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Abstract
Tumor DNA sequencing data can be interpreted by computational methods that analyse genomic 
heterogeneity to infer evolutionary dynamics. A growing number of studies have used these 
approaches to link cancer evolution with clinical progression and response to therapy. Although 
the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome 
analyses, standards for evaluating tumor phylogenies are lacking. To address this need, we 
systematically assess methods for reconstructing tumor sub-clonality. First, we elucidate the main 
algorithmic problems in subclonal reconstruction and develop quantitative metrics for evaluating 
them. Then we simulate realistic tumor genomes that harbor all known clonal and subclonal 
mutation types and processes. We benchmark 580 tumor reconstructions, varying tumor read-
depth, tumour type, and somatic variant detection. Our analysis provides a baseline for the 
establishment of gold-standard methods to analyze tumor heterogeneity.

Editors summary
Methods for reconstructing tumor evolution are benchmarked in the DREAM Somatic Mutation 
Calling Tumour Heterogeneity Challenge using novel tools.
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Introduction
Most tumors arise from a single ancestral cell, whose genome acquires one or more somatic 
driver mutations1,2, which give it a fitness advantage over its neighbours by manifesting 
hallmark characteristics of cancers3. This ancestral cell and its descendants proliferate, 
ultimately giving rise to all cancerous cells within the tumor. Over time, they accumulate 
mutations, some leading to further fitness advantages. Eventually local clonal expansions 
can create subpopulations of tumour cells sharing subsets of mutations, termed subclones. 
As the tumor extends spatially beyond its initial location, spatial variability can arise as 
different regions harbour independently-evolving tumour cells with distinctive genetic and 
non-genetic characteristics4-9.

DNA sequencing of tumors allows quantification of the frequency of specific mutations 
based on measurements of the fraction of mutant sequencing reads, the copy number state of 
the locus and the tumor purity10,11. By aggregating these noisy frequency measurements 
across mutations, a tumor sample’s subclonal architecture can be reconstructed from bulk 
sequencing data6,11. Subclonal reconstruction methods have proliferated rapidly in recent 
years12-15, and have revealed key characteristics of tumor evolution4,7,16-20, spread21-23 and 
response to therapy24,25. Nevertheless, there has been no rigorous benchmarking of the 
relative or absolute accuracy of approaches for subclonal reconstruction.

There are several reasons why such benchmarking has not yet been performed. First, it is 
difficult to identify a gold-standard truth for subclonal reconstruction. While single-cell 
sequencing could provide ground truth, it has pervasive errors26, and existing DNA-based 
datasets do not have sufficient depth and breadth to adequately assess subclonal 
reconstruction methods. Alternatively, gold-standard datasets may be generated using 
simulations, but existing tumor simulation methods like BAMSurgeon27 neither create 
representative subclonal populations nor phase simulated variants, which can be exploited in 
subclonal reconstruction6,10. Second, it is unclear how subclonal reconstruction methods 
should be scored, even in the presence of a suitable gold-standard. For example, one key 
goal of reconstruction is identification of the mutations present in each subclonal lineage. 
Metrics are needed that penalise errors both in the number of subclonal lineages and in the 
placement of mutations across them. Third, subclonal reconstruction methods have only 
been developed in recent years; few groups have equal expertise with multiple tools. 
Algorithm developers themselves are typically experts in parameterizing their own 
algorithms; an unbiased third-party is needed compare different methods, each run with 
expert parameterization.

To fill this gap, we developed a crowd-sourced benchmarking Challenge: The ICGC-TCGA 
DREAM Somatic Mutation Calling Tumor Heterogeneity Challenge (SMC-Het). Challenge 
organisers simulated realistic tumors, developed robust scoring metrics and created a 
computational framework to facilitate unbiased method evaluation. Challenge participants 
then created re-distributable software containers representing their methods. These 
containers were run by the Challenge organizers in an automated pipeline on a series of test 
tumors never seen by the Challenge participants.
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Here, we report the creation of quantitative metrics for scoring tumor subclonality 
reconstructions and describe tools for simulating tumors with realistic subclonal 
architecture. We apply these tools and metrics to characterise the sensitivity of subclonal 
reconstruction methodologies to somatic mutation detection algorithms and technical 
artefacts.

Results
How can subclonal reconstruction methods be evaluated?

Subclonal reconstruction is a complex procedure that involves estimating many attributes of 
the tumor including its purity, number of lineages, lineage genotypes and the phylogenetic 
relationships amongst lineages. We structured our evaluation of these attributes into three 
categories (Figure 1). Sub-challenge 1 (SC1) quantify the ability of an algorithm to 
reconstruct global characteristics of tumor composition. Specifically, it evaluates each 
algorithm’s predictions of the total fraction of cells that are cancerous (tumor purity; SC1A), 
the number of subclonal lineages (SC1B) and for each subclone the fraction of cells (cellular 
prevalence) and number of mutations associated with it (SC1C). Sub-challenge 2 (SC2) 
evaluates how accurately each algorithm assigns individual single nucleotide variants 
(SNVs) to each subclonal lineage. It evaluates both their single-best guess at a hard 
assignment of SNVs to lineages (SC2A) and soft assignments represented through co-
clustering probabilities (i.e. the probability that two SNVs are in the same lineage; SC2B). 
Finally, sub-challenge 3 (SC3) evaluates the ability of algorithms to recover the phylogenetic 
relationships between subclonal lineages, again both as a single hard assignment (SC3A) 
and as a soft assignment (SC3B). Taken together, these subchallenges define seven specific 
sub-challenges of SMC-Het, each corresponding to specific outputs upon which subclonal 
reconstruction methods can be benchmarked (Online methods).

To quantify the accuracy of these seven outputs, we considered several candidate scoring 
metrics, all bound between zero (very poor performance) and one (perfect performance). 
Appropriate metrics for SC1 were trivially identified (Online methods, Supplementary Note 
1), but SC2 and SC3 required us to modify existing metrics and develop new ones. 
Specifically, because SC2B and SC3B are based on pairwise probabilities of co-clustering, 
we were unable to use clustering quality metrics designed for hard clustering nor those that 
require explicit estimation of the number of clusters, such as normalised mutual information 
(also known as the V-measure28).

As SC2 and SC3 involve assigning mutations to subclonal lineages, we required candidate 
metrics to satisfy three conditions28:

1. The score decreases as the predicted number of subclonal lineages diverges from 
the true number of subclonal lineages.

2. The score decreases as the proportion of mutations assigned to incorrect 
subclonal lineages (predicted subclonal lineages that do not correspond to the 
true subclonal lineage) increases.
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3. The score decreases as the proportion of mutations assigned to noise subclonal 
lineages (predicted subclonal lineages that do not correspond to any true 
subclonal lineage) increases.

Moreover, metrics for evaluating cluster assignments have a number of desirable 
properties28. We identified a set of these applicable to each task (Supplementary Note 1), 
used a simulation framework to assess how well a candidate metric satisfies them. We 
identified four complementary metrics that satisfy all three properties: Matthew’s 
Correlation Coefficient (MCC), Pearson’s Correlation Coefficient (PCC), area under the 
precision recall curve (AUPR) and average Jensen-Shannon divergence (AJSD; 
Supplementary Figure 1).

