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Introduction

The low magnitude of acoustic waves and the wide range of frequencies involved in Aeroacoustics, make mandatory the use of very accurate low-dissipative numerical schemes for the simulation of these problems. The development of Computational Aeroacoustics (CAA) is related to the development of these kinds of numerical methods. Nowadays, the standard numerical techniques in CAA are mainly grid-based methods [START_REF] Tam | Computational acoustics: Issues and methods[END_REF][START_REF] Hu | A low-dissipation and low dispersion Runge-Kutta Scheme for Computational Acoustics[END_REF][START_REF] Tam | Dispersion-relation-preserving finite difference schemes for computational acoustics[END_REF][START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF][START_REF] Bogey | A family of low dispersive and low dissipative explicit schemes for flow and noise computations[END_REF][START_REF] Bailly | Numerical solution of acoustic propagation problems using linearized Euler equations[END_REF][START_REF] Daude | A high-order finite-difference algorithm for direct computation of aerodynamic sound[END_REF] although some approaches using meshless methods have also been presented [START_REF] Li | An improved localized radial basis function meshless method for computational aeroacoustics[END_REF][START_REF] Wang | An improved collocation meshless method based on the variable shaped radial basis function for the solution of the interior acoustic problems[END_REF][START_REF] Antunes | A meshfree numerical method for acoustic wave propagation problems in planar domains with corners and cracks[END_REF][START_REF] Bajko | High order finite point method for the solution to the sound propagation problems[END_REF].

The use of Lagrangian methods in the context of CAA may find interest for problems involving deformable or moving boundaries in the propagation media or multiphase flows, such as combustion noise, sound propagation through multiphase flows or bubble acoustics. However, there are very few Lagrangian numerical methods to solve Computational Aeroacoustics problems in the literature. In particular, related to SPH methods the authors are only aware of the work of [START_REF] Zhang | SPH simulation of acoustic waves: Effects of frequency, sound pressure, and particle spacing[END_REF][START_REF] Zhang | Efficient SPH simulation of time-domain acoustic wave propagation[END_REF][START_REF] Wolfe | Acoustic modeling of reverberation using smoothed particle hydrodynamics[END_REF][START_REF] Hahn | On the use of meshless methods in acoustic simulations[END_REF].

In this work, we propose a new meshless approach based on a Galerkin discretization of a set of conservation equations on an Arbitrary Lagrangian-Eulerian approach. In particular, we solve the Linearized Euler Equations, using Moving Least Squares (MLS) [START_REF] Lancaster | Surfaces generated by moving least squares methods[END_REF][START_REF] Liu | Multiresolution reproducing Kernel Particle Methods[END_REF] as weight functions for the Galerkin discretization.

The proposed numerical method can be seen as a general formulation which includes some well-known meshfree methods as a particular case. Thus, on one hand it is shown that the presented discretization includes the SPH-ALE formulation [START_REF] Vila | On particle weighted methods and smooth particle hydrodynamics[END_REF][START_REF] Avesani | A new class of moving-least-squares WENO-SPH schemes[END_REF][START_REF] Nogueira | High accurate SPH method with multidimensional optimal order detection[END_REF], which is recovered with a particular choice of the weight functions. On the other hand, the proposed formulation can also be seen as a generalization of the Finite Point Method [START_REF] Oñate | A finite point method in computational mechanics applications to convective transport and fluid flow[END_REF][START_REF] Oñate | Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems[END_REF][START_REF] Ortega | A finite point method for adaptive three-dimensional compressible flow calculations[END_REF], which is recovered for Eulerian configurations with and homogeneous distribution of particles. The proposed method has also some similarities with that proposed in [START_REF] Gaburov | Astrophysical weighted particle magnetohydrodynamics[END_REF][START_REF] Hopkins | A new class of accurate, mesh-free hydrodynamic simulation methods[END_REF] for astrophysical applications. However, the numerical fluxes are treated here in a different manner.

One of the advantages of the present approach is that it is able to work in both Eulerian and Lagrangian configurations. Moreover, the use of MLS shape functions instead of the more usual particle approximations using kernel functions [START_REF] Vila | On particle weighted methods and smooth particle hydrodynamics[END_REF][START_REF] Moussa | On the convergence of SPH method for scalar conservation laws with boundary conditions[END_REF][START_REF] Gingold | Smoothed particle hydrodynamics-theory and application to non-spherical stars[END_REF] leads to a decrease in the number of particles involved in the approximation, and also, in the context of SPH-Riemann methods, to a fewer number of Riemann problems to be solved. Moreover, the use of MLS functions verifies, by definition, the discrete partition of unity, and the exact zero-gradient condition for constant functions to be verified. Nevertheless, in addition to MLS, our approach stay open to the use of other reconstruction methods such as Radial Point Interpolation Method (RPIM) [START_REF] Wang | A point interpolation meshless method based on radial basis functions[END_REF], Maximum Entropy Method (MaxEnt) [START_REF] Arroyo | Local maximum-entropy approximation schemes: A seamless bridge between finite elements and meshfree methods[END_REF] or Natural Element Method (NEM) [START_REF] Traversoni | Natural neighbor finite elements[END_REF][START_REF] Braun | A numerical method for solving partial differential equations on highly irregular evolving grids[END_REF].

The paper is organized as follows. First, we introduce the Linearized Euler equations in ALE form. Then, we introduce MLS approximations, and in Section 4 we present the proposed meshless discretization. The accuracy of the method is tested and validated in Section 5, and finally, the conclusions are drawn.

