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Abstract—Coding schemes are proposed for Wyner’s soft-
handoff model and for the sectorized hexagonal model when
some of the messages are delay-sensitive and cannot profit from
transmitter or receiver cooperation. For the soft-handoff network
we also provide a converse. It matches the multiplexing-gain
achieved by our scheme when the multiplexing gain of the delay-
sensitive messages is low or moderate or when the cooperation
links have high capacities. In these cases, the sum-multiplexing
gain is the same as if only delay-tolerant messages (which can
profit from cooperation) were sent. A similar conclusion holds
for the sectorized hexagonal model, when the capacities of the
cooperation links are large.

I. INTRODUCTION

One of the major challenges of today’s wireless communi-

cation networks is to design coding schemes for transmission

of heterogeneous traffic types. Such a design, for example,

has to account for the fact that delay-tolerant applications

can profit from cooperation between transmitting or receiving

terminals, but delay-sensitive applications cannot. Such mixed

delay constraints in wireless networks have recently been

studied in [1]–[5]. In this paper, we study the capacity of

two cellular network models (Wyner’s soft-handoff model [6],

[7] and the hexagonal sectorized model) under mixed delay

constraints. In a previous work, we have studied the capacity

region of Wyner’s soft-handoff network under mixed delay

constraints when only the transmitters or only the receivers can

cooperate [5]. We determined the multiplexing gain region in

function of the capacities of the cooperation links. The results

show that when delay-sensitive applications are of low rates,

the total sum-rate is not decreased compared to a scenario

where communication is only for delay-tolerant applications.

In contrast, for high-rate delay-sensitive applications, this is

not the case, and 1 bit of delay-sensitive rate comes at the

expense of 2 bits delay-tolerant rate. Moreover, no positive

delay-tolerant multiplexing gain is possible when one insists

on sending at maximum delay-sensitive multiplexing gain.

As we show in this work, these (rather pessimistic) con-

clusions do not hold when both the transmitters and the

receivers can cooperate. In fact, when the cooperation rates are

sufficiently large, then by using sophisticated coding schemes

it is possible to accommodate the largest possible multiplexing

gain for delay-sensitive applications without decreasing the

maximum sum-multiplexing gain. The stringent delay con-

straints thus do not harm the overall performance. For smaller
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Fig. 1. System model

cooperation rates, this performance is achievable only when

the delay-sensitive multiplexing gain is small. In this case, the

behaviour is similar to when only transmitters or only receivers

can cooperate.

II. WYNER’S Soft Hand-off NETWORK

Consider the communication system as in Fig. 1 with K
interfering transmitter (Tx) and receiver (Rx) pairs 1, . . . ,K.

Transmitters and receivers are each equipped with a single

antenna, and channel inputs and outputs are real valued.

Interference is short-range so that the signal sent by Tx k
is observed only by Rx k and k + 1. As a result, the time-t
channel output at Rx k is

Yk,t = Xk,t + αXk−1,t + Zk,t, (1)

where Xk,t and Xk−1,t are the symbols sent by Tx k and k−1
at time t, respectively; {Zk,t} are independent and identically

distributed (i.i.d.) standard Gaussians for all k and t; α �= 0 is

a fixed real number smaller than 1; and X0,t = 0 for all t.
Each Tx k wishes to send a pair of independent source mes-

sages (M
(F )
k ,M

(S)
k ) to Rx k. The “fast” source message M

(F )
k

is uniformly distributed over M(F )
k := {1, . . . , �2nR(F )

k �}
and the “slow” source message M

(S)
k over M(S)

k :=

{1, . . . , �2nR(S)
k �}. Here, n, R

(F )
k , and R

(S)
k denote the block-

length and rates of transmission. Transmitters can cooperate

with their immediate neighbours to exchange information

about “slow” but not “fast” messages. In each cooperation

round j ∈ {1, . . . ,Dt}, Tx k produces the two cooperation

messages T
(j)
k→k−1 and T

(j)
k→k+1, where

T
(j)

k→k̃
= ξ

(n)

k→k̃

(
M

(S)
k , T

(1)
k−1→k, . . . , T

(j−1)
k−1→k,



T
(1)
k+1→k, . . . , T

(j−1)
k+1→k

)
(2)

for some function ξ
(n)

k→k̃
on appropriate domains. It sends these

messages over the conferencing links to its left and right

neighbours. The conferencing links are limited to rate π:

Dt∑
j=1

H(T
(j)

k→k̃
) ≤ π ·n, k ∈ {1, . . . ,K}, k̃ ∈ {k− 1, k+1}.