To further refine this set, we tested their behaviour relative to subclonal reconstruction errors 
related to parent vs. child and parent vs. cousin relationships, and splitting or merging of 
individual nodes (Supplementary Note 1). Nine experts ranked the overall severity of up to 
eight error cases for each of 30 tree topologies, providing 2,088 total expert rankings. We 
then simulated each error case and scored it with all candidate metrics (Figure 2a-d). 
Importantly for SC3, we added one metric, the Clonal Fraction (CF), which scores the 
accuracy of the predicted fraction of mutations assigned to the clonal peak. Unlike SC2, 
which scores mutation assignment, i.e. genotyping of the (sub)clones, SC3 scores tree 
topology, which implies an ordering of events. The clonal fraction was designed to capture 
expert knowledge that emerged from the expert ranking: experts tended to favour the 
merging of two subclonal clusters over merging of the clonal cluster with a subclonal cluster, 
which was not captured by other metrics. The fraction of (sub)clonal mutations is indeed a 
biologically relevant measure that varies widely across cancer types29. Given that our metric 
rankings are based on subjective expert viewpoints, we have made our ranking system 
available online to allow others to create their own rankings and compare them to ours or use 
them to fine-tune scoring metrics for their own applications (https://mtarabichi.shinyapps.io/
SMCHET).

Between-expert agreement, measured as pairwise rank correlations (0.52 ± 0.22), were much 
higher than metrics-expert agreement (for SC2B, mean: 0.14 ± 0.12 S.E., n=270 ; for SC3B, 
mean: 0.12 ± 0.15 S.E., n=270; Figure 2d). Subsets of metrics were highly correlated (JS, 
Pearson and MCC; range: 0.97-0.99, n=464), whereas others were less correlated (AUPR, 
JS/Pearson/MCC and CF; range: 0.47-0.78, n=464). We reasoned that less correlated metrics 
might capture complementary aspects of the reconstructions and derived additional metrics 
combining the best of them, as well as an average of all (Figure 2d). For SC2, the average of 
two metrics ( AUPR + JS

2 ) and AUPR was significantly better correlated to experts than any 

individual metric (ρ̄Spearman = 0.21, n=30; Figure 2c,d). For SC3, AUPR, MCC, Pearson and 

JS were comparable and significantly better than the other metrics ρ̄Spearmanϵ[0.19, 0.23], 

n=30). We chose Pearson for subsequent analysis as it allows for assessment with a non-
binary truth. The resulting expert rankings and quantitative comparisons provide a basis for 
future development of improved scoring metrics.

Salcedo et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2020 July 09.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

https://mtarabichi.shinyapps.io/SMCHET
https://mtarabichi.shinyapps.io/SMCHET


Simulating accurate subclonal tumor genomes
We elected to use simulated tumor data to run SMC-Het. The key reasons were the 
unavailability of deep single-cell DNA sequencing data as a gold-standard, the lack of 
single-cell sequencing data that match arbitrary tree structures and characteristics, the ability 
to simulate a large number of tumors at low-cost and the demonstrated ability of tumor 
simulations to recapitulate complex sequencing error profiles27. We elected to use the 
BAMSurgeon tool created for the earlier SMC-DNA Challenges27,30, which creates tumors 
with accurate SNVs, indels and small genomic rearrangements at varying allelic fractions. 
However, that version of BAMSurgeon lacked a number of key features for our purpose. We 
added five major features: (1) phasing of variants, (2) large-scale allele-specific copy 
number changes (including whole-genome duplications), (3) translocations, (4) trinucleotide 
SNV signatures and (5) replication-timing effects (Figures 3, 4). We describe each of these 
briefly.

Phasing of mutations.—To correctly simulate a tumor, it is critical that genetic variants - 
both somatic and germline - are fully phased, as they are in real genomes. Without phasing, 
allele-specific copy number changes cannot be simulated correctly and will lead to incorrect 
B-allele frequencies and allele-specific copy number calls, amongst other errors. To achieve 
correct and complete phasing, we leveraged NGS data from a trio of individuals from the 
Genome-in-a-Bottle consortium (Supplementary Figure 2a-e) and created the PhaseTools 
package to accurately phase heterozygous variants identified in these data (Online methods, 
Supplementary Note 2). The final result of this process is two BAM files per chromosome, 
each representing a single parental copy.

Simulation of a tumor BAM with underlying tree topology (Figure 3a).—To 
simulate a tumor BAM starting from the fully phased genome, we assigned subsets of the 
reads to each tree node, generating down-sampled BAM files. To simulate whole 
chromosome copy number events, we adjusted the proportion of reads assigned to each node 
of the tree (Figure 3b; see below). Then, BAMSurgeon was used on each sub-BAM to 
simulate mutations, including SNVs, indels and SVs (Figure 3c). This strategy allowed us to 
efficiently and reliably simulate copy number changes of arbitrary size and add specific 
mutations on each allelic copy. Finally, these sub-BAMs were merged to produce the final 
BAM. By contrast, when we used the subclonally-naive BAMSurgeon, copy number 
inference was incorrect (Supplementary Figure 2f,g). After adding subclonal mutations only 
by specifying the VAF (i.e. without phasing or subsampling BAM files) SNVs that occurred 
after duplications or deletions often appeared at the wrong frequency (Supplementary Figure 
2h).

Whole arm and whole genome copy number changes.—To allow changes in copy 
number of entire chromosomes and whole-genome ploidy changes (e.g. whole genome 
duplications, present in 30-50% of human cancers31-33), we developed a method to account 
for gains or losses of any chromosome, including sex chromosomes based on bookkeeping 
of reads assigned to each node. Given a tumor design structure (Figure 3b), reads from the 
phased genomes were further split into individual subpopulations (sub-BAMs for leaf nodes) 
that make up the tumor in proportion to the copy number state of the region they aligned to 
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and the cellular prevalence of their node. The extracted and modified reads were merged to 
generate a final BAM file (Figure 3c).

Translocations and large-scale SVs.—As the prior BAMSurgeon functionality could 
not reliably simulate SVs larger than 30 kbp or any translocations due to its use of assembly, 
we extended it to simulate translocations, inversions, deletions and duplications of arbitrary 
size. This required a new approach of creating a simulated translocation that accurately 
reflects the expected pattern of discordant read pair mappings and split reads 
(Supplementary Note 2). This also allows us to simulate translocations, which were not 
included in the SMC-DNA simulated data challenges30. The ability to simulate 
translocations combined with adjustments to read coverage makes the simulation of 
arbitrarily large and complex SVs possible.

Trinucleotide mutation profile and replication timing.—Single nucleotide mutations 
are not uniformly distributed throughout cancer genomes. They are biased both regionally 
and locally34. Mutations result from specific mutagenic stresses, which can induce biased 
rates of occurrence at specific trinucleotide contexts35. Replication-timing bias refers to the 
increase in the mutation rate of regions of the genome that replicate late in the cell cycle34. 
To resolve this issue, we created an extensible approach as part of BAMSurgeon. Each 
nucleotide in the genome is weighted according to its trinucleotide context, replication 
timing and the set of mutational signatures. Bases are then sampled from the genome until 
the expected trinucleotide spectrum is reached (Supplementary Note 2). BAMSurgeon can 
handle arbitrary mutational signatures, replication timing data at any resolution and any 
arbitrary type of locational bias in mutational profiles.

