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A partial order on Motzkin paths

Wenjie Fanga,1,

aUniv. Paris-Est Marne-la-Vallée, LIGM (UMR 8094), CNRS, ENPC, ESIEE Paris,
France

Abstract

The Tamari lattice, defined on Catalan objects such as binary trees and Dyck
paths, is a well-studied poset in combinatorics. It is thus natural to try to extend
it to other families of lattice paths. In this article, we fathom such a possibility
by defining and studying an analogy of the Tamari lattice on Motzkin paths.
While our generalization is not a lattice, each of its connected components is
isomorphic to an interval in the classical Tamari lattice. With this structural
result, we proceed to the enumeration of components and intervals in the poset
of Motzkin paths we defined. We also extend the structural and enumerative
results to Schröder paths. We conclude by a discussion on the relation between
our work and that of Baril and Pallo (2014).

The Tamari lattice is a poset defined on Catalan objects such as Dyck paths
and binary trees. First proposed by Tamari [Tam62], it is a well-studied ob-
ject in combinatorics, and is also the basis of many other objects, such as the
associahedron [Sta63] and the Loday-Ronco Hopf algebra [LR98]. It also has
several generalizations, such as the m-Tamari lattice [BPR12] and the general-
ized Tamari lattice [PRV17]. Recently, there is a trend on the enumerative and
bijective study of intervals in the Tamari lattice [Cha05, BB09, CP13, Fan18a],
from which we can see the rich combinatorics there to be mined.

Since the Tamari lattice can be defined on Dyck paths (see Proposition 2.1
in [BB09]), it is natural to ask for its extension to other types of lattice paths.
In this article, we take the first step in this direction by defining a partial order
on Motzkin paths, a family of lattice paths not far away from Dyck paths,
using rules similar to that of the Tamari lattice. We find that the poset of
Motzkin paths of length n defined in this way is not connected, therefore not a
lattice in general. However, there is a bijection of Callan [Cal04] from Motzkin
paths to a certain family of Dyck paths that preserves the order structure.
With this bijection, we prove that each connected component of the poset of
Motzkin paths is isomorphic to a certain generalized Tamari lattice, which is in
turn isomorphic to an interval in the classical Tamari lattice. We then study
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the enumerative aspects of the poset of Motzkin paths, such as the number of
connected components and the number of intervals. We find that the generating
function of intervals in the poset of Motzkin paths, weighted by the number of
diagonal steps and contacts (details are postponed to later sections), is algebraic.
This result is obtained by solving a functional equation “with one catalytic
variable”, as treated in [BMJ06]. The same study is then extended to Schröder
paths, where similar results are established.

There are previous efforts on defining partial orders on Motzkin paths. In
[FP05], Ferrari and Pinzani constructed partial orders of different families of
lattice paths, including Motzkin paths. They also proved that, in some cases,
including Dyck paths, Motzkin paths and Schröder paths, the defined partial
order is a distributive lattice. Their construction, which is based on weak domi-
nance of paths, is clearly different from ours. In [BP14], Baril and Pallo analyzed
the sub-poset of the Tamari lattice induced by their so-called “Motzkin words”.
The result of Baril and Pallo is similar to ours in the sense that both posets
can be defined on the same set of paths, but also fundamentally different in the
sense that we consider different orders on these objects. The relation of [BP14]
and our work will be discussed in the last section.

This article is organized as follows. In Section 1, as preliminary, we give the
definition of our poset on Motzkin paths, and some related definitions useful in
later sections. Then, in Section 2, we establish some structural results on our
poset of Motzkin paths. Section 3 consists of an enumerative study of our poset
of Motzkin paths, including finding out the generating function of intervals in
the defined poset. The whole set of results is then transferred to Schröder paths
in Section 4. We conclude with some remarks in Section 5.

1. Preliminaries

We consider lattices paths on Z2 starting at (0, 0), ending on the diagonal
y = x without crossing it, and composed by three types of steps: north step
N = (0, 1), east step E = (1, 0) and diagonal step D = (1, 1). Such a path P is
called a Motzkin path, and if P consists of only north and east steps, then it is
also called a Dyck path. It is clear that all Dyck paths are Motzkin paths. We
say that a path is of size n if it consists of n steps. We denote by Dn and Mn

the set of Dyck paths and Motzkin paths of size n respectively. It is clear that
D2n+1 is empty for any natural number n. We should also note that not all
Motzkin paths of the same size end at the same point. The set of all Motzkin
paths (resp. Dyck paths) is denoted by M (resp. D). Both Motzkin paths and
Dyck paths can be viewed as words in the alphabet {N,E,D}.

In the following, we will always use P,Q and their variants for Motzkin
paths, and R,S and their variants for Dyck paths. We denote by ε the empty
path, and we take the convention that ε is not counted as a Dyck path or a
Motzkin path.

