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Abstract 

This study focused on the evaluation of the electric field 2D spatial distribution of the E-field in a one-floor apartment when 

a WiFi source is placed in uncertain position. An innovative approach that combines Principal Component Analysis and 

Kriging model in order to build space-dependent surrogate models was applied and validated. Preliminary results showed 

the feasibility of the approach. 

Introduction 

The continuous development of new wireless communication technologies contributes in raising the public concern for 

potential health effects of Radio Frequency Electromagnetic Field (RF-EMF) exposure [1]. A huge research effort was done 

in last years to assess the levels of exposure to RF-EMF, resulting in a wide variety of studies (see, e.g. [2]). All these studies, 

although providing fundamental information, gave a limited picture of the RF-EMF exposure, strictly related to the exposure 

scenarios in which the assessment was carried out. However, the rapid evolution of technology requires a similar evolution 

in the methods of assessment of the exposure, to face the increasing complexity of the exposure scenarios. This is 

particularly needed in indoor environments, in which the RF-EMF levels depend on outdoor sources such as mobile phone 

antennas, as well as on indoor sources such as e.g. mobile phone handsets, WIreless Fidelity (WIFI) sources etc. While the 

contribution of the outdoor sources is attenuated by building walls, the number and locations of indoor sources are affected 

by a lack of information, especially for residential environments. All these aspects cause the assessment of RF-EMF exposure 

in residential scenarios to be a challenging task.  

A promising approach to manage uncertainty and variability of the exposure scenarios was found to be stochastic dosimetry 

[3], an innovative approach based on ad hoc stochastic methods to build surrogate models, i.e. models with statistical 

properties similar to the phenomenon under interest, but with a simple functional form useful to propagate the uncertainty 

and variability of the parameters known to influence the exposure scenarios.  

This study aims at obtaining a complete description of the RF-EMF exposure in a realistic apartment due to the presence of 

a WiFi source placed in uncertain position. In order to obtain the 2D spatial distribution of E induced in the whole apartment 

for each position of the WiFi source, a recently proposed stochastic method combining Principal Component Analysis (PCA) 

and Kriging method [4] was used. The main novelty of this method is to firstly apply PCA to high dimensional output, such 

as the 2D spatial distribution of the E in the apartment. PCA, through an orthogonal transformation, allowed capturing the 

main stochastic features by means of a small number of non-physical variables, which can be predicted by surrogate models. 

The set of observations needed to develop the 2D surrogate models of the exposure was obtained by the WiCa Heuristic 

Indoor Propagation Prediction (WHIPP) tool, a set of heuristic planning algorithms developed for network planning in indoor 

environments [5]. 

Materials and Methods 

Fig. 1 shows a schematic view of the exposure scenarios: the electric field E induced in each point of a one-floor apartment 
was assessed by varying the coordinates of a WiFi source, using a 2D surrogate model. The 2D surrogate model describes 
how the 2D variable of interest Y (i.e., the E induced in each point of the apartment) was affected by the variability in the 
input parameters X (i.e., the coordinates describing the WiFi source position).  

 



 

Fig. 1. Schematic view of the exposure scenario. 

Design of the experiment 

The considered apartment is 16 m long and 7 m wide and includes six distinct rooms of different sizes. The random input 
vector 𝑋 was defined as the three coordinates x, y and z, which characterized the position of the WiFi source (the ranges of 
variation are reported in Fig.1). The experimental design 𝑋0 = {𝑋1, … , 𝑋𝑁}, with 𝑁 equal to 200, corresponding to 200 
positions of the WiFi source, has been generated using a Latin Hypercube Sampling [3]. The set of 200 experimental 
observations 𝑌0 of the variable of interest Y was obtained by the WHIPP tool [5]. For each set of coordinates X = {x, y, z}, the 
variable of interest 𝑌 is a matrix containing the root mean square value of E for 2821 points spaced by 20 cm calculated at 
a height of 130 cm from the floor. The WHIPP algorithm, used to predict the E field values over the apartment floor for each 
WiFi source position defined in the experimental design, is a heuristic planning algorithm, developed and validated for the 
prediction of path loss in indoor environments, taking into account the effect of the environment on the wireless 
propagation channel [5]. The WiFi source considered in this study had Equivalent Isotropic Radiated Power equal to 20 dBm 
and working frequency equal to 2400 MHz.  