(3)

Each Tx (k) then computes its channel inputs as

Xn
k = f

(n)
k

(
M

(F )
k ,M

(S)
k , T

(1)
k−1→k, . . . , T

Dt

k−1→k,

T
(1)
k+1→k, . . . , T

Dt

k+1→k

)
(4)

for some function f
(n)
k on appropriate domains that satisfies

the average block-power constraint

1

n

n∑
t=1

X2
k,t ≤ P, a.s., ∀ k ∈ {1, . . . ,K}. (5)

Receivers decode in two phases. During the first fast-
decoding phase, each Rx k decodes the “fast” source mes-

sage M
(F )
k based only on its own channel outputs Y n

k :=
(Yk,1, . . . , Yk,n). So, it produces:

M̂
(F )
k = g

(n)
k

(
Y n
k

)
(6)

for some decoding function g
(n)
k on appropriate domains.

In the subsequent slow-decoding phase, the receivers

first communicate with their immediate neighbours over

rate-limited cooperation links. In cooperation round j ∈
{1, 2, . . . ,Dr}, Rx k sends the cooperation messages Q

(j)
k→k−1

and Q
(j)
k→k+1 to its neighbours Rx (k − 1) and Rx (k + 1),

respectively. So, for k̃ ∈ {k − 1, k + 1}:

Q
(j)

k→k̃
= ψ

(n)

k,k̃

(
Y n
k , Q

(1)
k−1→k, Q

(1)
k+1→k, . . . ,

Q
(j−1)
k−1→k, Q

(j−1)
k+1→k

)
, (7)

for some encoding function ψ
(n)

k,k̃
. The Dr messages sent over

a conferencing link in each direction are rate-limited to π:

Dr∑
j=1

H(Q
(j)

k→k̃
) ≤ π · n, k ∈ {1, . . . ,K}, k̃ ∈ {k, k + 1}.

(8)

After this cooperation phase, each Rx k decodes its desired

“slow” message as

M̂
(S)
k := b

(n)
k

(
Y n
k , Q

(1)
k−1→k, Q

(1)
k+1→k,

. . . , Q
(Dr)
k−1→k, Q

(Dr)
k+1→k

)
(9)

by means of a decoding function b
(n)
k .

Given cooperation prelog μ ≥ 0 and maximum delay D, a

pair (S(F ), S(S)) is called achievable, if for each K there exists

a sequence of rate pairs {R(F )
K (P ), R

(S)
K (P )}P>0 so that

S(F ) := lim
K→∞

lim
P→∞

∑K
k=1 R

(F )
k

K
2 log(1 + P )

, (10)
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Fig. 2. Bounds on S�(μ,D) for D = 20 and different values of μ.

S(S) := lim
K→∞

lim
P→∞

∑K
k=1 R

(S)
k

K
2 log(1 + P )

, (11)

and so that for each rate pair (R
(F )
K (P ), R

(S)
K (P )) it is possible

to find encoding, cooperation, and decoding functions with

average power not exceeding P , total delay Dt+Dr ≤ D, and

cooperation rate π ≤ μ · 1
2 logP , and so that the probability

of decoding error

P (n)
e := Pr

[ ⋃
k∈{1,...,K}

{
M̂

(F )
k �= M

(F )
k or M̂

(S)
k �= M

(S)
k

}]

tends to 0 as n → ∞. The closure of the set of all achievable

(S(F ), S(S)) is called multiplexing gain region and denoted

S�(μ,D).
The following is our main result in this section.

Theorem 1: The set S�(μ,D) includes all nonnegative pairs

(S(F ), S(S)) satisfying

S(F ) ≤ 1

2
(12)

S(F ) + aS(S) ≤ 1

2
+

3a

4
μ (13)

S(F ) + S(S) ≤ min

{
1

2
+

3

4
μ,

2D + 1

2D + 2

}
, (14)

where a := 8D−8
13D−8 < 1.

Proof: See Section IV.

Proposition 1: Any pair (S(F ), S(S)) in S�(μ,D) satisfies

S(F ) ≤ 1

2
(15a)

S(F ) + S(S) ≤ min

{
1

2
+ 2μ,

2D + 1

2D + 2

}
. (15b)

Proof: Follows from [8] and by a rate-transfer argument

from “fast” to “slow” messages.

