
HAL Id: hal-02438914
https://hal.science/hal-02438914v1

Submitted on 10 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust statistical signal processing in semi-Markov
nonparametric regression models

Vlad Stefan Barbu, Slim Beltaief, Serguei Pergamenshchikov

To cite this version:
Vlad Stefan Barbu, Slim Beltaief, Serguei Pergamenshchikov. Robust statistical signal processing in
semi-Markov nonparametric regression models. Annales de l’ISUP, 2019, 63 (2-3), pp.45-56. �hal-
02438914�

https://hal.science/hal-02438914v1
https://hal.archives-ouvertes.fr


45

Pub. Inst. Stat. Univ. Paris

63, fasc. 2-3, 2019, 45-56
Numéro spécial en l’honneur des 80 ans de Denis Bosq /
Spécial issue in honour of Denis Bosq’s 80ih birîhday

Robust statistical signal processing in
semi-Markov nonparametric régression

models*

Vlad Stefan BarbuT , Slim Beltaief^ and Sergey Pergamenshchikov^

University of Rouen-Normandy, France, * ALTEN de Toulouse, France, *
and National Research Tomsk State University, Russia ^

Abstract: We develop model sélection methods for robust processing of non-

parametric periodic signais observed in continuons time with noises containing
impulse components defined by a non Gaussian semi - Markov processes. In
particular, we apply the developed model sélection methods for the détection
problem of the number of signais in multi-path information transmission ob-
served with complex dépendent impulse semi-Markov noises. As an example
of semi-Markov noises, we consider the signais models with the noises defined
through fractional Poisson processes. For this problem we show non asymptotic
sharp oracle inequalities for robust risks, i.e., we show that the constructed
procedures are optimal in the sense of sharp oracle inequalities.

1. Introduction

1.1. Motivations

One of the most important problems in the statistical signal processing theory is
the détection of the number of signais observed in continuons time with random
noises in multi-path connection channels (see, for example, [5, 24, 26, 29] and the
référencés therein). Usually, in the framework of the statistical radio-physics, the
télécommunication and navigation Systems are modelled by the following formai
équation

q

= + ut, 0 < t < n,
j=i

where {vt)t>o the Gaussian white noise, {6j)\<j<q are energetic parameters and
{(f)j)j>i are known orthonormal signal functions, i.e., J1 <^(£) 4>j(t) dt — 1 p^j}- To
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set this problem in the statistical analysis framework, one has to use the correspond-
ing stochastic differential équations

« \
dVt= d* + <K>

V=1 /
(u)

where {wt)t>0 is the standard Brownian motion. Note that this is the well-known
“signal+white noise” model which is well studied in many papers (see, for example,
[12, 19, 20, 27] and the references therein). In this paper we study the estimation
problem of the number of the signais ç, when the parameters {9j)i<j<q are unknown.
In the white noise case, the logarithm of the likelihood function of the model (1.1)
can be represented as

Therefore, the maximum likelihood estimators of {@j)icj<q and q, can be obtained
as

i.e., the maximum likelihood estimator q = q*; note that we obtain q = oo for
q* — oo. For this reason, we study this problem in nonparametric setting proposed
by Bosq in [6] for the general theory of stochastic processes, i.e., we represent the
signal in (1.1) in the following form

(1.2) dyt = S{t)dt + d£t, 0 < t < n,

where S(-) is an unknown 1-periodic nonparametric function from L2[0,1].
Our goal is to introduce in the observation model noise components with jumps

given by semi-Markov processes as in [2]. In particular, such models enable us to
consider the dependence in the observations during a long time, which significantly
expands the possible applications of the statistical methods. These models allow, for
example, estimating the signais observed under long impulse noise impact having a

memory or under “nuisance signais” action.

1.2. Model

In this paper, we study the model (1.2) in the framework of the general semi-
martingale régression model introduced in [14], in which the noise process (£t)t>0 is
a non Gaussian semimartingale with jumps of spécial form defined as