It is well-known that the number of Dyck paths of size 2n is given by the nth

Catalan number Catn = 1
2n+1

(
2n+1

n

)
. Motzkin paths of size n are given by the
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Figure 1: Examples of covering relations on Motzkin paths

so-called nth Motzkin number, whose formula is not as nice as that of Catalan
numbers. The first few Motzkin numbers (index starting at 1) are

1, 2, 4, 9, 21, 51, 127, 323, . . .

This is the sequence A001006 on the Online Encyclopedia of Integer Sequences
(OEIS).

We now consider a poset defined on Motzkin paths of size n, inspired by the
Tamari lattice on Dyck paths (see Proposition 2.1 of [BB09]). Given a Motzkin
path P , if a lattice point v on P is preceded by an east step and succeeded by
a north step or a diagonal step, then v is called a valley . We can also consider
valleys as endpoints of consecutive east steps. Then, for a valley v in P , let w
be the next lattice point on P with the same horizontal distance to the main
diagonal. We denote by S the sub-path of P between v and w. Since v is a
valley, S is preceded by an east step. By exchanging S with the preceding east
step, we obtain a new path Q, which is also a Motzkin path, and we say that Q
covers P , denoted by P lM Q. Figure 1 illustrates two examples of covering.
Taking all possibilities of valley points v in every Motzkin path P of length n,
we construct a covering relation, which is then extended by transitivity to a
partial order ≤M onMn. This partial order (≤M,Mn) is our subject of study.
The same procedure applied to Dyck paths of length 2n gives the Tamari lattice
of order n, denoted by (≤D,D2n).

Unlike the Tamari lattice on Dyck paths, the partial order (≤M,Mn) defined
above is not a lattice. In fact, its Hasse diagram is not even connected. Figure 2
illustrates some connected components of the Hasse diagram of (≤M,M6). To
understand the structure of its connected components, we need a few definitions
to distinguish different sub-classes of Motzkin paths.

We say that a diagonal step D is of height h if it ends with y-coordinate
h. The class of a Motzkin path P , denoted by cls(P ), is the sequence of the
heights of its diagonal steps in increasing order. For instance, for the Motzkin
path P = NNDEDNNEEDE, we have cls(P ) = (3, 4, 7). As another example,
the Motzkin paths in Figure 1 are all in the class (2, 6, 7). Equivalently, the i-th
component of cls(P ) is given by the number of north steps and diagonal steps
that come before the end of the i-th diagonal step (including itself). The length
of cls(P ), which is the number of diagonal steps D in P , is denoted by |P |D.
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Figure 2: Some connected components of the Hass diagram of (≤M,M6).

The following proposition, whose proof is straightforward from the definition of
(≤M,Mn), shows how the classes govern connected components in (≤M,Mn).

Proposition 1.1. For two Motzkin paths P,Q such that P ≤M Q, we have
cls(P ) = cls(Q).

This result implies that Motzkin paths in the same connected component of
(≤M,Mn) are in the same class. A natural question thus arises: do the classes
characterize all connected components? In other words, given two paths P and
Q of the same class, are they always in the same connected components? In
Figure 2, the answer seems to be yes. To answer this question, and to look at
the structure of all the connected components of (≤M,Mn), we need to take a
detour over Dyck paths.

2. Motzkin paths and Dyck paths

Following [FPR17], for a Dyck path R ∈ D2n of length 2n, we define its
type, denoted by Type(R), to be a word w of length n − 1, such that the i-th
letter wi is N if the i-th north step Ni in R is followed by an east step, and
wi = E otherwise. The notion of type for Dyck paths corresponds in fact to
the canopy of a binary tree defined in [PRV17], which indicates for each leaf in
prefix order whether it is the left or right child of it parent. We now consider
an interval I = [R,S] in the Tamari lattice (≤D,D2n), where R (resp. S) is its
minimal (resp. maximal) element. We can thus identify intervals in the Tamari
lattices with pairs of comparable elements. We say that the interval [R,S] is
synchronized if Type(R) = Type(S). The left side of Figure 3 is an example of
a synchronized interval of type ENNENENENNNENE.

We now consider Dyck paths that avoid three consecutive north steps NNN .
We denote by D◦ the set of such Dyck paths. It is clear that a Dyck path R is in
D◦ if and only if its type Type(R) avoids EE. In [Cal04], Callan proposed the
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Figure 3: Bijection φ on Dyck paths avoiding NNN

following bijection φ from D◦ to M, which is reformulated here for our need.
Given a Dyck path R from D◦, it takes the form

R = Na1Eb1Na2Eb2 · · ·NakEbk ,

where ai ∈ {1, 2} and bi > 0 for all indices i. Since R avoids the pattern NNN
as a word, all ai’s are either 1 or 2. We now define a function ξ with ξ(1) = D
and ξ(2) = N , and we define φ(R) by

φ(R) = ξ(a1)Eb1−1ξ(a2)Eb2−1 · · · ξ(ak)Ebk−1.