Fig. 2 depicts above bounds for two examples. The bounds

coincide when μ is sufficiently large or S(F ) sufficiently small.

Corollary 1: If

μ ≥ 4D

3(2D + 2)
, (16)

then S�(μ,D) is the set of pairs (S(F ), S(S)) satisfying (15).



Fig. 3. Illustration of the sectorized hexagonal network. Black hexagonal
regions depict the cells and the dashed blue lines determine their sectorization.
Interfering sectors are connected by green lines.

If

S(F ) ≤ 1

2
− 2μ

D − 1

D
, (17)

then (S(F ), S(S)) ∈ S�(μ,D) if, and only if, it satisfies (15b).

From Fig. 2 (and Corollary 1) we also see that when μ
exceeds a threshold, then for any S(F ) the same maximum

sum-multiplexing gain of min{ 1
2 + 2μ, 2D+1

2D+2} is achievable

as when only slow messages are transmitted. There is thus

no penalty in sum-multiplexing gain by sending also “fast”

messages. This is in contrast to the setup with only transmitter

or receiver cooperation where a moderate or large multiplexing

gain for “fast” messages causes a decrease in sum-multiplexing

gain [5].

III. SECTORIZED HEXAGONAL MODEL

In this model, the N cells are hexagons and consist of three

sectors. The BS of each cell is equipped with 3M directional

antennas, with M antennas pointing to each sector. This allows

avoiding interference between communications from different

sectors in the same cell. For simplicity, and because the focus

is on the multiplexing gain, we assume a single mobile user

in each sector. The models with the cells, sectors, and the

interference pattern, is depicted in Fig. 3. The small circles

indicate mobile users, and the solid green lines indicate that

the communication in two given sectors interfere.

For a given sector k ∈ {1, . . . , 3N}, let the set Ik contain

the indices of the neighbouring sectors whose signals interfere

with sector k. The time-t signal received at the M receive

antennas directing to sector k can then be written as:

Yk,t = Hk,kXk,t +
∑
k̂∈Ik

Hk,k̂Xk̂,t + Zk,t, (18)

where {Hk,k̂} denote the M -by-M channel matrices.

As before, “fast” and “slow” messages are sent simultane-

ously over the network. Mobile transmitters in neighbouring

sectors can cooperate “slow” messages during Dt rounds

of cooperation. Receiving BSs decode their “fast” messages

based solely on their own outputs and their “slow” messages

based on these outputs and the cooperation signals that they

exchanged with neighbouring BSs over Dr cooperation rounds.
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Fig. 4. Inner bound on multiplexing gain region for M = 3 and different
values of t.

So, BS i produces as its guesses of the “fast” and “slow”

messages:

M̂
(F )
i = gi

(n)
(
Yi

)
(19)

and

M̂
(S)
i = b

(n)
i

(
Yi,V

j
to i

)
, (20)

where Yi := {(Yk,1, . . . , Yk,n) : sector k is in cell i},

M
(F )
i := {M (F )

k : sector k is in cell i}, M
(S)
i := {M (S)

k :
sector k is in cell i} and V

j
to i denote all conferencing

messages received at BS i. The multiplexing gain region is

defined analogously to the previous section, but for simplicity

we assume that μ = 1.

Theorem 2: The multiplexing gain region includes all non-

negative pairs (S(F ), S(S)) that satisfy

S(F ) + S(S) ≤ M(3t− 1)

3t
(21)

S(F ) + c S(S) ≤ M

2
. (22)

where c := t
2(2t−1) < 1 and t ∈ {1, . . . ,Dr/2}.

Proof: See Section V.

This inner bound on the multiplexing gain region is illustrated

in Figure 4. We notice that for small or moderate values of

S(F ), the sum-multiplexing gain achieved by our scheme is

the same as when only “slow” messages are sent.

IV. SCHEMES ACHIEVING THEOREM 1

To achieve the performance in Theorem 1, four schemes

need to be time-shared depending on the operating point and

on the available cooperation prelog μ.

A. Scheme 1: Transmitting only “fast” messages

In this scheme, every second transmitter is switched off,

which decomposes the network into �K/2� non-interfering

point-to-point links. A “fast” message of multiplexing gain 1 is

transmitted over each of these point-to-point links. The scheme

thus achieves multiplexing gain pair (S(F ) = 1/2, S(S) = 0)
without any requirement on the cooperation rate.
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B. Scheme 2: Transmitting only “slow” messages

Use the scheme [8] to send only “slow” messages. It

achieves multiplexing gain pair (S(F ) = 0, S(S) = 2D+1
2D+2 ) with

cooperation rate μ = D
4(D+1) .