Governing equations

The three dimensional linearized Euler equations written in conservative form are:

L w U + ∇ • (F ) + H(U) = S(U) (1) 
where we define by L w a Lagrangian operator which is expressed for a vector U as L w U = ∂ t U + ∇ • (w ⊗ U), and the vector w = (w 1 , w 2 , w 3 ) T stands for the velocity of the Lagrangian frame. The source term is denoted by S(U). Moreover, U and F = (F x , F y , F z ) are the vector of the conservative variables and the inviscid flux vector, namely

U = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ ρ ′ ρ 0 u ′ ρ 0 v ′ ρ 0 w ′ p ′ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ (2) 
F x = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ ρ ′ (u 0 -w 1 ) + ρ 0 u ′ ρ 0 u ′ (u 0 -w 1 ) + p ′ ρ 0 v ′ (u 0 -w 1 ) ρ 0 w ′ (u 0 -w 1 ) p ′ (u 0 -w 1 ) + γ p 0 u ′ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ , F y = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ ρ ′ (v 0 -w 2 ) + ρ 0 v ′ ρ 0 u ′ (v 0 -w 2 ) ρ 0 v ′ (v 0 -w 2 ) + p ′ ρ 0 w ′ (v 0 -w 2 ) p ′ (v 0 -w 2 ) + γ p 0 v ′ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ , F z = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ ρ ′ (w 0 -w 3 ) + ρ 0 w ′ ρ 0 u ′ (w 0 -w 3 ) ρ 0 v ′ (w 0 -w 3 ) ρ 0 w ′ (w 0 -w 3 ) + p ′ p ′ (w 0 -w 3 ) + γ p 0 w ′ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ (3)
where the mean stationary solution is U 0 = (ρ 0 , ρ 0 u 0 , ρ 0 v 0 , ρ 0 w 0 , p 0 ). In the acoustic perturbations U, ρ ′ is the fluctuating density, u ′ = (u ′ , v ′ , w ′ ) T the velocity and p ′ the pressure. Moreover, the term H(U) contains terms related to the gradients of the mean flow, which are zero when the mean flow is uniform

H(U) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 ( ρ 0 u ′ + ρ ′ (u 0 -w) ) • ∇u 0 ( ρ 0 u ′ + ρ ′ (u 0 -w) ) • ∇v 0 ( ρ 0 u ′ + ρ ′ (u 0 -w) ) • ∇w 0 (γ -1) p ′ ∇ • u 0 -(γ -1)u ′ ∇ p 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ . (4) 

Interpolation operator: moving least squares reproducing kernel approximations

In this work we derive a new meshless formulation, and we apply it to the Linearized Euler Equations. The new formulation is similar to that presented in [START_REF] Gaburov | Astrophysical weighted particle magnetohydrodynamics[END_REF][START_REF] Hopkins | A new class of accurate, mesh-free hydrodynamic simulation methods[END_REF] for astrophysics, but here we address the flux functions in a different manner. The numerical method is based on the use of MLS shape functions, and we refer the interested reader to [START_REF] Liu | Multiresolution reproducing Kernel Particle Methods[END_REF] for a complete description of MLS approximations. Here, we briefly introduce the computation of MLS shape functions.

Let us consider a set of randomly distributed points. Each point i has a position r i , and an associate value φ i . For now on, we call particle to a point with an associate value. Moreover, each particle i has n i neighboring particles. These neighbor particles are defined as those particles that are inside the compact support of the particle, as schematically represented in Fig. 1. The compact support of a particle i is defined by the smoothing length h i .

Thus, if we consider a function φ(x) defined on a domain Ω (which in this framework is the compact support of the particle), the basic idea of the MLS approach is to approximate φ(x), at a given point r, through a weighted least-squares fitting of φ(x) in a neighborhood of r as

φ (r) ≈ φ (r) = m ∑ i=1 p i (r) α i (r) = p T (r) α (r) (5) 
where p T (r) = (1, x, y, x 2 , y 2 , x y, . . .) ∈ R m is an m-dimensional basis, and α(r) is a set of parameters to be determined, such that they minimize the following functional of error

J (α(r)) = ∫ y∈Ω r W (r -r ′ , h) [ φ(r ′ ) -p T (r ′ )α(r) ] 2 dΩ r (6) 
After minimization, we can write

φ(r) = m ∑ j=1 p j (r) α j (r) = n i ∑ j=1 N j (r)φ j (7) 
where the associated shape functions, gathered in vector N = (N 1 , N 2 , . . . , N n i ) ∈ R n i , are computed as

N T (r) = p T (r)M -1 (r)P(r)W(r) ( 8 
)
where P is a m × n i matrix where the basis functions are evaluated at each point of the stencil, namely P = [p T (r j )] j and M(r) is the m × m moment matrix given by M(r) = P(r)W(r)P T (r).

Note that in Eq. [START_REF] Daude | A high-order finite-difference algorithm for direct computation of aerodynamic sound[END_REF], n i ̸ = m. In practice, n i > m for a better conditioning of the moment matrix. Diagonal matrix W(r) is derived from a kernel function evaluated at r j -r i for the n i neighboring particles, as explained in the next section.