(1.3) = QlWt + Q2Lt + Ô3Zt
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where q\. Q2 and £3 are unknown coefficients, (wt)t>0 is a standard Brownian mo-
tion, (Lt)t>g is a jump Lévy process and the pure jump process (zt)t> 1 is a semi-
Markov impulse noise introduced in [2]. This means that, instead of the Gaussian
white noise, in the radio-electronic stochastic Systems we assume that the useful
signal S is distorted by random impulse noises. Note that the impulse noises for
the signal estimation problems hâve been used in many papers (see, for example,
[5, 13, 18, 25] and the references therein). It should be noted also that the use of
additional non Gaussian noise components in the models poses also the question
of how the estimation quality dépends on the noise distribution; in other words,
this naturally raises the question about the stability and robustness of the proposed
procedures. For these reasons, the estimation quality will be studied with respect to
the robust risks that were introduced by Galtchouk and Pergamenshchikov in [9] for
nonparametric models. This allows constructing the estimation procedures having
stable fixed-accuracy properties with respect to changes of the noise distributions
in a fairly wide range. Such procedures provide the high-noise immunity of the al-
gorithms synthesized on their basis. Therefore, we also assume that the distribution
Q of the noise process is unknown. It is only known that this distribution
belongs to the distribution family Q* that will be defined in the next section. We
set the robust risk as

(1.4) 1l*H{Sn,S)= sup EQiS||Sn-S||2 and \\Sf = f S2(t)dt,
QeQ*n J 0

where Sn is an estimator of S (i.e., any measurable function of (yt)o<t<n)•

1.3. Methods

To estimate the unknown signal S we use the sharp model sélection methods de-
veloped for such problems in [2]. The interest in these statistical procedures can be
explained by the fact that they provide adaptive solutions for a nonparametric esti-
mation through non asymptotic sharp oracle inequalities which give an upper bound
for quadratic risks including the minimal risk over a chosen family of projection es-
timators with a coefficient close to 011e. This means that this statistical procedure is
the best in the chosen family of estimators, i.e., it is optimal in the sharp oracle in-
equality sense. Such inequalities were obtained, for example, in [10] for non Gaussian
régression models in discrète time and in [14] for general régression semimartingale
models in continuons time. It should be noted that the model sélection approach
was proposed for the first time in [1, 23] for parametric models. Then, using the
oracle inequality tool, these methods had been developed for nonparametric estima-
tion in [4, 15] for Gaussian régression models and in [8] for non Gaussian models.
Moreover, in [15] such methods were developed for the signal estimation problem
for the Gaussian color noise model in continuous time. Unfortunately, the oracle in-
equalities obtained in these papers are not sharp and, therefore, they cannot provide
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the efficiency property in the asymptotic setting (see, for example, [11, 16, 17]). To
obtain the sharp oracle inequality for the models (1.2) - (1-3), one needs to use a
spécial analytical tool based on nonlinear renewal theory developed in [2]. In this
paper we use this method for the détection problem of the number of signais in (1.2)

(1.3).

1.4‘ Plan of paper

The rest of the paper is organized as follows. In Section 2, we give the main con-
dit ions which will be assumed for the model (1.2). In Section 3, we construct a
model sélection procedure and we give the sharp oracle inequalities for the détection
problem of the number of signais.

2. Main conditions

In the model (1.3) we assume that the jump Lévy process Lt is defined as

(2.1)

where /r(ds, dæ) is the jump measure with the deterministic compensator p(ds dæ) =

d5ll(da)), where II(-) is the Lévy measure on = K \ {0} for which

n(x2) = 1 and n(a)8) < oo(2.2)

where we use the usual notation nd^l”1) = f |z|mII(d2:) for any m > 0.
Note that L^RJ may be equal to +oo. Moreover, as in [2], we assume that the pure
jump process (zt)t> 0 in (1.3) is a particular case of a semi-Markov process, with the
following form

(2.3)

where (TJ^ 1 is an i.i.d. sequence of random variables with

EqF^O, EQYt2 = 1 and EQY* < œ.

Here Nt is a general counting process defined as

OO k

(2.4) and

i=i

where (rz)^> l is an i.i.d. sequence of positive integrated random variables with dis-
tribution p and mean f = EqTx > 0. We assume that the processes (Nt)t>0 and
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(FJi>i are independent between them and are also independent of (Lt)t>0. Note
that the process (zt)t>0 is a spécial case of a semi-Markov process (see, e.g., [3] and
[22]).

Note that for any fonction / from L2[0,n], / : [0,n] —> R, for the noise process

{£t)t>o defined in (1.3), with (zt)t>0 given in (2.3), the intégral

(2.5) 4(/) =/"/(»)d£.

is well defined, with Eq In(f) — 0 and Eq I^U) — xq Jq /2(Jd£ for some constant
Xq > 0.