C. Scheme3: Opportunistically sending “fast” messages

Our third scheme is closely related to the second scheme.

We notice that [8] splits the network into subnetworks by

periodically silencing every 2D + 2-th transmitter. Also, the

message of the left-most and the D+3-rd transmitters in each

subnetwork do not participate in the transmitter cooperation

and their decoding can be performed directly based on the

corresponding channel output sequences. These messages can

thus be sent as “fast” messages, whereas all other transmitted

messages are “slow” messages. This scheme achieves multi-

plexing gain pair (S(F ) = 2
2D+2 , S

(S) = 2D−1
2D+2 ) and requires

cooperation rate μ = D
4(D+1) , see [8].

D. Scheme 4: Alternating “fast” and “slow” messages

We again silence periodically every 2D + 2-th transmitter,

so as to split the network into smaller subnetworks. In a

given subnetwork, all odd transmitters 1, 3, 5, . . . , 2D+1 send

a “fast” message with multiplexing gain 1 using a simple

Gaussian codebook. They further precancel (up to noise level)

the interference from their left-neighbours. To facilitate this,

each even transmitter (which only sends a slow message as

we explain shortly) quantizes and describes its input signal to

its right neighbour over the cooperation link. All odd receivers

1, 3, 5, . . . , 2D + 1 decode their desired “fast” message based

on their own channel outputs using a simple point-to-point

channel decoder. They also describe their decoded messages

to their right-neighbours which then cancel the influence of

the transmitted Gaussian codewords.

In the following, we describe the communication of “slow”

messages, which is from even transmitters. Recall that all odd

transmitters have precanceled a quantized version of their left-

neighbours transmit signal. This implies that the signal sent by

a given even Tx k interferes at Rx k + 2. Moreover, even re-

ceivers immediately cancel the interference of “fast” messages

stemming from their left neighbours. The interference graph

for “slow” messages thus has the form in Figure 5, where

odd receivers are ignored. To describe communication of

“slow” messages in more detail, we partition Tx/Rx pairs of

each subnetwork into four groups.

Transmitters in G1 := {1, . . . ,Dr + 1} use Gaussian point-

to-point codes of power P to transmit their “slow” messages

over the channel. Rx k uses the cooperation messages received

from its left neighbours Rx k − 2 (over two hops) and from

Rx k − 1 to delete the interference

Ŷ n
k = Y n

k − αXn
k−1(M̂

(S)
k−2, M̂

(F )
k−1), (23)

and it decodes the source message M
(S)
k based on this

difference. Then it describes its decoded message to Rx k+2.

Transmitters in G2 := {Dr +2, . . . ,Dr +Dt+1} use dirty-

paper coding to mitigate interference from the left. To this end,

after receiving and reconstructing the quantization message

X̂n
k (M

(S)
k−2) sent by Tx k − 2 (over two conferencing hops),

Tx k encodes its source message M
(S)
k using a power P dirty-

paper code that eliminates the interference αX̂n
k (M

(S)
k−2). Then

it sends the decoded message over the channel. Moreover,

Tx k quantizes its produced input Xn
k (M

(S)
k ) using a rate

(1/2) log(1+P ) quantizer and sends the resulting message to

Tx k + 1 and Tx k + 2 . Rx k receives the decoded message

M̂
(F )
k−1 through the conferencing link to its left. Then it uses

the received message to reconstruct αXn
k−1(M̂

(F )
k−1) and forms

Ŷ n
k = Y n

k − αXn
k−1(M̂

(F )
k−1). (24)

It finally decodes message M
(S)
k based on this difference.

Transmitters in G3 := {Dr +Dt+2, . . . ,Dr +2Dt+2} use

dirty-paper coding to mitigate interference from the right. The

desired communication path of a message M
(S)
k is Tx k →

Tx k− 2 → Rx k. More specifically, Tx k encodes M
(S)
k and

sends a quantized version X̂n
k (M

(S)
k ) to Tx k− 2 which then

transmits Xn
k−2 = X̂n

k (M
(S)
k ) over the channel. Encoding is

performed using dirty-paper coding where Tx k precancels the

interference of the signal Xn
k it is sending over the channel.

Receivers in G3 decode using standard dirty-paper decoding.