In order to improve the conditioning, the polynomial basis is locally defined and scaled: if the shape functions are evaluated at r i , the polynomial basis is evaluated at (rr i )/ h i . Thus, shape functions evaluated at r i read:

N T (r i ) = p T (0)M -1 (r i )P Ω r i W(r i ) = p T (0)C(r i ) (10) 
where matrix C(r i ) is defined as

C(r) = M -1 (r)P Ω r W(r) (11) 
Once defined the MLS approximation in Eq. ( 7), the derivatives can be approximated as

∇ φ(x) = n i ∑ j=1 φ j ∇ N j (x) (12) 
We refer the reader to [START_REF] Liu | Multiresolution reproducing Kernel Particle Methods[END_REF][START_REF] Cueto-Felgueroso | Finite volume solvers and moving least-squares approximations for the compressible Navier-Stokes equations on unstructured grids[END_REF][START_REF] Khelladi | Toward a higher-order unsteady finite volume solver based on reproducing Kernel particle method[END_REF] for a complete description of the computation of MLS shape functions and derivatives.

Practical notes about the kernel function

The kernel function

( W i j = W (   r i -r j   , h) )
plays an important role in the formulation. It is used to weight the different particles that contribute to the approximation. In this work we use the cubic spline kernel [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF], although many other possibilities do exist in the literature [START_REF] Wendland | Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[END_REF][START_REF] Rosswog | Boosting the accuracy of SPH techniques: Newtonian and special-relativistic tests[END_REF] 

W i j = β D ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 - 3 2 q 2 i j + 3 4 q 3 i j q i j ≤ 1, 1 4 (2 -q i j ) 3 1 < q i j ≤ 2, 0 q i j > 2, (13) 
where q i j is defined as

q i j =   r j -r i   / h i , the constant β D = 10 7π h 2 in two dimensional space and β D = 1 π h 3 .
The smoothing length associated to the particle i is variable for each particle and is computed as

h i = σ V i 1 D ( 14 
)
where D is the space dimensions number and σ is a constant parameter. The number of neighbors is variable, depending on the value of σ we shall set to σ = 1.5 in the numerical applications. Note that this is different to the usual value in SPH-kernel approaches, which usually is σ = 2. This implies that the number of particles involved in the approximation is decreased. In 2D, this decrease is greater than 50%, since the present formulation requires a number of 15-20 neighbor particles whereas kernel formulations with σ = 2 involves around 50 particles for the computations.

MLS based arbitrary Lagrangian-Eulerian meshless method

The MLS shape functions verify the partition of unity property

n i ∑ j=1 N j = 1 (15)
And, if the polynomial basis, p T in Eq. ( 5), is at least linear, the shape functions also verify

n i ∑ j=1 ∇ N j = 0. ( 16 
)
In the following, we also assume that for any smooth function f (r), we can apply a one-point quadrature approximation at the particle i

∫ Ω f (r i ) N (r -r i ) dΩ ≈ V i f i . ( 17 
)
where V i is the volume associated to particle i, and Ω is the volume of the compact support of the particle i. Therefore,

∫ Ω N (r -r i ) dΩ ≈ V i . (18) 
In order to develop the formulation for the LEE equations, we start multiplying Eq. ( 1) by the MLS shape function N i = N (rr i , h i ) centered at particle i. Then we take the volumetric integral over the domain Ω ,

∫ Ω N i L w UdΩ + ∫ Ω N i ∇ • F dΩ = 0 ( 19 
)
The divergence of the flux can be approximated using MLS as

∫ Ω N i L w UdΩ + ∫ Ω N i n ∑ j=1 (F ) j • ∇ N j dΩ = 0 (20) 
Using a one point quadrature approximation Eq. ( 17), Eq. ( 20) reads

V i L w U i + ∫ Ω N i n i ∑ j=1 (F ) j • ∇ N j dΩ = 0 (21) 
assuming that (F ) j are point values,

V i L w U i + n i ∑ j=1 (F ) j ∫ Ω N i • ∇ N j dΩ = 0 ( 22 
)
Integrating by parts and applying the divergence theorem, we obtain

V i L w U i + n i ∑ j=1 (F ) j (∫ ∂Ω N i N j • ndΓ - ∫ Ω N j • ∇ N i dΩ ) = 0 ( 23 
)
where n is the unitary surface normal and ∂Ω is the surface of the volume Ω .

If we add Eqs. ( 21) and ( 23) we obtain

2V i L w U i + n i ∑ j=1 (F ) j (∫ ∂Ω N i N j • ndΓ - ∫ Ω N j • ∇ N i dΩ + ∫ Ω N i • ∇ N j dΩ ) = 0 (24) 
Eq. ( 24) reads

V i L w U i + 1 2 n i ∑ j=1 ( F j ) (∫ ∂Ω N i N j • ndΓ - ∫ Ω N j • ∇ N i dΩ + ∫ Ω N i • ∇ N j dΩ ) = 0 (25)
Now, we add and subtract F i to the fluxes. Note that this operation has no effect at the continuum level, since, using the properties of the MLS shape functions Eq. ( 16)

n i ∑ j=1 (F ) i ∫ Ω N i ∇ N j dΩ = (F ) i ∫ Ω N i n i ∑ j=1 ∇ N j dΩ = 0 ( 26 
)
and using a one-point quadrature for the volume integrals we arrive to

V i L w U i + n i ∑ j=1 [ 1 2 ( F j + F i ) -F i ] (∫ ∂Ω N i N j • ndΓ -V j ∇ N i j + V i ∇ N ji ) = 0 (27)
where N i j = N (r j -r i , h i ) and N ji = N (r i -r j , h j ). As it is customary in standard SPH methodology let us assume there is no rigid boundary, so the boundary integral is equal to zero. The case where boundaries are present is addressed in Section 4.2.