Selection.—Our framework for picking selecting point mutations can easily be extended to 
incorporate other biases in mutation frequency or location such as selection. Although 
explicit tumor growth models remain an area of active development36-38 and discussion39,40 

we sought to illustrate this functionality using a recent model of 3D tumor growth that shows 
selection is reflected in VAF distributions across 3D tumor subvolumes37. We obtained 
VAFs from this simulator at five different levels of selection. For each level of selection, we 
simulated one 3D tumor and the resection of three tumor subregions. These were taken as 
basis for our simulator to generate 15 tumor BAM files in which the spiked-in SNVs and 
their VAF were directly derived from the tumor growth models. The VAFs of the genotyped 
SNVs allowed accurate inference of the selection input parameter (Supplementary Figure 2i, 
Supplementary Note 2), while also incorporating tri-nucleotide signatures and replication 
timing effects. By contrast, we were unable to recover the signature of selection with 
MuTect SNV calls, suggesting that more than three tumor regions might be needed to detect 
selection through this method when significant variant detection errors are present, 
emphasizing the utility of simulated tumor BAMs in algorithm and model assessment 
(Supplementary Note 2).

Each of the simulated features was verified by comparing simulated to designed values: 
observed to expected measurements in the BAMs (Online methods, Supplementary Figure 
3). Starting from a tumor design (Figure 4a) we systematically and quantitatively compared 
observed and expected trinucleotide context (Figure 4b), cancer cell fraction (Figure 4c) and 
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copy number segment logR ratios and B-allele frequencies (Figure 4d,e). These were 
reviewed across all simulations to verify simulated data. These results also confirmed that 
BAMSurgeon can now generate complex sub-chromosomal events, including large deletions 
or duplications (Figure 4f).

General features of subclonal reconstruction
We next sought to quantify how different factors impact subclonal reconstruction. We 
therefore simulated five tumors derived from different tissue types (prostate, lung, chronic 
lymphocytic leukaemia, breast and colon) from published subclonal structures 
(Supplementary Figure 3). We also analysed a real tumor (PD4120) sequenced at 188x 
coverage with a high-quality consensus subclonal reconstruction based on the full-depth 
tumor41 as the gold-standard.

For each of these six tumors, we then down-sampled each tumor sequence to create a 
titration series in raw read-depth of 8x, 16x, 32x, 64x and 128x coverage. For each of the 30 
resulting tumor-depth combinations, we identified subclonal copy number aberrations 
(CNAs) using Battenberg6, both with down-sampled tumors and with tumors at the highest 
possible depth to assess the influence of CNA detection accuracy, yielding 60 tumor-depth-
CNA combinations. For each of these combinations, we identified somatic SNVs using four 
algorithms (MuTect42, SomaticSniper43, Strelka44, and MutationSeq45), as well as the 
perfect somatic SNV calls for the simulated tumors, yielding 290 synthetic tumor-depth-
CNA-SNV combinations. We also applied these pipelines to the real PD4120 BAM (except 
those involving of perfect SNV calls) resulting in 40 additional depth-CNA-SNV 
combinations based on a real tumor, for a total of 290 combinations. The somatic SNV 
detection algorithms were selected to span a range of variant calling approaches: 
SomaticSniper uses a Bayesian approach, MuTect and Strelka model allele frequencies 
while MutationSeq predicts somatic SNVs with an ensemble of four classifiers trained on a 
gold-standard dataset. Finally, subclonal reconstruction was then carried out on each of these 
using two algorithms (PhyloWGS13 and DPClust6), to give a final set of 580 tumor-depth-
CNA-SNV-subclonal reconstruction algorithm combinations (see Supplementary Note 3 for 
algorithm descriptions). Each combination was evaluated using the scoring framework 
outlined above (Figure 5, Supplementary Figure 4, Supplementary Tables 1,2). In general, 
MuTect and SomaticSniper are more sensitive to low frequency variants and potentially 
preferable for subclonal reconstruction46,47. MuTect achieved the highest SNV-detection 
sensitivity in our synthetic tumors (mean sensitivity 0.65 ± 0.037 standard error, n=25), 
followed by Strelka (0.59 ± 0.032), SomaticSniper (0.50 ± 0.031, n=25) and finally 
MutationSeq (0.46 ± 0.045, n=25).

This large-scale benchmarking of 580 simulated tumors reveals general features of subclonal 
reconstruction accuracy. For example, consider SC1C: estimation of SNV cellular 
prevalence. All algorithms and SNV detection algorithms showed a consistent increase in 
accuracy with increasing sequencing depth for SC1C (Figure 5a, b). No somatic SNV 
detection algorithm matched the performance of perfect SNV calls (β = 0.22, P = 0.0011, 
generalised linear model, n=500, df=29). By contrast, the use of high- vs. low-depth 
sequencing for subclonal detection of CNAs had no detectable influence on reconstruction 
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accuracy in either real or simulated tumors (P>0.05, generalized linear model, n=500, df=29; 
Supplementary Table 2). Interestingly, in SC1C, neither the use of low- vs. high-depth 
tumors for CNA detection nor the specific subclonal reconstruction algorithm used had a 
significant influence on the accuracy of subclonal reconstruction. Similarly, both PhyloWGS 
and DPClust performed interchangeably on this question in the simulated tumors (P=0.14, t=
−1.47, n=290 Supplementary Figure 5g-l, Supplementary Tables 2).

A different story emerged for SC2A - identifying the mutational profiles of individual 
subclones (Figure 5c,d). All algorithms performed relatively poorly, with major inter-tumor 
differences in performance. Tumor T2 was systematically the most challenging to 
reconstruct and T6 the easiest (Figure 5c, Supplementary Table 5). This in part reflects the 
higher purity of T6, and indeed we see a strong association between effective read-depth and 
reconstruction accuracy in both the simulated and real tumors, with each additional doubling 
in read-depth increasing reconstruction score by about 0.1 (Figure 5d). At effective read-
depths above 60x, the performance of all tumor-CNA-SNV-subclonal reconstruction 
combinations seemed to plateau, suggesting that a broad range of approaches can be 
effective for detection of subclonal mutational profiles at sufficient read-depth. Again, the 
use of high- vs. low-depth sequencing for subclonal CNA detection had no discernible 
influence (and this held true for all sub-challenges; Supplementary Table 2). By contrast, 
SC2A scores were strongly dependent on the SNV detection pipeline, with perfect calls out-
performing the best individual algorithm (MuTect) by ~0.05 at any given read-depth. 
Differences in SNV detection algorithm sensitivity largely accounted for performance 
differences among algorithms (βsensitivity = 0.30, P = 8.92 × 10−13, generalised linear 
models, n=500, df=30; Supplementary Table 3). MuTect, the most sensitive SNV detection 
algorithm, had the best performance and MutationSeq, the least sensitive, had the poorest. 
Broadly, SomaticSniper and Strelka showed similar performance, but interestingly showed 
significant tumor-by-algorithm interactions for several sub-challenges (Supplementary 
Figure 5a-f), which may reflect tumor-specific variability in their error profiles. Notably, 
MutationSeq performed much better on with the real tumor than with simulated tumors 
(Supplementary Figure 5a-f).