Surrogate modeling 

The 2D surrogate modelling procedure is based on three main steps [4]. First, a kernel PCA with linear kernel was applied. 
The rationale of using PCA is that the E induced at nearby spatial coordinates could be hypothesized to be highly correlated, 
and thus can be efficiently represented by a few d components. The central idea of PCA is to project the original D 
dimensional data 𝑦 ∈ ℝ𝐷 into a space were the variance is maximized in the first few principal components: 

 𝑌 =  𝑊𝑧 + 𝜇 + 𝑒 (1) 

where W refers to the matrix of eigenvectors of the data covariance matrix corresponding to the d largest eigenvalues, 𝑧 ∈

ℝ𝑑  refers to the vector of principal components scores, μ is the mean value of the data and e is the residual error. 
As a second step, the Kriging method was applied to develop a separate surrogate model for each of the d (non-physical) 
components identified by PCA. Kriging method is a stochastic interpolation algorithm that assumes that a model output a 
realization of a Gaussian process indexed by x ∈ DX ⊂ ℝM. A scalar Kriging surrogate model is: 

 𝑀𝐾(𝑥, 𝜔) =  𝛽𝑇𝑓(𝑥) + 𝜎2𝑍(𝑥, 𝜔) (2) 
where βTf(x) is the mean value of the Gaussian process, σ2 is the variance of the Gaussian process, Z(x, ω) is a zero mean, 

unit variance, stationary Gaussian process conditioned in such a way that 𝑀𝐾(𝑥𝑖 , 𝜔) is equal to 𝑧𝑖
(𝑐)

 ∀𝑖. The term ω describes 

outcomes of the underlying probability space with a correlation function R and its hyperparameters θ. The correlation 
function R = R (x, x’, θ) models the dependence structure between values at points x and x’, and depends on the 
hyperparameters θ. In this study, no basis function was used (𝑃 = 0) and a Matérn correlation function R was used. The 
hyperparameters σ2 and θ were estimated by Maximum Likelihood Estimation (MLE).  
The third step in the 2D surrogate modelling procedure consisted of using the inverse PCA to reconstruct, from the univariate 

surrogate models 𝑧(1)̂ ,  𝑧(2)̂ , …, 𝑧(𝑑)̂  obtained by Kriging method, the 2D spatial distribution of E in the apartment.  
The validation of the 2D surrogate model was based on a leave-one-out cross-validation approach: the set of observation Y0 
was recursively divided into two subsets: Ytraining, containing all the observations except for the ith one, and Ytest, containing 

only the excluded observation. A 2D surrogate model 𝑌̂ was built using the subset Ytraining and then its prediction of the 
excluded ith point was compared with Ytest. The normalized Mean Square Error (MSE) was calculated by computing the mean 



of the errors calculated at each iteration. 

Assessment of the exposure 

Once the 2D surrogate model has been obtained, the E values in each points of the apartment were assessed for a high 
number of positions (i.e. 10.000) of the WiFi source. In order to take into account that WiFi data packets are transmitted in 
bursts and not continuously, the E field values were rescaled by duty cycle values equal 0.25%, 1.08% and 10.69%, 
corresponding to duty cycle values measured when surfing new site, using a Skype video call and watching a You Tube video 
at 1080p for a physical data rate equal to 54 Mbps [6].  
 

Results 

Fig. 2 shows the leave-one-out normalized MSE versus the number d of principal components considered in the 2D surrogate 

modelling procedure. For d equal to 88, the normalized MSE was equal to 5%, thus indicating that an acceptable number of 

components was sufficient to represent the 2D distribution of the E field in the whole apartment. 

 

Fig. 2. Leave-one-out normalized MSE versus the number d of components considered in the 2D surrogate model. 

 

Fig. 3. Cumulative density functions of the E values for the three usage of the WiFi for 10.000 different positions of the 

source. 

Fig. 3, shows, as an example of the results that could be obtained with the 2D surrogate model, the cumulative density 

functions of the E values obtained in the whole apartment for 10.000 different positions of the source, for the three usage 

of the WiFi (surfing new site, using a Skype video call and watching a You Tube video at 1080p). The probability density 

functions of the E values could be approximated by Gamma distributions with parameters a = 2.63 and b = 0.001, for the 

“Surfing new site” usage (with R2 = 0.95), a = 2.64 and b = 0.004, for the “Skype video call” usage (with R2 = 0.96), and a = 

2.64 and b = 0.04, for the “You Tube” usage (with R2 = 0.95). 

Conclusions 

Preliminary results showed that the proposed approach is feasible to assess the 2D spatial distribution of the E-field in a 

one-floor apartment when a WiFi source is placed in uncertain position. The developed 2D surrogate model, allowing 

obtaining a complete description of the level of exposure in the whole apartment for each possible position of the source 



with a very low computational cost, could be used to obtain a description of the exposure in the different rooms, thus 

obtaining different probability density functions for rooms of different sizes or different shapes. The possibility of achieving 

this type of information will be fundamental for obtaining a full evaluation of the RF-EMF exposure with the incoming 5G 

technologies.  
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