V i L w U i + n i ∑ j=1 [ 1 2 
( F j + F i ) -F i ] ( -V j ∇ N i j + V i ∇ N ji ) = 0 (28)
Now, we define the numerical flux as

G i j ≈ 1 2 ( F j + F i )
(the difference in the two terms is the numerical dissipation).

V i L w U i + n i ∑ j=1 [ G i j -F i ] ( -V j ∇ N i j + V i ∇ N ji ) = 0 (29)
Therefore, the system of conservation laws can be discretized as

d(V i U i ) dt + n i ∑ j=1 [ G i j -F i ] ( -V j ∇ N i j + V i ∇ N ji ) = 0 (30)
If an Eulerian configuration is chosen for a set of particles distributed with equal weights V i , Eq. ( 30) is very close to that obtained in [START_REF] Bajko | High order finite point method for the solution to the sound propagation problems[END_REF] using the Finite Point Method (FPM) for the discretization of the LEE. However, there are some differences, such as the symmetrization of the gradient of the shape functions, which is not performed in the FPM.

It is also interesting to remark that, if we use a kernel approximation instead of MLS shape functions we arrive to

d(V i U i ) dt = - n i ∑ j=1 V i V j 2 ( G i j -F i ) • ∇W i j (31) 
due to the anti-symmetry property of the kernel gradient i.e.: ∇W i j = -∇W ji . This is the SPH-ALE formulation presented in [START_REF] Vila | On particle weighted methods and smooth particle hydrodynamics[END_REF] in the form proposed in [START_REF] Avesani | A new class of moving-least-squares WENO-SPH schemes[END_REF]. We note that using the presented formulation, the origin and the necessity of the term F i is clearly explained. In this work G i j is computed at point r i j using the Rusanov numerical flux [START_REF] Rusanov | The calculation of the interaction of non-stationary shock waves and obstacles[END_REF].

G i j = 1 2 (H + i j + H - i j ) • n - 1 2 S + i j ∆U i j • n, (32) 
where S + i j is the maximum eigenvalue of the Jacobian matrix which writes in the ALE framework in terms of the left and right sounds speeds (c ± i j ) as

S + i j = max((u 0 -w) • n + c i j , (u 0 -w) • n -c i j ), (33) 
Quantities H - i j and H + i j denote the flux approximations of H on the left and right sides of the integration point r i j with the positive orientation given by r j -r i and represented by the normalized vector n i j . The jump of the conservative vector is defined as

∆U i j = U + i j -U - i j .
It is important to remark that since the number of neighboring particles inside the compact support using this formulation decreases compared with that of the SPH-ALE method, the number of Riemann problems to be computed is also decreased, which is an important advantage from a computational point of view.

The equation of the particles motion reads as

dr i dt = n i ∑ j=1 N i j w j (34) 
As in the traditional SPH, the equation of evolution of the particles volumes follows a similar rationale. For a generic function f (x, t) it is known that d dt

∫ Ω f dΩ = ∫ Ω ∂ f ∂t dΩ + ∫ ∂Ω f u • n dΓ (35) 
If we consider the constant function, f (x, t) = 1, the volume Ω equal to V i and the velocity at the boundary equal to w we obtain d dt

∫ V i dΩ = ∫ ∂ V i w • n dΓ = ∫ V i ∇ • w dΩ (36) 
Introducing the MLS approximation,

d dt ∫ V I dΩ = n i ∑ j=1 ∫ V I w j ∇ • N ji dΩ (37) 
Following the same procedure as in the system of conservation laws we obtain

d V i dt = n i ∑ j=1 [ w i j -w i ] ( -V j ∇ N i + V i ∇ N ji ) (38) 
It is important to remark that the numerical scheme is formally second-order, even though the reconstruction of Riemann states is higher-order [START_REF] Hopkins | A new class of accurate, mesh-free hydrodynamic simulation methods[END_REF].

High-order reconstruction of the Riemann states

In order to increase the accuracy of the method and to obtain a numerical method suitable for applications in CAA, we introduce high-order reconstructions of the Riemann states (U + i j and U - i j ) used for the computation of H + i j and H - i j in Eq. ( 32). This is achieved using Taylor polynomials centered at the particles. As an example, the quadratic reconstruction associated to particle i and evaluated at r i j reads

U + i j = U i + ∇U i • ( r i j -r i ) + 1 2 ( r i j -r i ) T ∇ 2 U i ( r i j -r i ) , (39) 
The gradient ∇U i , the Hessian matrix ∇ 2 U i and successive derivatives required are computed using MLS approximations [START_REF] Lancaster | Surfaces generated by moving least squares methods[END_REF][START_REF] Liu | Multiresolution reproducing Kernel Particle Methods[END_REF][START_REF] Nogueira | High accurate SPH method with multidimensional optimal order detection[END_REF]. Note that the use of MLS does not introduce any increase of computational cost, since the MLS shape functions are already computed for the integration procedure.