In general, DPClust and PhyloWGS showed very similar performance, but with exceptions 
that reflect their underlying algorithmic features. First, in SC1A DPClust, which uses purity 
measures derived from CNA reconstructions, showed a significant and systematic advantage 
over PhyloWGS (βPhyloWGS = −0.42, P = 1.5 × 10−7, generalised linear model, n=500, 
df=13), which uses purity measures partially dependent on SNV clustering. The latter are 
more sensitive to errors in VAF due to low sequencing depth and this is reflected in the 
pattern of SC1A scores. Second, in SC2B PhyloWGS, which uses a phylogenetically-aware 
clustering model, had significantly better performance than DPClust, which uses a flat 
clustering model (Supplementary Figure 5g, Supplementary Table 2). Thus, our metrics are 
sensitive to differences in modelling approaches, which manifest in variability in 
performance on different aspects of subclonal reconstruction. Validating these results, for the 
real high-depth tumor, DPClust significantly outperformed PhyloWGS in SC1, while 
PhyloWGS was superior in SC2 (Supplementary Table 4).
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Robustness of subclonal reconstruction
Surprised by the insensitivity of scores to the use of high- or low-depth sequencing data for 
subclonal CNA assessment, we sought to characterize the sensitivity of subclonal 
reconstruction to errors in CNA detection. We repeated the analyses described above using 
five types of CNA input: original (untouched), CNAs with doubled ploidy, CNA calls with a 
random portion of existing calls wrongly assigned (scramble) and CNAs with additional 
gains (scramble gains), or with additional losses (scramble loss). The latter three error types 
were titrated in intensity, scrambling 10%, 20%, 30%, 40% and 50% of all CNAs, gains and 
losses, respectively.

The resulting 4,250 tumor-depth-CNA-SNV-reconstruction combinations were each 
assessed using our scoring metrics (Supplementary Table 1). For SC1 and SC2, incorrect 
ploidy impaired reconstruction accuracy overall (Figure 6A). As expected, scores decreased 
as the proportion of incorrectly assigned CNAs increased (Supplementary Figure 6a,b). The 
effect of incorrect calls on SC2A accuracy was only apparent at >32x coverage and was 
strongest with perfect and MuTect SNVs (Figure 6B), suggesting the relative impact of CNA 
errors increases with reconstruction quality. Interestingly, PhyloWGS had significantly 
better performance for all subchallenges than DPClust when CNA errors were introduced 
(SC1C: βPhyloWGS = 0.042, P = 6.06 × 10−10; SC2A: βPhyloWGS = 0.066, P = 1.85 × 10−10 

generalised linear models, n=4250, df=21 & df=33; Supplementary Table 5). These results 
suggest that PhyloWGS’s strategy of incorporating CNAs in the allele count model may be 
more robust to errors in CNA detection than only using them to initially correct SNV VAFs 
(Supplementary Figure 5g, Supplementary Note 3). As CNA-handling in the presence of 
errors distinguishes algorithms with otherwise comparable performance, increasing 
robustness to errors in CNA calls may be a promising avenue for improvement of subclonal 
reconstruction algorithms.

Taken together, these results suggest that subclonal reconstruction accuracy is highly 
sensitive both to SNV and CNA detection, with interactions between specific pairs of variant 
detection and subclonal reconstruction algorithms (Online methods; Supplementary Figure 
6c,d). There is significant room for algorithmic improvements that capture inter-tumor 
differences and better model the error characteristics of feature-detection pipelines.

Discussion
As DNA sequencing costs diminish and evidence for clinical utility accumulates, 
increasingly large numbers of tumors are sequenced each year. Nevertheless, it remains 
common practice for only a single spatial region of a cancer to be sequenced. The reasons 
for this are myriad: costs of multi-region sequencing, needs to preserve tumor tissue for 
future clinical use and increasing analysis of scarce biopsy-derived specimens in diagnostic 
and metastatic settings. Whilst robust subclonal reconstruction from multi-region sequencing 
is well-known5-8, accurately reconstructing tumor evolutionary properties from single-region 
sequencing could open new avenues for linking these to clinical phenotypes and outcomes.

We describe a framework for evaluating single-sample subclonal reconstruction methods, 
comprising a novel way of scoring their accuracy, a technique for phasing short-read 

Salcedo et al. Page 10

Nat Biotechnol. Author manuscript; available in PMC 2020 July 09.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



sequencing data, an enhanced read-level simulator of tumor genomes with realistic 
biological properties and a portable software framework for rapidly and consistently 
executing a library of subclonal reconstruction algorithms. These elements, each 
implemented as open-source software and independently reusable, form an integrated 
system for quantitation of key parameters of subclonal reconstruction. We generate a 580-
tumor titration-series for evaluating subclonal reconstruction sensitivity to both effective 
read depth and specific somatic SNV detection pipelines. These data give guidance for 
improving subclonal reconstruction: increasing effective read-depth above 60x, after 
controlling for tumor purity and ploidy. They also suggest reconstruction algorithm 
developers should consider accounting for the error properties of specific somatic variant 
detection approaches.

Lineage-tracing tools are emerging that will likely revolutionize our understanding of tissue 
growth and evolution, such as GESTALT48, ScarTrace49, and MEMOIR50. However, these 
are not applicable to the study of human cancer tissues in vivo. In many areas of biology, 
ground-truth is still either inaccessible or impractical to measure with precision. In cases like 
these, simulations are extremely valuable in providing a lower bound on error profiles and an 
upper bound on method accuracy. By incorporating all currently known features of a 
phenomenon, simulators codify our understanding. Divergence between simulated and real 
results quantitates the gaps in our knowledge. The creation of an open-source, freely 
available simulator capturing most known features of cancer genomes thus represents one 
avenue for exploring the boundaries of our knowledge.

Large-scale benchmarking of multiple subclonal reconstruction methods using this 
framework on larger numbers of tumors is needed to create a gold-standard. Such a 
benchmark would both inform algorithm users, who will benefit from an understanding of 
the specific error profiles of different methods, and algorithm developers who will be able to 
update and improve methods while ensuring software portability. Tumor simulation 
frameworks provide a valuable way for method benchmarking, and can complement other 
approaches like comparison of single-region to multi-region subclonal reconstruction, and 
the use of model organism and sample-mixing experiments.

Online methods
Sub-challenges description

To evaluate subclonal reconstruction algorithms, we posed seven sub-challenges and 
designed associated scoring metrics to evaluate performance in each sub-challenge. Sub-
challenges 1A through 1C, collectively called the subclonal architecture challenges, 
evaluated properties of the subclonal reconstruction without considering the assignment of 
individual single nucleotide variants (SNVs) to subclones. Sub-challenges 2A and 2B, the 
clustering challenges, evaluated the assignments of individual SNVs to subclones. Sub-
challenges 3A and 3B, the ancestry challenges, evaluated the ancestral relationships of 
individual SNVs. Each of the sub-challenge required submission data in a specific format 
described below.
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Sub-challenge 1: Subclonal architecture
Sub-challenge 1A: Cellularity—Predict the proportion of cells in the sample that are 
cancerous (i.e., the cellularity of the sample) or cellular prevalence (CP).

Output Data: c is a real number with 0 ≤ c ≤ 1 where c represents the predicted cellularity 
of the tumor sample.

Sub-challenge 1B: Lineage count—Predict the number of lineages (either subclonal or 
clonal) in the sample.

Output Data: κ is a positive integer and κ ≥ 1, where κ is the predicted number of lineages 
in the tumor sample. Note that we do not distinguish between clonal and subclonal lineages 
here, but it is assumed that each sample has at one (i.e. clonal) lineage.

Sub-challenge 1C: Subclonal architecture—Predict (i) the proportion of the cells in 
the tumor sample in each of the subclonal lineages (i.e., their cellular prevalences) and (ii) 
the proportion of SNVs associated with each lineage. Collectively, we call these two 
predictions the estimated subclonal architecture.