In the sequel we assume that the measure g has a density g which satisfies the
following conditions from [2],

HJ Assume that, for any x G M, there exist the finite limits

g{x—) = lim g(z) and g(x+) = lim g(z)
Z-ÏX— Z-ÏX+

and, for any K > 0, there exists ô — 6(K) > 0 for which

fô \9(* + t)+g(x-t)-g(x+)-g(x-)\^ ^ _

sup / dt < oo.
\x\<K J0 t

H2) For any 7 > 0,

sup z'y\2g{z) - g(z~) - g{z+)\ < 00.
z>0

H3) There exists (3 > 0 such that f e®x g(x)dx < 00.
For the next condition we need to introduce the Fourier transform of any fonction

/ from L1(R), / : R -> R, defined as

(2.6) m = f f ei6xf(x)dx.27r Jr

H4) There exists t* > 0 such that the function g{6 — it) belongs to LJR) for any
0 <t<t*.

One can check directly that Conditions HJ-HJ hold true for any two times
continuously différentiable density g defined on R+, for which g(0) = 0 and there
exists /3 > 0 such that

J ePx (g(x) + |g {x)| + |g {x)dx < 00,

lim e^xg(x) = 0 and lim e^xg (x) — 0.
X-ÏOC £—>00



50

Indeed, Conditions H^-Hg) are obvious and Condition H4) can be obtained by
integrating two times by parts. For example, we can take a Gamma density with
the shape parameter greater than one. Moreover, one can check directly that these
conditions hold true also for the density of X^3 A X\, where Xq is a Mittag-Leffler
waiting time with parameter 0 < H < 1 (see, for example, [21, 28]) and X\ is a
Gamma random variable with the shape parameter greater than one. So, in this
case, the process Nt is a truncated fractional Poisson process.

Remark 2.1. It should be noted that the fractional Poisson processes is very popu-
lar in the different applied areas such that radiophysics, insurance (see, for example,
[7, 21, 28] and the references therein). This is explained by the fact that these pro-
cesses keep a long dependence structure on large time intervals. Therefore, one can
use this property to describe the dépendent impulse noise influence in the connection
channels. It should be noted also that the direct use of fractional Poisson processes
themselves in signal models is not reasonable, since the time between jumps in frac-
tional Poisson processes is very large, i.e., the noise impulses will be very rare.
It will be more convenient to use truncated fractional Poisson processes for signal
Processing problems. They continue to keep the strong dependence, but at the same
time the intervals between jumps are significantly smaller than the ones of fractional
processes, i.e., they will be more frequent even compared to impulses modelled by
compound Poisson processes.

Remark 2.2. It should be noted that if tj are exponential random variables, then
(Nt)t>Q is a Poisson process and, in this case, (^)i>0 is a Lévy process for which
this model has been studied in [lf] and [16]. But, in the general case when the
process (2.3) is not a Lévy process, as for example, truncated fractional Poisson
processes, this process has a memory and cannot be treated in the framework of
semi-martingales with independent incréments. In this case, we need to use the new

spécial analytical tool based on renewal theory arguments developed in [2].
Let us now define the family of the noise distributions for the model (1.2) which

is used in the robust risk (1.4). In our case the distribution family Qn consists in
ail the distributions on the Skorokhod space V[0,n\ of the process (1.3) with the
parameters satisfying Conditions (2.7) and (2.8). Note that any distribution Q from
Qn is defined by the unknown parameters in (1.3) and (2.1). We assume that

(2-7) Ç, <°q<C,
where Oq = q\ + q\ + q\/t, the unknown bounds 0 < ç* < ç* are functions of n, i.e.,
Ç* = Ç*(n) and ç* — ç*(n), such that for any e > 0,

r* (
(2.8) lim ne c (n) = +oo and lim — 0.

ro—>oc n—>oo ne

Remark 2.3. Note thatn in general (but this is not necessary), the parameters Qlf
g2 and 03 can dépend on n. Condition (2.8) means that we consider ail possible
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cases, i.e. these parameters may go to infinity, or may be constant, or may go to
zéro as well. See, for example, Conditions (3.32) in [17].