Solid wall boundaries

For particle i with a compact support that crosses a boundary, the assumption of zero boundary integral no longer holds. In this case, the boundary integral must be computed as follows,

We recall Eq. ( 27) which reads

V i L w U i + n i ∑ j=1 [ 1 2 
( F j + F i ) -F i ] (∫ ∂Ω N i N j • ndΓ -V j ∇ N i j + V i ∇ N ji ) = 0 
For non-interior particles the boundary term cannot be neglected. Following [START_REF] Dilts | Moving-least-squares-particle hydrodynamics. Consistency and Stability[END_REF] ∫

∂Ω N i N j • ndΓ = ∫ Ω N i ∇ N j dΩ + ∫ Ω N j ∇ N i dΩ (40) 
which leads to

V i L w U i + n i ∑ j=1 [ 1 2 
( F j + F i ) -F i ] ( 2V i ∇ N ji ) = 0 (41)

Numerical methodology

Finally, for the sake of clarity, the system of equations to be solved is summarized. Recalling Eqs. ( 14), ( 30), ( 34) and (44), the system of conservation laws is discretized as

d(V i U i ) dt + n i ∑ j=1 [ G i j -F i ] ( -V j ∇ N i j + V i ∇ N ji ) = 0 (42)
for the case of non-interior particles, Eq. ( 41) is used instead. The particle position is computed as

dr i dt = n i ∑ j=1 N i j w j (43) 
The evolution of the particle volume reads

d V i dt = n i ∑ j=1 [ w i j -w i ] ( -V j ∇ N i + V i ∇ N ji ) (44) 
And finally, the smoothing length is updated as

h i = σ V i 1 D (45) 
In this work we have used an explicit fourth-order Runge-Kutta time integration scheme.

Numerical results

This section presents the numerical results for several benchmark problems aimed at assessing the accuracy and efficiency of the proposed method for CAA problems. The test cases addressed here are listed as 2D pure reconstruction test. This case is devoted to study the accuracy of the variables reconstruction. Gaussian acoustic pulse. This case is commonly used in the literature as a first test of the accuracy of the schemes for CAA. Acoustic pulse reflection and duct acoustic propagation. These benchmarks are devoted to test the accuracy of the proposed numerical method when solid walls are present in the domain, and wave reflections occur. Monopole source radiation in uniform mean flow. This test case examines the ability of the proposed scheme to simulate long-time propagation of noise. Moreover, it is also a test for the absorbing boundary conditions. Acoustic wave scattering by a circular cylinder. This test case is devoted to analyze the behavior of the numerical method with curved boundary walls.

All the cases are performed using a cubic reconstruction of the Riemann states, except when it is explicitly mentioned.

2D pure reconstruction test

In order to demonstrate the accuracy and the formal order of reconstruction of the variables, we perform a reconstruction test case as described in [START_REF] Nogueira | High accurate SPH method with multidimensional optimal order detection[END_REF]. The 2D square domain Ω = [-1.5, 1.5] × [-1.5, 1.5] is discretized with equidistant and randomly particle distributions, as shown in Fig. 2. In this example we define the function to be reconstructed as

f (r) = a e -|r| 2 2b ( 46 
)
where r is the position of the particle, a = 1/( √ 2bπ) and b = 0.20. First, we set the know value of the function to each particle. Next, MLS derivatives are computed at the position of each particle and Taylor reconstruction is performed in order to compute the value at the midpoint between particles.

L N 2 and L ,N ∞ norms of the reconstruction error are computed for each distribution with N particles. Convergence rates are obtained by using the errors obtained for two different sets with N 1 and N 2 particles by using the formula

O N = log ( L N 1 /L N 2 ) log( √ N 2 /N 1 ) . ( 47 
)
Fig. 4. Propagation of an acoustic pulse. Density (top), and u-velocity (bottom) perturbations at t = 10 obtained with the proposed scheme using both, a constant reconstruction and a cubic reconstruction of the Riemann states. Errors and convergence rates for cubic reconstruction are reported in Table 1 for equidistant and random distributions of particles. It is observed that the optimal orders of accuracy are recovered independently of the location of the particles.

Gaussian acoustic pulse

In this example the accuracy of the proposed methodology in the simulation of the propagation of a Gaussian acoustic pulse is tested. This case is commonly used in the literature as a first test of the accuracy of the numerical schemes [START_REF] Bajko | High order finite point method for the solution to the sound propagation problems[END_REF][START_REF] Khelladi | Toward a higher-order unsteady finite volume solver based on reproducing Kernel particle method[END_REF]. The computational domain is a Ω = [-20, 20]× [-20, 20] and it is discretized with an homogeneous distribution of 101 × 101 particles. The initial condition for the fluctuating variables is defined as where κ = ln(2)/b 2 , b = 2 and r indicates the distance to the initial location of the pulse. The mean velocity is set to zero. The numerical solution is computed at t = 10 using a Lagrangian approach. The Lagrangian frame velocity is defined as the fluctuation velocity of the particles.

ρ ′ (x, y, t = 0) = e -κr 2 , u ′ = v ′ = 0, p ′ (x, y, t = 0) = e -κr 2 (48) 
In Fig. 3 we plot the initial condition and the final result for the density fluctuations for the cubic reconstructions of the Riemann states. The initial perturbation is propagated symmetrically as expected.

Moreover, in Fig. 4 we plot the results for the density and velocity fluctuations compared with the analytical solution [START_REF] Tam | Second computational aeroacoustics (CAA) workshop on benchmark problems[END_REF]. The computed L 2 norm of the density fluctuations are 2.090 × 10 -2 for the constant reconstruction and 3.477 × 10 -4 for the cubic reconstruction. It is observed the great increase in accuracy using the high-order reconstruction, which reproduces very accurately the analytic solution.