Output Data: φ is a vector containing κ real numbers, each of which, e.g., φk, represents the 
predicted cellular prevalence in the associated predicted lineage k. Clearly 0 ≤ φk ≤ 1 for all 
lineages k. Similarly, N is a vector containing κ positive integers, each of which, e.g., Nk, 
represents the predicted number of mutations in the associated lineage k. We insist that Nk ≥ 
1.

Sub-challenge 2: Clustering
Predict the lineage assignment of each SNV.

Sub-challenge 2A: Single best hard assignment—Predict the assignment of each 
mutation to each lineage.

Output Data: τ is a vector of n positive integers, where n is the number of SNVs, in which 
each element τi represents the index of the subclonal lineage to which mutation i is predicted 
to be assigned. Thus, 1 ≤ τi ≤ κ.

Sub-challenge 2B: Probabilistic co-clustering—Predict which pairs of mutations are 
in the same cluster. Note that this challenges differs from the previous one because the co-
clustering predictions can be probabilistic.

Output Data: The predicted co-clustering matrix, CCM, which is an n×n matrix of real 
numbers, where CCMij is the probability that mutation i is in the same subclone as mutation 
j, and 0 ≤ CCMij ≤ 1. Note that a single best assignment can be represented by setting CCMij 
= 1 when mutation i and mutation j are assigned to the same lineage, and CCMij = 0 otherw. 
Every mutation is assigned to the same lineage as itself, so we require that all the values on 
the diagonal of the CCM matrix be 1.
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Sub-challenge 3: Ancestry
Predict the ancestral relationships between the SNVs.

Sub-challenge 3A: Single best ancestry—Predict the ancestral relationships among 
the predicted lineages.

Output Data: p is a vector of κ positive integers, each one, e.g., pk, is the index of the 
predicted parental lineage for lineage k where pk = 0 indicates that lineage k has no parent, 
i.e., that it descends from the normal lineage. In other words, lineage k is a clonal lineage. 
Thus, 0 ≤ pk ≤ κ and pk ≠ k.

Sub-challenge 3B: Probabilistic ancestor-descendant matrix—Predict the 
ancestral relationships among pairs of SNVs. Note that this challenges differs from the 
previous one because these predictions can be probabilistic.

Output Data: The predicted co-clustering matrix, CCM, as defined in Sub-challenge 2B, 
and a predicted ancestor-descendant matrix, ADM, which is an n × n matrix where ADMij is 
the probability that mutation i is assigned to a subclonal lineage that is ancestral to the 
subclonal lineage the mutation j is assigned to, and 0 ≤ ADMij ≤ 1. As in Sub-challenge 2B, 
above, a single best ancestry can be represented by the ADM by setting ADMij if and only if 
mutation i is assigned to a lineage ancestral to that of mutation j. Elements on the diagonal 
of the ADM matrix required to all be 0.

Scoring metrics
Here we describe each scoring metric used to evaluate the subclonal reconstruction 
algorithms.

Sub-challenge 1A Metric—The SC1A score is

1 − ∣ ρ − c ∣

where ρ is the true cellularity, c is the predicted cellularity and |x| is the absolute value of x. 
Note that we require that 0 ≤ ρ ≤ 1 and 0 ≤ c ≤ 1.

Sub-challenge 1B Metric—The SC1B score is:

[L − d + 1] ∕ (L + 1)

where L ≥ 1 is the true number of subclonal lineages, d is the absolute difference between 
the predicted and actual number of lineages, d = min(|κ - L|, L+1). We do not allow d to be 
higher than L+1 so that the SC1B score is always ≥ 0.

Sub-challenge 1C Metric—Scoring SC1C is challenging because the number of 
subclonal lineages can differ between the truth and the prediction, as can their size and 
cellular prevalence. As such, we adopted metric based on the earth-mover distance between 
the true and predicted architectures. First, we note that the subclonal architectures can be 
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viewed as a clustering of data points in one dimension. In this view, each data point is a 
SNV, and they are clustered on the basis of their predicted cellular prevalence into clusters 
corresponding to each lineage.

If we were considering individual SNVs in this metric, we could compute a distance 
between the real and the predicted clustering of those data points by computing the average 
value of |φk - δl| where φk is the cellular prevalence of the lineage, k, that mutation i is 
assigned to in the predicted clustering and δl is the cellular prevalence of the lineage, l, that 
mutation i is assigned to in the true clustering. However, since we are not considering 
individual SNVs, we define the distance between two clusterings as the minimum possible 
value of this average, given the real and predicted subclonal architectures (i.e. the vectors of 
cellular prevalences and counts of number of SNVs assigned to each cluster). This value, 
EMD, is exactly the (normalized) earthmover distance between the real and predicted 
clusterings.

The procedure described below computes 1-EMD given the true and predicted subclonal 
architectures.

First, we sort both the predicted subclonal lineages from 1 to κ and the true subclonal 
lineages from 1 to L in ascending order according to their cellular prevalence (CP). Let αk 
be the proportion of mutations assigned to predicted subclonal lineage k, for k = 1...κ. 
Similarly, let βl be the proportion of mutations assigned to true subclonal lineage l, for l = 
1...L. Let φk be the predicted CP of predicted subclonal lineage k for k = 1...κ and let δl be 
the true CP of true subclonal lineage l for l = 1...L.

Let ωp be a vector of S predicted real numbers with:

ωp, i = ϕ1for i
S ≤ α1, or

ωp, i = ϕkfor Σ j ∈ 1 . . . k − 1α j < i
S ≤ Σ j ∈ 1 . . . k + 1α jor

ωp, i = ϕκfor Σ j ∈ 1 . . . κ − 1α j < i
S

And let ωt be a vector of S true real numbers with:

ωt, i = δ1for i
S ≤ β1, or

ωt, i = δkfor Σ j ∈ 1 . . . k − 1β j < i
S ≤ Σ j ∈ 1 . . . k + 1β jor
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ωt, i = δLfor Σ j ∈ 1 . . . L − 1β j < i
S

We set S to 1,000 and the SC1C scoring metric is then defined as:

1
S ∑

s = 1

S
∣ ωt, s − ωp, s ∣

We compute the SC1C scoring metric using two different sets of true subclonal lineages. 
One set contains only the mutations that were spiked into the simulation. The other set of 
lineages also contains false positive mutations that were not spiked-in, but were detected in 
somatic variant calling. In this set, the lineage containing the false positive mutations is 
assigned a CP of 0. Contestants receive the higher of the two scores.

Sub-challenge 2 Metric—Both SC2A and SC2B use the same scoring metric. This 
metric is the mean of two different correlation measures between the predicted co-clustering 
matrix (CCMPr) and the true co-clustering matrix (CCMTr); the Area Under the Precision-
Recall curve (AUPR) and the average Jensen-Shannon divergence of the co-assignment 
probabilities (AJSD). CCMTr is computed from the true SNV assignments to lineages using 
the procedure described in the previous section under the description of SC2B. CCMPr for 
SC2A is also computed using this procedure.

Each correlation measure, calculated by comparing CCMPr to CCMTr, and is normalized, by 
subtracting a constant value and linearly scaling, to be between 0 and 1. This normalisation 
is computed so that 1 corresponds to a ‘perfect score’ i.e. when CCMPr = CCMTr and 0 
corresponds to the smaller of the scores achieved by two ‘bad scenarios’: CCMPr = Inxn or 
CCMPr = 1nxn. If a method achieves a score < 0 after normalization, then the score is set to 
zero. The overall Sub-challenge 2 score is calculated as the mean of the two individual 
normalized correlation measures:

I. Area under the precision recall curve (AUPR).: The area under the receiver operating 
characteristic (ROC) curve, also known as the Precision-Recall curve, which plots the false 
positive rate against the true positive rate across all possible thresholds for classifying matrix 
entries as true or false (for SC2 and SC3, all real values r ∈ [0,1]). To calculate the AUPR 
we create the Precision-Recall curve using the matrix values and then estimate the Area 
under this curve using point estimators.