3. Model sélection

Let (4>j)j> i be an orthonormal uniformly bounded basis in L2[0,1], i.e., for some
constant 0* > 1, sup0< .<n sup0<f<1 \<j>j{t)\ < </>*; the constant </>* may dépend on
n, such that limn^.00 0*(n)n~e = 0 for any e > 0. We extend the functions 4>j(t) by
periodicity, i.e., we set 0 -(t) := <fij{{t}), where {t] is the fractional part of t > 0.
For example, we can take the trigonométrie basis (see, for example, (3.2) in [2]). To
estimate the function S we use the model sélection procedure from [2] based on the
weighted least square estimators dehned as

n

(3.i) sx(t) = Y/H0jMt)’
J=1

where the coefficients À = (A{j))i<j<n belong to some finite set A from [0, l]n and
6j n are the estimators for the Fourier coefficients 9j = J1 <f>j(t) S(t)dt defined as

(3-2) djn = - [ (f>j{t)dyt,n do

which can be represented, in view of the model (1.2), as

1 1
(3-3) 9jn 9j + and ^>j,n '

Now, to choose a weight sequence À in the set A we use the empirical quadratic risk,
defined as

Err„(À) =|| Sx-S ||2,
which in our case is equal to

n n oo

(3.4) Err„(A) = A-2 ^A^ 0].
3=1 3=1 3=1

Since the Fourier coefficients (0 -) •> x are unknown, we replace the terms 9^n9j by

(3.5) 3,n
d2.

3,™ n

where an is an estimate for the variance proxy <7q defined in (2.7). If this variance
proxy is known, we take dn := aq] otherwise, we can choose it, for example, as it is
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defined in (3.11) in [2], Finally, in order to choose the weights, we will minimize the
following cost function

(3.6) Jn(A) = Y, - 2 5] m»,,n + P .
j=1 j=1

where p > 0 is some threshold which will be specified later. We define the model
sélection procedure as

(3.7) S* = Sf and À = argminAeA Jn(X).

We recall that the set A is finite so À exists. In the case when A is not unique, we
take one of them.

Theorem 3.1. Assume that Conditions Hx) - H4) hold and that the unknown
function S is continuously différentiable. Then, for the robust risk defined in (1.4)
through the distribution family (2.7) - (2.8), the procedure (3.7) for any n > 1 and
0 < p < 1/6, satisfies the following oracle inequality

(3.8) K(S„ S) < minR;;(SA, S) + 2122,1 — 3p \eA np

where the term U* (5) > 0 is such that for any r > 0 and e > 0

, . U* (S)
(3.9) lim sup — = 0.

n^°°
||5||<r nÊ

Remark 3.1. We recall that, the inequality (3.8) is called sharp oracle inequality
because the main coefficient in the right side goes to one as p 0. If the chosen
estimator family (Sx)\e\ contains an efficient estimator which can be computed
directly, then, asymptotically, the model sélection procedure will be hâve the same

properties as the efficient estimator. To do this, it is sufficient to chose the parameter
p as a function of n, Le., p = p(n) such that

lim p(n) = 0 and, for any e > 0, lim nep(n) = +oo.
n—> oo n—>■oo

For example, we can take p(n) = (6 + ln(n))_1. This is the main idea of using sharp
oracle inequalities for the study of efficiency properties in the adaptive setting (see,
for example, [11, 16, 17]).

Now, let us consider the model (1.2) with the unknown function S defined as

S(t) = 6j ■

j=1

(3.10)
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For this problem we use the LSE family {Sd)1<d<m defined as

d

(3-H) Sd(x) = ^2Ôj,n<l)j(x)-
3=1

This estimate can be obtained from (3.1) with the weights Ad(j) = x{j < d}.
As a risk for the number of signais we use

(3.12) Dn(d,g) = %{Sd,S),

where the risk 7Z*n(S,S) is defined in (1.4) and d is an integer number (maybe
random) from the set {1,..., l}, where the maximal signal number t is assumed to
be a function of n, i.e. i — i{n), such that t(n) —>■ oo and, for any e > 0, the sequence
n€i{n) —> 0 as n —Y oo. In this case the cost function (3.6) has the form

(3-13) = +
j=1 3=1

So, for this problem the LSE model sélection procedure is defined as

(3.14) qn = axgmin1<d<t Jn(d).

Note that Theorem 3.1 implies the next resuit.
Theorem 3.2. Assume that Conditions Hx) - H4) hold. Then, the robust risks oj
the procedure (3.7), for any 0 < p < 1/6, satisfy the following oracle inequality

(3.15) Dn{qn , q) < min Dn(d, q) + ,
1 — dp \<d<L np

where the last term satisfies the property (3.9).
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