × AsgnR × Σo ×R ×Q. Such a register automaton reads two labelled data at
once. In a configuration (q, τ), when reading (σi, di)(σo, do), it can fire any transition of the
form (q, σi, asgn, r, σo, q′) ∈ δ such that τ(r) = do and move to configuration (q′, τ ′) where
τ ′ = next(τ, asgn, di). It is easily seen that a test-free register automaton can be converted
into a proper register automaton, justifying its name. Such automata will be interpreted by
a non-deterministic parity acceptance condition; we denote the class NRAtf

4.
It is not clear whether WS,k is regular for such specifications, but we show that it suffices

to consider another set denoted W tf
S,k which is easier to analyse (and can be proven regular),

and based on the behaviour of S over input with pairwise distinct data. The intuition behind
restricting to such case is that NRAtf cannot conduct test on input data, so they behave
the same on an input word whose data are all distinct, and such choice ensures that two
equal input data will not ease the task of the implementation. An interesting side-product
of this approach is that it implies that we can restrict to test-free implementations. A
test-free transducer is a transducer whose transitions do not depend on tests over input
data; formally δ : Q× Σi → AsgnR × Σo ×R×Q. In the following, we let AllDiff denote
the set of relational data words whose input data are pairwise distinct: AllDiff = {w =
(σ1

i
, d1

i
)(σ1

o
, d1

o
) · · · ∈ RW | ∀0 ≤ i < i′, di

i
6= di

′

i
}; by convention d0

i
= d0.

I Proposition 14. Let S be a NRAtf specification. The following are equivalent:
(i) S is realisable

(ii) W tf
S,k = {a ∈ (A∅

i
Ak
o
)ω | Comp(a) ∩ S ∩ AllDiff 6= ∅}, where A∅

i
= Σi × {∅}, has

domain (A∅
i

)ω and is realisable (by a register-free transducer)
(iii) S is realisable by a test-free transducer

Proof. (i)⇒ (ii): If S is realisable, then by Theorem 7 WS,k has total domain and is realisable
by some transducer I. Now, since transducers are closed under regular domain restriction,
W∅
S,k = WS,k ∩ (A∅

i
Ak
o
)ω has domain (A∅

i
)ω and is realisable by I ∩ (A∅

i
Ak
o
)ω. Moreover,

W∅
S,k ⊆ W tf

S,k. Indeed, if Comp(a) ⊆ S, then, since S has total domain and a ∈ (A∅
i
Ak
o
)ω,

Comp(a) ∩ S ∩AllDiff 6= ∅. Thus, W tf
S,k also has domain (A∅

i
)ω and is realisable by any

transducer realising W∅
S,k.

4 The bounded synthesis of URA is already decidable, so we do not consider their test-free restriction.
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(iii) ⇒ (i): is trivial.
(ii) ⇒ (iii): Intuitively, NRAtf can only rearrange input data (duplicate, erase, copy)

regardless of the actual data values (as there are no tests), so its behaviour on AllDiff
determines its behaviour on the entire domain. This can be formalised precisely through a
notion of data origins given a run (this notion is also made explicit in [5]).

To a run ρ = q0
σ1
i
,asgn1,r1,σ1

o−−−−−−−−−→ q1
σ2
i
,asgn2,r2,σ2

o−−−−−−−−−→ q2 . . . corresponds the origin function
oρ : j 7→ max{i ≤ j | rj ∈ asgni}, with the convention max∅ = 0.

Now, for an origin function o : N\{0} → N and for a relational data word w ∈ RW, we
say w is compatible with the origin function o, denoted w |= o, whenever for all j ≥ 1,
dt(out(w)[j]) = dt(inp(w)[o(j)]), with the convention dt(inp(w)[0]) = d0.

The following lemma shows that actual data values in a word w do not matter with
respect to membership in some NRAtf, only the compatibility with origin functions does:

I Lemma 15. Let w ∈ RW and ρ a sequence of transitions of some NRAtf. Then,
(i) If ρ is a run over w, then w |= oρ.