Acoustic pulse reflection

This set of tests is performed in order to test the accuracy of the proposed method in presence of solid walls. These tests were proposed in the ICASE/LaRC workshop [START_REF] Hardin | ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics[END_REF] as a benchmark for numerical methods for CAA. In this section we perform three numerical test with gradually increasing difficulty. In the first test case we study the interaction of a Gaussian acoustic pulse with a solid wall. The second test case addresses the same problem but under the action of a mean flow with Mach number M = 0.5. The third test case of this section considers the propagation of a Gaussian pulse placed in a duct under the action of a mean M = 0.5 flow. Finally, a 3D extension of the first case is analyzed.

2D-acoustic pulse reflection: zero mean flow test case

The schematic setup of the problem is indicated in Fig. 5. We consider a Cartesian distribution of particles 201 × 151 and we solve the problem in an Eulerian framework. The initial position of the pulse is (x p , y p ) = (0, 25), and it is defined as In Fig. 6 we show the density fluctuations field for t = 0, t = 25, t = 50, t = 75. We observe that the wave is perfectly reflected by the wall, with no numerical artifacts in the solution.

ρ ′ (x, y, t = 0) = e -κr 2 , u ′ = v ′ = 0, p ′ (x, y, t = 0) = e -
In Fig. 7 we show the results at time t = 75 for the no convection case. In particular, we show the density fluctuations in a cut along x = x p . It is seen the perfect matching with the analytical solution, computed as described in [START_REF] Tam | Second computational aeroacoustics (CAA) workshop on benchmark problems[END_REF]. It is also shown in the figure the result using a constant reconstruction in the Riemann problem. The results are clearly improved with the high-order reconstruction.

2D-acoustic pulse reflection: M = 0.5 mean flow test case

The schematic setup of the problem is indicated in Fig. 8.

The case with convection corresponds to the first problem of the Category 4 of the ICASE workshop [START_REF] Hardin | ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics[END_REF]. The results are shown in Figs. 9 and 10. Again, the numerical results match perfectly the analytical solution, computed following [START_REF] Tam | Second computational aeroacoustics (CAA) workshop on benchmark problems[END_REF].

2D-acoustic pulse reflection: duct acoustic propagation

Next, we solve the propagation of a Gaussian pulse placed in a duct under the action of a mean M = 0.5 flow. The setup of this problem is shown in Fig. 11 and is taken from [START_REF] Hu | On constructing stable perfectly matched layers as an absorbing boundary condition for Euler equations[END_REF].

The initial position of the pulse is (x p , y p )=(-50,0), and it is defined as

ρ ′ (x, y, t = 0) = e -κr 2 , u ′ = v ′ = 0, p ′ (x, y, t = 0) = e -κr 2 (50) 
with κ = ln(2)/b 2 , b = 6 and r indicates the distance to the initial location of the pulse. For this test case, we use a random distribution of 20,330 particles, as it is shown in Fig. 12. Note that the choice of this grid is made with the purpose of showing the ability of the method to obtain very accurate results with scattered distribution of data. However, it is not in general a recommended distribution for solving CAA problems. In spite of this distribution, it is shown in Fig. 13 that the method obtains very accurate results, and that it is free of any spurious noise. The results could be compared with other methods proposed in the literature [START_REF] Bajko | High order finite point method for the solution to the sound propagation problems[END_REF][START_REF] Hu | On constructing stable perfectly matched layers as an absorbing boundary condition for Euler equations[END_REF][START_REF] Nogueira | Resolution of computational aeroacoustics problems on unstructured grids with a higher-order finite volume scheme[END_REF].

3D-acoustic pulse reflection

The 3D extension of the Acoustic pulse benchmark is devoted to test the accuracy of the proposed numerical method when solid walls are present on a 3D domain. The setup of the problem described in Fig. 5 is extruded in z-direction, and therefore the computational domain is Ω = [-100, 0, -100] × [100, 150, 100].

We consider a uniform distribution of particles 115 × 101 × 115 and we solve the problem in an Eulerian framework. The initial position of the pulse is (x p , y p , zp) = (0, 25, 0), and it is defined as In particular, we show the density fluctuations in a cut along x = x p , z = z p . It is observed a good match with the analytical solution.

ρ ′ (x, y, z, t = 0) = e -κr 2 , u ′ = v ′ = w ′ = 0, p ′ (x, y, z, t = 0) = e -κr 2 (51) 

Baffled Piston

One of the advantages of the proposed approach is the easy handling of moving boundaries. In order to test the method in such situations we compute the acoustic wave propagation produced by an oscillating piston. This test case for Computational Aeroacoustics was presented in [START_REF] Hardin | ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics[END_REF][START_REF] Popescu | Cartesian cut-cell method with local grid refinement for wave computations[END_REF]. The schematic setup of this problem is represented in Fig. 16.

The solid wall boundary condition is imposed at the wall. The piston has a prescribed motion defined by v ′ (x, y, t) = V 0 cos(ωt)

where the angular frequency of the piston is set to ω = 4 and the amplitude is V 0 = 0.01. The computational domain is discretized with 201 × 101 particles. The problem is solved using a Lagrangian framework until a final time t = 12. The final acoustic pressure, represented in Fig. 17, is compared with the analytical solution and represented in Fig. 18.