II. Average Jensen-Shannon divergence of co-assignment (AJSD): To define this 
correlation measure, we transform each CCM matrix so that each row could be interpreted 
as a discrete probability distribution. Then, for each row in the predicted CCM, we compute 
the Jensen-Shannon divergence between it and the corresponding row in the true CCM 
matrix. Our measure, the average Jensen-Shannon divergence (AJSD) is the average of these 
divergences.
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Specifically, for the predicted CCM matrix, C, for the i-th row, we define a real valued 

vector, pi, for each mutation i, whose j-th element, p j
i =

Ci j
∑k ≠iCik

for i ≠ j and pi
i = 0. Because 

of how pi is defined, it can be interpreted as a discrete probability distribution over all of the 
SNVs in the sample. Similarly, for the actual CCM matrix, K, for the i-th row, we define qi, 

by setting q j
i =

Ki j
∑k ≠iKik

for i ≠ j, and q j
i = 0 otherwise. Then AJSD is the average across all 

rows i of Jensen-Shannon divergence (JSD) between pi and qi. To compute the JSD, to avoid 
taking the log of 0, we define pi* as

p j
i ∗ =

(1 − α)p j
i + α

(1 − α) + Nα

for a small value α = 0.01 and we define m j
i ∗ similarly and set m j

i ∗ =
p j

i ∗ + q j
i ∗

2 . And JSD is:

JSD(pi, qi, α) = KL(pi ∗ ‖ mi ∗) ∕ 2 + KL(qi ∗ ‖ mi ∗) ∕ 2

Sub-challenge 3 metric—To compute the SC3 scoring measure, we require the CCM 
and ADM matrices as defined above and we must compute the Cousin Matrix (CM). The 
CCM and ADM matrices are either provided by the user or constructed from the true 
ancestral relationships. To construct the cousin matrix, we note that each mutation pair (i,j) 
must have one of four relationships: i is clustered with j, i is the ancestor of j (or vice versa), 
or i and j are in branching lineages (in other words, they are cousins). As such, given ADM 
and CCM, we compute the CM by setting CMij = 1 − CCMij − ADMij − ADMji.

Then, to compute the SC score, we horizontally append the CCM, the ADM, the transpose 
of the ADM, and the CM for the true and predicted versions of these matrices, making two 
matrices of size n by 4n. In other words, one of these matrices is constructed from all of the 
true matrices and the other from all of the predicted ones.

We then compute the Pearson correlation coefficient (PCC) between these two rectangular 
matrices:

The PCC between two matrices C and K is defined as:

PCC = Cov(C, K)
σCσK

where Cov(C,K) is the covariance of the vectorized versions of C and K, σc is the standard 
deviation of vectorized C, and σK is the standard deviation of vectorized K.

Data preparation
To create our phase-separated mapping set, we used public data from the Genome-in-a-
Bottle consortium obtained from sequencing the trio of individuals with Coriell ids: 
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GM24385 (son), GM24149 (father), and GM24143 (mother). We used both the high-
coverage (300x) paired-end (PE) Illumina data and the low coverage (16x) 6kb mate-pair 
(MP) Illumina data.

For the PE datasets, we downloaded the publicly available FASTQ files, and mapped them 
locally with bwa version 0.7.10 using the flag -M and otherwise default settings, against the 
hs37d5 human reference with decoys. We marked duplicates with Picard (v1.121). For the 
MP datasets, we downloaded and used the publicly available mappings.

To identify variants, we used only the PE data for each sample, and a standard variant-
calling pipeline with GATK (v2.4.9). The BAM files were realigned and calibrated using 
GATK’s RealignerTargetCreator command, followed by IndelRealigner. Bases were 
recalibrated using the BaseRecalibrator and PrintReads commands. Germline calling was 
performed using UnifiedGenotyper and variant calls without the ‘PASS’ field were filtered 
out. Short indels and single nucleotide variants that were present in both maternal and 
paternal BAMs were used for phasing.

Phasing
First, we constructed an unphased set of variants using GATK-based germline SNP 
prediction, identifying 2,559,193 diploid heterozygous short insertions, deletions, and single 
nucleotide variants in the child sample. Next, we created the PhaseTools package to 
accurately phase heterozygous variants identified in these data (Supplementary Figure 2, 
Supplementary Note 2). This phasing prioritized connections between alleles that were 
directly supported by NGS data. Due to the availability of both paired-end and 6 kbp mate-
pair Illumina sequencing data for this sample, we were able to construct initial per-
chromosome phase sets (i.e. sets of heterozygous variants phased together) at a rate of 1 
phase set per ~12 kbp. The phasing was then extended by connecting phase sets using 
parent-of-origin information, in cases where this information could be computed by 
inspecting parental genotypes or parental NGS phasing. This increased the extent of our 
phase sets, decreasing their rate to 1 per ~76 kbp. The phasing was extended once more by 
incorporating phasing information produced by Beagle, reaching an ultimate rate of 1 phase 
set per ~86 kbp. We note that this long-range phasing could be obtained even without 
leveraging any long-read data. Remaining phase sets were then randomly rotated and 
collapsed to obtain a final complete phasing of all heterozygous variants in the child. Given 
the complete phasing of the variants described above, we used the bam-phase-split program, 
also part of PhaseTools, to phase each fragment in an NGS dataset of the child sample. The 
program inspected the reads in each fragment, collecting information for which alleles that 
fragment supported at each heterozygous variant, and combined that information in order to 
phase the fragment. Fragments not spanning any heterozygous variants were phased 
randomly.

At the end of the process, while the median length of phased contigs from using only NGS 
data was ~15 kbp regions, it increased to ~85 kbp regions using the full PhaseTools pipeline.
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Splitting BAM reads into subclones and spiking-in mutations
Read splitting at nodes occurs in a pseudo-random manner using a windowed approach. For 
each node, let w be every window of reads (set to 1000) and p be the proportions of reads to 
extract. BAM files are sorted by coordinate using SAMtools sort. For every w paired reads 
ordered by first read pair coordinate, exactly floor(w × p) paired reads are chosen at random 
and retained. As compared to a global resampling to the target coverage per node (i.e. setting 
the window size to the total number of reads aligning to the chromosome), this local 
sampling accomplishes a less variable coverage across the final chromosome. All extracted 
reads are merged together using Picard tools, first by phase, then by chromosome, and 
finally into the tumor BAM. The merged BAM file is then sorted by coordinates, avoiding 
any possibility to identify from which sub-BAM reads originate.