(ii) If ρ is a run over w and w ∈ AllDiff, then for all o : N\{0} → N, w |= o⇔ o = oρ.
(iii) If w and ρ have the same finite labels and if w |= oρ, then ρ is a run over w.

Proof. (i) and (iii) follow from the semantics of NRAtf, which do not conduct any test on the
input data. The ⇐ direction of (ii) is exactly (i). Now, assume w ∈ AllDiff admits ρ as a
run, and let o such that w |= o. Then, let j ≥ 1 be such that dt(out(w)[j]) = dt(inp(w)[o(j)]).
By (i) we know that dt(out(w)[j]) = dt(inp(w)[oρ(j)]), so dt(inp(w)[o(j)]) = dt(inp(w)[oρ(j)]).
Since w ∈ AllDiff, this implies o(j) = oρ(j), so, overall, o = oρ. J

Now, assume W tf
S,k is realisable by some transducer I. We show that I, when ignoring the

∅ input tests, is actually an implementation of S. Thus, let I ′ be the same transducer as I
except that all input transitions (σi,∅) are now simply labelled σi. Note that I ′, interpreted
as a register transducer, is test-free. Let w ∈ DW, and ai = lab(w)×∅ω be the input action
in A∅

i
with same finite labels as w. Let a = I(ai), and let w′ ∈ Comp(a)∩S∩AllDiff (such

w′ exists because W tf
S,k has domain (A∅

i
)ω and I realises W tf

S,k). Then, since lab(w) = lab(w′),
they admit the same run ρI in I, so w,w′ |= oρI . Then, w′ ∈ S, so it admits an accepting
run ρS in S, which implies w′ |= oρS . Moreover, w′ ∈ AllDiff so, by Lemma 15 ii, we
get oρI = oρS . Therefore, w |= oρS , so, by iii, w admits ρS as a run, i.e. w ∈ S. Overall,
L(I) ⊆ S meaning that I is a (test-free) implementation of S. End of proof of Prop. 14 J

Finally, W tf
S,k = {a ∈ (A∅

i
Ak
o
)ω | Comp(a) ∩ S ∩ AllDiff 6= ∅} is regular. Indeed,

W tf
S,k = {a ∈ (A∅

i
Ak
o
)ω | Comp(a) ∩ S∅ 6= ∅}, where S∅ is the same automaton as S except

that all transitions q σi,asgn,r,σo−−−−−−−→ q′ have been replaced with q
σi,∅,asgn,r,σo−−−−−−−−−→ q′, because, for

all a ∈ (A∅
i
Ak
o
)ω, Comp(a) ∩ S ∩AllDiff 6= ∅ ⇔ Comp(a) ∩ S∅ 6= ∅ (the ⇒ direction is

trivial, and the⇐ stems from the fact that an AllDiff input only takes tst = ∅ transitions).
Then, Ltf

S,k = {w ⊗ a ∈ RW⊗ (A∅
i
Ak
o
)ω | w ∈ Comp(a) ∩ S∅} is NRA-definable. Indeed,

S is NRAtf-definable, so S∅ is NRA-definable, and by Lemma 8, Lk = {w⊗a | w ∈ Comp(a)}
is NRA-definable, so their product recognises Ltf

S,k. Finally, W tf
S,k = lab(Ltf

S,k), and the
projection of a NRA over some finite alphabet is regular [10].