Transmitters in G4 := {Dr +2Dt +3, . . . , 2Dr +2Dt +1},

use a Gaussian point-to-point code of power P to transmit

their source messages M
(S)
k over the channel through the path

Tx k → Rx k+2 → Rx k. Rx k uses the cooperation messages

received from its right neighbours Rx k + 2 (over two hops)

and from Rx k + 1 to decode M
(S)
k .

In what we described, in some cases the last transmitter in

G3 and the first transmitter in G4 are supposed to send the

same message. In this case, we split this message into two

independent parts, M
(S1)
k and M

(S2)
k , and let each of the two

transmitters send a different part. In the example in Fig. 5,

Tx 8 sends M
(S1)
10 and Tx 10 sends M

(S2)
10 .

The described scheme achieves multiplexing gain pair(
S(F ) = 1

2 , S(S) = D
2D+2

)
, and requires cooperation rate

μmax = 3D
4(2D+2) .

V. SCHEMES ACHIEVING THEOREM 2

To achieve the performance in Theorem 2, three schemes

need to be time-shared depending on the operating point.

A. Scheme 1: Transmitting only “fast” messages

Transmission is based on interference alignment [10],

and cooperation links are completely ignored. This scheme

achieves multiplexing gain pair
(
S(F ) = M

2 , S(S) = 0
)
.



B. Scheme 2: Transmitting only “slow” messages

Use the scheme in [9] to send only “slow’ messages. It

achieves multiplexing gain pair
(
S(F ) = 0, S(S) = M 3t−1

3t

)
.

C. Scheme 3: Alternating “fast” and “slow” messages

The scheme is closely related to the second scheme. We

notice that [9] defines master cells so that they build a

regular grid of equilateral triangles where the three master cells

forming each of the triangles lay 3t cell-hops apart from each

other for t ∈ {1, . . . ,Dr/2}. Layer- 1, 2, . . . , t cells are cells

that are 1, 2, . . . , t hops away from master cells. The scheme

in [9] deactivates users in layer-“t” cells so as to split the

network into non-interfereing clusters of sectors, see Fig. 6.

In our scheme here, some users send “slow” messages and

others send “fast” messages. Users sending “slow” messages

use simple Guassian codebooks to send their messages. They

quantize their inputs and send the quantization information to

all their neighbours that send “fast” messages. The transmit-

ters sending “fast” messages precancel the interference from

“slow” messages. As we will see shortly, communication of

“fast” messages is interfered only by “slow” messages, and

since this interference is precanceled, receivers can decode

their “fast” messages based on almost interference free signals.

Decoded “fast” messages are sent to neighbouring receivers,

which cancel the corresponding interference. In our scheme,

all the three users of a master cell send “fast” messages. Users

of layer-“1” cells that interfere users in the master cell send

“slow” messages and the remaining users in this layer send

“fast” message. Similarly, users of layer-“2” cells that interfere

layer-“1” users send “slow” messages and the remaining layer-

”2” users send “fast” messages. A similar procedure is applied

for layer-“3”, layer-“4”, ..., layer-”t-1” cells. In layer-“t” cells,

all the active users send “slow” messages. Figure 6 shows the

deactivated sectors in white, the sectors with “fast” messages

in blue, and the sectors with “slow” messages in red.

This scheme achieves multiplexing gain pair
(
S(F ) =

M
3 , S(S) = M 2t−1

3t

)
.

VI. CONCLUSION

We considered two cellular models and characterized the

multiplexing gain region with transmitter and receiver coop-

eration when some source messages are subject to stringent

delay constraints. In our previous work [5], increasing the rate

of delay-sensitive messages by Δ required to decrease the rate

of delay-tolerant messages approximately by 2Δ. This penalty

does not arise for the setup with transmitter and receiver

cooperation that is considered for Wyner’s soft-handoff model

and the hexagonal sectorized model. In fact, when delay-

sensitive messages have moderate or small multiplexing gains,

then the sum-multiplexing gain is not decreased compared

to when only delay-tolerant messages are transmitted. For

Wyner’s soft-handoff model, this conclusion even holds for

large multiplexing gains of “fast” messages when the co-

operation rates are sufficiently large. The obtained results

on transmitter and receiver cooperation may have interesting

Fig. 6. Illustration of sector allocation for t = 4. Users in blue sectors send
“fast” messages and users in red send “slow” messages. White sectors indicate
deactivated users, and thick lines indicate non-interfering clusters.

practical application due to the increase in different latency

requirements.
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