In other words, for each maximal sub-word of the form Nai , which is followed
by at least one E, if there is only one N , then we replace NE by D; if there are
two N ’s, then we replace NNE by N . Geometrically, it is clear that φ(R) never
goes beneath the main diagonal, thus is a Motzkin path. The reverse direction
φ−1 is just replacing D by NE and N by NNE in a Motzkin path. This is
clearly a bijection between D◦ and M.

Two examples of φ are given in Figure 3, where the two paths of a syn-
chronized interval avoiding NNN are mapped to two Motzkin paths. In this
example, we notice that the resulted Motzkin paths have the same type and are
comparable in the Motzkin poset. In the rest of this section, we will prove that
this phenomenon is not a coincidence.

We have the following property of φ concerning the type of a Dyck path and
the class of its image of φ.

Proposition 2.1. Given R,S ∈ D◦2n two Dyck paths of length 2n avoiding
NNN , we have Type(R) = Type(S) if and only if cls(φ(R)) = cls(φ(S)).

Proof. Since R avoids NNN , it takes the form R = Na1Eb1Na2Eb2 · · ·NakEbk ,
with ai ∈ {1, 2} and bi > 0 for all indices i. Therefore, the type of R depends
entirely on the values of all ai’s. More precisely, let νt be the function with
νt(1) = N and νt(2) = EN , then we have νt(a1)νt(a2) · · · νt(ak) = Type(R)N .
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Conversely, given Type(R), we can determine the values of all ai’s. We can thus
say that the sequence (a1, . . . , ak) encodes bijectively Type(R).

Now, suppose that there are ` terms among all ai’s that take the value 1,
then there are exactly ` diagonal steps in φ(R). Let d1, . . . , d` be all indices
with adi

= 1. It is clear that, given all di’s, we can recover all ai’s. We now
look at the class of φ(R). Suppose that cls(φ(R)) = (c1, . . . , c`), and we recall
that the ci is the number of north and diagonal steps that comes before the
ith diagonal step, including itself, in φ(R). Therefore, ci = di by construction.
Given cls(φ(R)), we can recover all ai’s. We can thus say that (a1, . . . , ak)
encodes bijectively cls(φ(R)).

As the sequence (a1, . . . , ak) encodes bijectively both Type(R) and cls(φ(R)),
we conclude that Type(R) = Type(S) if and only if cls(φ(R)) = cls(φ(S)).

We denote by · the concatenation operator of paths. We now consider how
φ interacts with both partial orders (≤D,D◦2n) and (≤M,Mn). We say that a
Dyck path (or Motzkin path) is primitive if it only touches the diagonal at its
start and end points. It is easy to see that a primitive Dyck path takes the form
N · R · E, with R a Dyck path. For a primitive Motzkin path, either it takes
the form N · P · E with P a Motzkin path, or it consists of one single diagonal
step. We have the following property of φ.

Proposition 2.2. Let R ∈ D◦2n be a Dyck path avoiding NNN , then R is
primitive if and only if P = φ(R) is a primitive Motzkin path.

Proof. Since R can be written as R = Na1Eb1Na2Eb2 · · ·NakEbk , with ai ∈
{1, 2} and bi > 0, we will work on the ai’s and bi’s instead. By definition, R is
primitive if and only if

∑t
i=1(ai−bi) > 0 for all 0 < t < k. It is because we only

need to check whether the path touches the diagonal at the end of consecutive
east steps.

Now, we know that P = φ(R) = ξ(a1)Eb1−1ξ(a2)Eb2−1 · · · ξ(ak)Ebk−1, with
ξ(1) = D and ξ(2) = N . Using the same reasoning for R, we know that P
is primitive if and only if

∑t
i=1(µ(ai) − bi + 1) > 0 for all 0 < t < k, with

µ(a) defined by µ(1) = 0, µ(2) = 1. We observe that µ(a) = a − 1, therefore,
ai− bi = µ(ai)− bi + 1. We conclude by the observation that the two conditions
of being primitive for R and for P are equivalent.

The covering relations in both (≤D,D2n) and (≤M,Mn) can be reformulated
as follows. Given two Motzkin paths P,Q, we have Q covers P if and only if
we can write P = P1 ·E · P2 · P3 with P2 a non-empty primitive Motzkin path,
such that Q = P1 ·P2 ·E ·P3. The condition also holds for Dyck paths. We now
prove the following cornerstone result.

Theorem 2.3. Let R,S be two Dyck paths avoiding NNN , and P = φ(R),
Q = φ(S) their corresponding Motzkin paths. Then P ≤M Q if and only if
R ≤D S and Type(R) = Type(S), that is, [R,S] is a synchronized interval that
avoids NNN .
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Proof. We will prove a stronger result: P lM Q if and only if R lD S and
Type(R) = Type(S), which clearly implies our claim.