Overall, by Theorems 1 and 7, we get (the complexity analysis is the same as for URA):

I Theorem 16. For all k ≥ 0, Real(NRAtf,RT[k]) is decidable and in 2ExpTime.
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6 Synthesis and Uniformisation

In this section, we discuss the relation between realisability and uniformisation of relations:
in this paper, if S is realisable by a register transducer, then, in particular, it has universal
domain, i.e. inp(S) = DW(Σi,D), otherwise it cannot be that L(T ) ⊆ S for T a register
transducer, since by definition inp(T ) = DW(Σi,D). However, when defining a specification,
the user might be interested only in a subset of behaviours (for instance, s/he knows
that all input data will be pairwise distinct). In the finite alphabet setting, since the
formalisms used to express specifications are closed under complement (whether it is LTL
or ω-automata), it suffices to complete the specification by allowing any behaviour on the
input not considered. However, since register automata are not closed under complement,
such approach is not sufficient here. Thus, it is relevant to generalise the realisability
problem to the case where the domain of the specification is not universal. This can be
done by equipping register transducers with an acceptance condition. It is also necessary to
adapt the notion of realisability; otherwise, any transducer accepting no words realises any
specification. A natural way is to consider synthesis as an instance of the uniformisation
problem. An (implementation) function f : I → O is said to uniformise a (specification)
relation R ⊆ I × O whenever dom(f) = dom(R) and for all i ∈ dom(f), (i, f(i)) ∈ R. In
the context of reactive synthesis, where f = fI is defined from an implementation I and R

is given as a language of relational words, it can be rephrased as inp(L(I)) = inp(R) and
for all wi ∈ inp(L(I)), 〈wi, fI(wi)〉 ∈ R. Note that such definition coincides with the one of
realisability when the class of implementations has universal domain. In the following, we
denote by Unif(S, I) the uniformisation problem from specifications in S to implementations
in I. Unfortunately, this setting is actually much harder, as shown by the next two theorems:

I Theorem 17. Given S a specification represented by a DRA, checking whether inp(S) =
DW(Σi,D) is undecidable.

While the uniformisation setting obviously preserves the undecidability results from
the synthesis setting, the above result allows to show that the somehow more general
uniformisation problem is undecidable. For instance, we can prove:

I Theorem 18. For all k ≥ 1, Unif(URA,RT[k]) is undecidable.

If the domain is DRA-recognisable, it is possible to reduce the uniformisation problem to
realisability, by allowing any behaviour on the complement on the domain (which is DRA-
recognisable). However, such property is undecidable as a direct corollary of Theorem 17.

7 Conclusion

In this paper, we have given a picture of the decidability landscape of the synthesis of
register transducers from register automata specifications. We studied the parity acceptance
condition because of its generality, but our results allow to reduce the synthesis problem
for register automata specifications to the one for finite automata while preserving the
acceptance condition. We have also introduced and studied test-free NRA, which do not have
the ability to test their input, but still have the power of duplicating, removing or copying
the input data to form the output. We have shown that they allow to recover decidability in
presence of non-determinism, in the bounded case. We leave open the unbounded case, which
we conjecture to be decidable. As future work, we want to study synthesis problems for
specifications given by logical formulae, for decidable data words logics such as two-variable
fragments of FO [2, 17, 4].
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2 Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.

Two-Variable Logic on Words with Data. In Proceedings of the 21th IEEE Symposium on Logic
in Computer Science (LICS 2006), pages 7–16. ACM, 2006. doi:10.1109/LICS.2006.51.

3 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
Parity Games in Quasipolynomial Time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2017), pages 252–263. ACM, 2017. doi:10.1145/
3055399.3055409.

4 Luc Dartois, Emmanuel Filiot, and Nathan Lhote. Logics for Word Transductions with
Synthesis. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2018), pages 295–304. ACM, 2018. doi:10.1145/3209108.3209181.

5 Antoine Durand-Gasselin and Peter Habermehl. Regular Transformations of Data Words
Through Origin Information. In Proceedings of the 19th International Conference on Foun-
dations of Software Science and Computation Structures (FOSSACS 2016), volume 9634
of Lecture Notes in Computer Science, pages 285–300. Springer, 2016. doi:10.1007/
978-3-662-49630-5_17.
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