It is observed a good match with the analytical solution. This test case reproduces the radiation of an acoustic source in a uniform subsonic M = 0.5 flow. This numerical example is devoted to check the ability of the method to simulate long distance wave propagation. We follow the setup of this case presented in [START_REF] Bailly | Numerical solution of acoustic propagation problems using linearized Euler equations[END_REF][START_REF] Hu | On constructing stable perfectly matched layers as an absorbing boundary condition for Euler equations[END_REF]. The source term is included by defining the vector S in Eq. (1) as S(r, t) = ϵ h e -κr 2 sin(ωt)(1, 0, 0, 1) T (53) with ϵ = 0.5, κ = ln(2)/2, ω = 2π 20 and r indicates the distance to the initial location of the pulse. The angular frequency is 2π/30 and the wavelength is λ = 30. The computational domain of interest is a circle with radius R = 100. In order to damp the waves leaving the domain we have added an absorbing layer, which is placed from the boundary of the computational domain (the circular area defined by R = 100)to x = ±300 and y = ±300. We solve this test case using a random distribution of 45.111 particles. The configuration of the computational domain and the absorbing layer is shown in Fig. 19. 
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 1 Fig.1. Schematic representation of a particle i and its neighbor particles inside the compact support defined by the smoothing length h i and the constant σ .

Fig. 2 .

 2 Fig. 2. Particle distributions used for 2D Reconstruction test case. Equidistant (a) and random (b) distributions of 1024 particles.

Fig. 3 .

 3 Fig. 3. Propagation of an acoustic pulse. Density fluctuations field. Initial fluctuations (a), solution at t = 10 (b) and (c) obtained with the proposed scheme.
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 5 Fig. 5. Acoustic pulse reflection with zero mean flow. Schematic setup of the problem.

Fig. 6 .

 6 Fig. 6. Acoustic pulse reflection with no convection. Density fluctuations results for t = 0, t = 25, t = 50, t = 75, using [201 × 151] particles.

Fig. 7 .

 7 Fig. 7. Acoustic pulse reflection with no convection. Density fluctuations results for a cut along x = x p . Comparison of the results using a linear and a cubic reconstruction using [201 × 151] particles.

Fig. 8 .

 8 Fig. 8. Acoustic pulse reflection in uniform mean flow. Schematic setup of the problem.

Fig. 9 .

 9 Fig. 9. Acoustic pulse reflection under the action of a mean M = 0.5 flow. Density fluctuations results for t = 0, t = 25, t = 50, t = 75, using [201 × 151] particles.

  κr 2 (49) with κ = ln(2)/b 2 , b = 5 and r indicates the distance to the initial location of the pulse.

Fig. 10 .

 10 Fig. 10. Acoustic pulse reflection under the action of a mean M = 0.5 flow. Density fluctuations results for a cut along x = x p . Comparison of the results using a linear and a cubic reconstruction using [201 × 151] particles.
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 11 Fig. 11. Duct acoustic propagation. Setup of the problem.
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 12 Fig. 12. Duct acoustic propagation. Distribution of the particles.

Fig. 13 .

 13 Fig. 13. Duct acoustic propagation. Pressure field at times t = 60, t = 110, t = 150 and t = 300.
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 1415 Fig. 14. 3D-Acoustic pulse reflection with no convection. Density fluctuations results for t = 0, t = 25, t = 50, t = 75, using [115 × 101 × 151] particles.
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 16 Fig. 16. Baffled Piston test case. Schematic setup of the problem.
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 1718 Fig. 17. Baffled Piston test case. Pressure fluctuations results at t = 12.

Fig. 19 .

 19 Fig. 19. Monopole source radiation in uniform M = 0.5 mean flow. Particle distribution. On the left we show the whole domain including the absorbing layer, whereas on the right we shown the computational domain of interest.
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 5 Monopole source radiation in uniform M = 0.5 mean flow

Fig. 27 .

 27 Fig. 27. Acoustic wave scattering by a circular cylinder: Time-periodic Gaussian Source. Pressure fluctuations contours for M2 particle distribution.

Fig. 28 .

 28 Fig. 28. Acoustic wave scattering by a circular cylinder: Time-periodic Gaussian Source. Comparison of the RMS of pressure fluctuations at r = 0.52 for two different particle distribution (M1 = 356.848 and M2 = 1.344.563 particles) and the analytical solution.

  

  

  

Table 1

 1 Accuracy orders O N 2 , O N∞ and L N 2 , L N ∞ norms of the reconstruction error for the 2D Reconstruction test cases using a cubic MLS reconstruction.

		N	L N 2 error	O N 2	L N ∞ error	O N ∞
		1,024	6.62 × 10 -5	-	3.34 × 10 -4	-
	Equidistant	2,304 4,096 9,216 16,384	1.40 × 10 -5 4.55 × 10 -6 9.13 × 10 -7 2.91 × 10 -7	3.825 3.916 3.959 3.981	7.36 × 10 -5 2.41 × 10 -5 4.90 × 10 -6 1.56 × 10 -6	3.741 3.873 3.936 3.968
		36,864	5.76 × 10 -8	3.991	3.11 × 10 -7	3.984
		1,024	9.30 × 10 -5	-	5.94 × 10 -4	-
	Random	2,304 4,096 9,216 16,384	2.01 × 10 -5 6.58 × 10 -6 1.30 × 10 -6 4.19 × 10 -7	3.772 3.889 3.990 3.945	1.58 × 10 -4 5.59 × 10 -5 1.16 × 10 -5 3.88 × 10 -6	3.271 3.608 3.869 3.821
		36,864	8.35 × 10 -8	3.982	7.82 × 10 -7	3.950
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The acoustic pressure field for t = 90, t = 150, t = 210 and t = 270 is shown in Fig. 20. Due the imposed mean flow, the apparent wavelength is different upstream and downstream the source. The acoustic waves propagate upstream and downstream at the velocity 1 ± M with apparent wavelengths of λ c = (1 ± M)λ. As shown in these figures and also in Fig. 21, no spurious oscillations appear and the numerical solution matches perfectly with the analytic solution as it is presented in Fig. 22 for t = 270. The analytical solution is obtained by a convolution product of the source term with the 2-D Green function as indicated in [START_REF] Bailly | Numerical solution of acoustic propagation problems using linearized Euler equations[END_REF].