To complete the final tumor BAM, we further normalize the phases of chromosomes relative 
to all the phases, based on their individual total fractional copies. For each phase of each 
chromosome, let pi be the cellular prevalence and ci the number of copies at the ith leaf node. 
Then Cchr,phase = sumi (pi × ci) represent the total fractional copies. Take M to be the 
maximum of all CNAs, including tandem duplications, across chromosomes and set this 
value as the 100% copy proportion. Leaf nodes are down-sampled by taking Cchr,phase / M of 
the read pool assigned to it. Read pools are adjusted using a bottom-up approach. At each 
internal node, the cellular copies of its children are summed and the read pool proportions 
are adjusted (Figure 3).

designatePortions {

if leaf node:

return pi * ci / Cchr,phase

else:

quantities = []

quantity_sum = 0

for each child:

quantity[child] = designatePortions{config->child}

quantity_sum += quantity[child]

for each child:

config->child->read_proportion = quantity[child] / quantity_sum

}

If tandem duplications are present, reads that are not incorporated in a node (surplus reads) 
are down-sampled similarly to provide donor BAMs at the right depth. Surplus reads are 
down-sampled in proportion to their depth adjusted copy number for a given node, starting 
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with the highest copy number duplications for each node to yield the maximum depth donor 
bam for each node. If lower copy number duplications exist, these donor BAMs are 
subsequently down-sampled again in proportion to copy number to yield the lower copy 
number donor BAMs.

After calculating the per-phase-per-chromosome read pools, BAMSurgeon spikes in 
mutations given a set number of SNVs, Indels, and SVs into the appropriate read pool before 
merging them into the final BAM. In Supplementary Note 2 we describe how we spike in 
mutations compatible with replicating timing, pre-defined tri-nucleotide context spectra and 
selection.

Altogether, using this approach we achieved a median accuracy of 90.6%, with a median 
false positive rate of 4.5% and a median false negative rate of 5.92% for the five tumors 
reported after calling SNVs with MuTect prior to down-sampling.

Large scale SV simulations
We extended BAMSurgeon to simulate large SVs by simulating two SV breakpoints with 
local alignment and contig assembly. We employed a two-pronged approach to simulate 
copy number changes as the existing BAMSurgeon functionality could not reliably simulate 
SVs larger than 30 kbp (Supplementary Figure 2 f-h). To simulate smaller scale copy 
number changes (>10 kbp) we extended the BAMSurgeon SV framework to simulate 
translocations, inversions, deletions, and duplications of arbitrary size (Supplementary Note 
2). To simulate chromosome level CNAs, we locally downsampled reads.

Chromosome-level copy number simulations
A gain of Na chromosomes from a given node a is simulated by first splitting the reads in a 
evenly into Na + Nb (where Nb is the number of chromosomes in the parent of a) while 
down-sampling the reads in all other nodes by Na + Nb. Since each node is handled 
individually, a deletion of a copy is simulated by elimination of a node. Prior to any node 
split or phase gain, intermediate BAM files are sorted by read name using SAMtools sort -n. 
And prior to any spike-in mutations, intermediate BAM files are sorted by coordinate using 
SAMtools sort. After deriving the BAMs for each copy of that chromosome, BAMsurgeon is 
used to spike in all SNVs, Indels and SVs into both copies (simulating that these mutations 
precede the copy number event).

Subclonal copy number calling
We used Battenberg6 based on ASCAT equations51 to call subclonal copy number and 
validated the calls by comparing observed and expected logR and BAF of the identified 
segments as well as inferred vs. expected Cancer Cell Fraction of the mutations (Figure 4, 
Supplementary Figure 2).

Somatic mutation variant calling
To assess the SNVs spiked into the simulated tumor, we used four commonly used somatic 
SNV detection pipelines, as well as perfect calls. We first obtained perfect calls from 
BAMSurgeon as a gold-standard. We retained all SNVs with at least one alternate read, one 
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reference read, and a minimum of three total reads covering the site to maximize sensitivity 
while excluding zero or near-zero depth SNVs. We then executed SomaticSniper (v1.0.5), 
Strelka (v1.0.17) with the default settings. We executed MutationSeq (v4.3.8) with a SNV 
threshold of 0.5, indel threshold of 0.1, and divided chromosomes into three intervals of at 
least 100 Mbp and otherwise used the entire chromosome. We retained MutationSeq SNVs 
with PR > 0.8 which passed all filters. Lastly, we used MuTect to call variants using the 
protocol described above. Similarly, we verified structural variants were present using Manta 
(v0.29.5 )

Subclonal reconstruction and scoring using PhyloWGS and DPClust
We used PhyloWGS (https://github.com/morrislab/phylowgs commit 3e21cec) with default 
settings (except for including all SNVs), and converted the output to an SMC-Het 
compatible format using a custom script (https://github.com/morrislab/smchet-challenge/
tree/master/create-smchet-report commit 06a1f1f). We used DPClust (https://github.com/
Wedge-Oxford/dpclust_smchet_docker commit a1ef254) with default settings, but added 
functions to parse SNVs from unsupported somatic SNV detection algorithms (https://
github.com/Wedge-Oxford/dpclust_smchet_docker/blob/design_paper/dpc.R commit: 
1d8c2e7). For all somatic SNV detection algorithms we set the allele with the highest read 
count in the normal as the reference. We removed the sex chromosomes from both SNV and 
CNA inputs prior to running PhyloWGS and DPClust.

We then scored results from both algorithms using the scoring framework described above 
(https://github.com/asalcedo31/SMC-Het_Scoring/smc_het_eval commit 8b072a2). As the 
scale of scores for sub-challenges 1C, 2A, 2B, 3A, and 3B depend on the mutation set used, 
solutions across depths and somatic SNV detection algorithms for a given tumor needed to 
be based on a common set of mutations to be comparable. We added all false and true SNVs 
called by all other somatic SNV detection algorithms for that tumor to each solution as a 
single zero cellularity cluster so that all solutions for that tumor contained the union of all 
SNVs. Additionally, to ensure scores among tumors were comparable, we scaled all scores 
to the highest scoring 128x perfect SNV call solution for that tumor and capped at 1. We 
then analysed the SC1A, SC1C, SC2A, and SC2B scores using β-regressions with the 
betareg R package52. As 1B scores represent true proportions, we analysed them using a 
generalized linear model with a binomial link function. All models used T2, 128x, perfect, 
DPC, full depth as a reference. Interaction terms were retained for a given model if they 
reduced its AIC and significantly increased log-likelihood of the model in a log-likelihood 
test comparing models with and without an interaction. See the attached Life Sciences 
Reporting summary for further information on the statistical analysis.

Effect of copy number calling accuracy on the reconstruction
We also assessed the effect of different copy number calling errors on the reconstruction 
scores (Figure 6). To this end, we randomly selected copy number segments from the 
profiles and changed the copy number states to reflect different types of errors (additional 
gains, losses and a mix of the two).
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For gains, for each selected segment the number of copies of the major allele Nmaj was 
added {0,1,2,3,4,5} with probabilities {0.01, 0.15, 0.40, 0.25, 0.15, 0.04}, respectively. The 
minor allele was randomly assigned a state between 0 and Nmaj. For losses, for each selected 
segment Nmaj was subtracted {0,1,2} with probabilities {0.06, 0.63, 0.31}, respectively. 
Nmin was randomly selected between 0 and Nmaj then the ceiling was taken. For the mix 
scenario, for each selected segment, Nmaj is replaced by {0,1,2,3,4,5} with probabilities 
{0.01, 0.15, 0.40, 0.25, 0.15, 0.04}, respectively. Nmin is randomly and uniformly selected 
between 0 and Nmaj.

In each scenario, we increased the proportion of selected segments from 10% to 50% of all 
segments by 10% increments. We then executed DPClust and PhyloWGS with these copy 
number call errors and correct copy number calls on the five synthetic tumors for the depth-
SNV somatic SNV detection algorithms combinations described above (4,250 combinations 
total). To reduce computation time, we down-sampled each input VCF to 5,000 SNVs. We 
then carried out scoring and analysis for each reconstruction as described above.