Acoustic wave scattering by a circular cylinder

The last benchmark case is the acoustic wave scattering by a circular cylinder, which is a widely used validation case [START_REF] Tam | Second computational aeroacoustics (CAA) workshop on benchmark problems[END_REF][START_REF] Seo | A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries[END_REF][START_REF] Sun | An immersed boundary computational model for acoustic scattering problems with complex geometries[END_REF]. The problem setup is schematically presented in Fig. 23, where a circular cylinder with radius R = 0.5 is located at the center of the computational domain. A source of noise is placed at (x, y) = (4, 0). This setup is a simplified model of the propagation of the noise generated at an aircraft turbine engine impinging on the fuselage [START_REF] Seo | A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries[END_REF]. Points labeled as A, B, C, D are measurement points for the pressure field.

In order to avoid spurious reflections at boundaries an absorbing layer is also used here, which is placed from R = 6.5 to R = 15.

In this numerical example we consider two cases, depending on the source of noise selected. First, we chose to place a Gaussian pulse and then, a more difficult problem is performed by using a time-periodic Gaussian source.

Gaussian pulse scattering by a circular cylinder

First, we choose to use a very simple source of noise, in order to perform a first test of the ability of the numerical scheme to model the interaction of the noise with a curved surface. In this case, the initial condition for the pulse reads

with κ = ln(2)/b 2 , b = 0.2 and r indicates the distance to the initial location of the pulse, which is located at (x, y) = (4, 0). In this numerical example, the particles are equidistantly distributed with ∆X = 0.04 on the computational domain. The distribution of particles for the computational domain of interest and the absorbing layer is presented in Fig. 24. This configuration leads a distribution 111.403 particles. Note that this resolution is similar to that used in [START_REF] Seo | A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries[END_REF][START_REF] Sun | An immersed boundary computational model for acoustic scattering problems with complex geometries[END_REF] for optimized high-order finite difference schemes. In Fig. 25, pressure contours are shown at different times. We note that no spurious noise appears and the results are in agreement with those of [START_REF] Seo | A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries[END_REF][START_REF] Sun | An immersed boundary computational model for acoustic scattering problems with complex geometries[END_REF].

The time history of pressure fluctuations at measurement points A, B, C, D, located as indicated in Fig. 23, are shown in Fig. 26 compared with the analytical solution [START_REF] Tam | Second computational aeroacoustics (CAA) workshop on benchmark problems[END_REF]. Again, no discrepancies are observed, and the numerical solution perfectly matches the analytical solution. 

Time-periodic Gaussian source scattering by a circular cylinder

In the second benchmark of acoustic scattering by a circular cylinder, we use a periodic source of noise instead of a simple pulse, defined as S(r, t) = e -κr 2 sin(ωt)(1, 0, 0, 1) T (55) with κ = ln(2)/b 2 , b = 0.2, ω = and r indicates the to the initial location of the pulse, which is also located at (x, y) = (4, 0). Two different particle distributions are used in this example. The first distribution, labeled as M1, has a total number of 356.848 particles and the second, M2, has a total number of 1.344.563 particles, which correspond approximately to 12.5 and 25 points per wave, respectively. Similar spatial resolution has been used for other authors using other numerical schemes [START_REF] Seo | A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries[END_REF][START_REF] Sun | An immersed boundary computational model for acoustic scattering problems with complex geometries[END_REF]. This test case is one of the most difficult benchmark problems for validation of computational codes for CAA which aims to test the long-time stability of the numerical scheme and also its suitability of far-field treatments in presence of scattering bodies [START_REF]Fourth computational aeroacoustics (CAA) workshop on benchmark problems[END_REF].

The obtained acoustic field around the cylinder is plotted in Fig. 27. In Fig. 28 the Root Mean Square (RMS) of the pressure fluctuation is shown at r = 0.52 for both particles resolution and compared with the analytical solution, which is computed as described in [START_REF] Tam | Second computational aeroacoustics (CAA) workshop on benchmark problems[END_REF].

The results obtained for the proposed method match very well with the analytical solution, and they are comparable to those obtained in the literature [START_REF] Sun | An immersed boundary computational model for acoustic scattering problems with complex geometries[END_REF] for a fourth-order dispersion-relation-preserving finite difference scheme. 

Conclusions

In this work, we propose a new meshless based on Galerkin of a set of conservation equations on an Arbitrary Lagrangian-Eulerian framework, using Riemann solvers for the discretization of the convective fluxes. The proposed is applied to the Linearized Euler Equations to solve Computational Aeroacoustic problems. The formulation uses MLS as weight functions, can be applied in both, Lagrangian and Eulerian configurations. The use MLS allows for reduced stencil in the computations, verifies the discrete partition of unity also reproduces the zero-gradient condition for constant functions.

Some CAA benchmark problems has been addressed to show the accuracy of the proposed formulation, even in presence of solid walls. The performed numerical tests show that the proposed methodology can be applied to CAA problems, where high accurate numerical methods are demanded.