Data visualization
Figures were generated using R (v3.5.3), BPG (v5.9.8)53, lattice (v0.20-38), latticeExtra 
(v0.6-28), gridExtra (v2.3), gtable (0.2.0) and Inkscape (v0.91). Color palettes were 
generated using the RColorBrewer (v1.1-2) and BPG packages.

Data availability
Sequences files are available at EGA under study accession number EGAS00001002092.

Code availability
BAMSurgeon is available at: https://github.com/adamewing/bamsurgeon. The framework for 
subclonal mutation simulation is available at: http://search.cpan.org/~boutroslb/NGS-Tools-
BAMSurgeon-v1.0.0/. The PhaseTools BAM phasing toolkit is available at https://
github.com/mateidavid/phase-tools. Scripts providing the complete scoring harness are 
available at: https://github.com/asalcedo31/SMC-Het_Scoring/smc_het_eval.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1 ∣. Features of tumor subclonal reconstruction
Overview of the key performance aspects of subclonal reconstruction algorithms, grouped 
into three broad areas covered by three key questions: (SC1) ‘What is the composition of the 
tumor?’ This involves quantifying its purity, the number of subclones, and their prevalence 
and mutation loads; (SC2) ‘What are the mutational characteristics of each subclone?’ This 
can be answered both with a point-estimate and a probability profile, i.e. a hard or 
probabilistic assignments of mutations to subclones, respectively; (SC3) ‘What is the 
evolutionary relationships amongst tumour subclones?’ This again can be answered with 
both a point-estimate and a probability profile. MRCA: most recent common ancestor.
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Figure 2 ∣. Quantifying performance of subclonal reconstruction algorithms
(a) Tree topologies and mistake scenarios. For each of 30 tree topologies with varying 
number of clusters and ancestral relationships, 7-8 mistake scenarios (MS) were derived and 
scored using the identified metrics for SC2 and SC3. For each tree topology a panel of 9 
experts independently ranked the mistake scenarios from best to worse. (b) Expert ranking. 
One tree topology is shown with 6 of the 7 mistake scenarios together with the ranks of four 
experts and two of the metrics. The trivial all-in-one case, i.e. identifying only one cluster is 
not shown and correctly ranked last by all metrics and experts. (c) Density distributions of 
Spearman’s correlations between metrics and experts across tree topologies. For SC2 
and SC3, we show the Spearman’s correlations between JS+AUPR/2 and the experts, and 
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AUPR and the experts, respectively. (d) All average correlations between experts and 
metrics for SC2 and SC3. Heatmaps of average Spearman’s correlations across tree 
topologies between experts and metrics for SC2 and SC3. Controls are randomised ranks.
Asterisks show equivalent metrics (non-significantly better or worse according to a 
Wilcoxon rank-sum test p>0.05 but better than the others p<0.01; n=270; range of median 
increase in correlation coefficients: SC2=[0.018-0.23]; SC3=[0.024-0.36]).
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Figure 3 ∣. Simulating subclonal CNAs in tumor BAM files and spiking somatic mutations
Example case of read number adjustment to simulate subclonal copy number aberrations 
(CNAs). (a) Desired structure of the tumour being simulated. (b) Read number 
adjustment calculations. The copy number total (CNT) for each chromosome is its copy 
number by adjusted by node cellular prevalence summed across all nodes. The maximum 
CNT across the genome is retained to normalise copy number for all chromosomes. The 
number of reads assigned to each chromosome at each node (the chromosome’s effective 
read number) is then computed as the product of the node’s cellular prevalence, the 
chromosome’s copy number, and the total tumour depth normalised by the maximum CNT. 
(c) Separation per chromosome phase and per node and new pipeline to simulate 
tumour BAM files with underlying intra tumour heterogeneity. The first tumour clone 
(70% CP) has a gain in one copy (referred to as copy A) of chromosome 1 and one of its 
descendant subclones (55% CP) bears a loss of the Y chromosome. After adjusting read 
number for CNAs in each BAM corresponding to a node, BAMSurgeon spikes in additional 
mutations including the new features (complex structural variants, SNVs with trinucleotide 
contexts and replication timing effects, etc.), and then merges the extracted reads into a final 
tumor BAM file.
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Figure 4 ∣. Simulated realistic tumor genomes
(a) Tumor design. Simulation T2 with 55% purity (fraction of cancer cells) and two 
subclones. Whole-chromosome copy number events (e.g. clonal loss of chromosomes 8, 12 
and 17), number of SNVs and SVs are shown for each node. (b) Single nucleotide variant 
trinucleotide contexts. Observed vs. expected frequencies of trinucleotide contexts in the 
SNVs. (c) Population frequency (cancer cell fraction, CCF) of the variants for T2. 
Observed vs. expected CCF distributions; false positive SNVs due to mutation calling as 
well as copy-number errors lead to errors in the inferred CCFs. (d) Observed (green) vs. 
expected (blue) logged coverage ratio (LogR) and B-allele frequencies (BAF) of copy 
number segments along the genome for T2 (e) Observed vs. expected BAF and logR 
across all segments and across all simulations. (f) Simulation of sub-chromosomal copy 
number events and rearrangements. LogR and BAF tracks showing how one large 
deletion and one large duplication simulated on chromosome 17 are correctly being called. 
Structural variants as called by Manta (Online methods) are shown as vertical lines, true 
positives are at the breakpoints defining the copy number events.
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Figure 5 ∣. Error profiles of subclonal reconstruction algorithms
To identify general features of subclonal reconstruction algorithms, we created a set of 
tumour-depth-CNA-SNV-subclonal reconstruction algorithm combinations by using the 
framework outlined in Figure 3 and 4 to simulate five tumours with known subclonal 
architecture, followed by evaluation of two CNA detection approaches, five SNV detection 
methods, five read-depths and two subclonal reconstruction methods. The resulting 
reconstructions were scored using the scoring harness described in Figure 2, creating a 
dataset to explore general features of subclonal reconstruction methods. All scores are 
normalised to the score of the best performing algorithm when using perfect calls at the full 
tumour depth. Scores exceeding this baseline likely represent noise or overfitting and were 
capped at 1. Only scores from reconstructions using down-sampled CNAs are shown (n=300 
tumour-SNV-depth-subclonal reconstruction algorithm combinations). (a) For SC1C 
(identification of the number of subclones and their cellular prevalence), all combinations of 

Salcedo et al. Page 30

Nat Biotechnol. Author manuscript; available in PMC 2020 July 09.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



methods perform well. (b) By contrast, for SC2a (detection of the mutational characteristics 
of individual subclones), there is large inter-tumour variability in performance. (c) Score for 
SC1c (same as a) as a function of effective read-depth (depth after adjusting for purity and 
ploidy) improves with increased read-depth, and also changes with the somatic SNV 
detection method, with MuTect performing best, but still lagging perfect SNV calls by a 
significant margin. (d) Scores in SC2A show significant changes in performance as a 
function of effective read-depth.
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Figure 6 ∣. Impact of CNA error profiles on subclonal reconstruction
(a) Effect of CNA errors on mean SC1c scores and SC2a (b) scores (with standard errors 
shown) at 100x across somatic SNV detection algorithms (n=850). (c) Effect of CNA errors 
on mean SC1c and SC2a (d) scores (with standard errors shown, n=2250) at various depths 
when scores for perfect calls are set to zero to yield depth-adjusted scores.
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