We first prove the “only if” part. Since P lM Q, by the primitive path
reformulation of lD, we can write P = P1 ·E ·P2 ·P3 such that Q = P1 ·P2 ·E ·P3,
with P2 a non-empty primitive Motzkin path. Then, in the bijection φ−1, since
the east steps are left untouched, we have R = R1 · E · φ−1(P2) · R3, where R1

(resp. R3) is obtained from P1 (resp. P3) using the same substitution as in
φ−1. We also have S = R1 · φ−1(P2) · E · R3. By Proposition 2.2, the Dyck
path φ−1(P2) is also primitive. We thus conclude that R lD S. For the type
of R and S, we notice that the substitution in φ−1 transforms all possible steps
N , E, D into paths NNE, E, NE, all ending in E. Therefore, R1 ends in E,
meaning that swapping φ−1(P2) with E in P does not change the type.

For the “if” part, since RlD S, we can write R = R1 ·E ·R2 ·R3 such that
S = R1 · R2 · E · R3, with R2 a non-empty primitive Dyck path, which begins
with N and ends with E. As Type(R) = Type(S), the path R1 must end in E
to avoid change of type. Since both R1 and R2 ends in E, in the substitution of
φ, all segments R1, R2, R3 are independent. We thus have P = P1 ·E ·φ(R2) ·P3

and Q = P1 · φ(R2) ·E · P3, with P1 and P3 obtained respectively from R1 and
R3 with the substitution of φ. By Proposition 2.2, the Motzkin path φ(R2) is
also primitive. We thus conclude that P lM Q.

Let D2n(ν) be the set of Dyck paths of type ν (which is a word in N,E). It
is known in [PRV17] that, for any ν, the Tamari lattice restricted to D2n(ν) is
an interval. We denote this restriction by (≤D,D2n(ν)). We have the following
corollary on the structure of (≤M,Mn).

Corollary 2.4. The poset (≤M,Mn) is isomorphic to the union of intervals
(≤D,D2n(ν)) with all possible ν that avoids EE. The isomorphism is given by
φ−1. Furthermore, each connected component in (≤M,Mn) contains exactly all
the paths in Mn of a certain class.

Proof. It is clear that a Dyck path avoids NNN if and only if its type avoids
EE. The first point thus follows from Theorem 2.3 and the fact that φ is a
bijection. For the size of paths, given a Motzkin path P of length n with k steps
N , k steps E and ` steps D, we have n = 2k + `. Then, since φ−1 sends N to
NNE, E to E and D to NE, the length of φ−1(P ) is 4k + 2` = 2n.

For the second point, we deduce from Proposition 2.1 that Dyck paths of
the same type correspond exactly to Motzkin paths of the same class. Since
(≤D,D2n(ν)) is an interval of the Tamari lattice, it is a connected poset. By
Proposition 1.1, paths of different classes are not comparable. We thus conclude
that connected components in (≤M,Mn) are in one-to-one correspondence with
classes.

We now know that classes of Motzkin paths characterize connected com-
ponents in (≤M,Mn). We also note that it was proved in [PRV17] that
(≤D,D2n(ν)) is isomorphic to the generalized Tamari lattice Tam(ν) defined
therein.
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3. Enumerative aspect

We now explore enumeration problems for (≤M,Mn) with the structural
results in the previous section. We have two major targets: the number of
connected components and the number of intervals. The first one is easy.

Proposition 3.1. The number of connected components in (≤M,Mn) is given
by the n-th Fibonacci number Fn, defined by F1 = 1, F2 = 1, Fn+1 = Fn +Fn−1.

Proof. By Corollary 2.4, connected components of (≤M,Mn) are in bijection
with words of length n − 1 in {N,E} avoiding EE, which are counted by Fi-
bonacci numbers.

It is not difficult to refine this result with respect to the number of diagonal
steps.

Proposition 3.2. The number of connected components in (≤M,Mn) with
n − 2k diagonal steps (thus k north steps and k east steps) in its elements is(
n−k
k

)
.

Proof. By Corollary 2.4 and the definition of φ, the connected components to
be counted are in bijection with words of length n − 1 in {N,E} avoiding EE
with k occurrences of E. This number is given by

(
n−k
k

)
.

To count intervals in (≤M,Mn), by Corollary 2.4, we only need to count
synchronized intervals avoiding NNN . We resort to the following known de-
composition of synchronized intervals in [FPR17], with the reformulation in
[Fan18b]. A properly pointed synchronized interval , denoted by [R` · Rr, S], is
a synchronized interval with a split R` ·Rr in its lower path such that both R`

and Rr are Dyck paths, and R` is non-empty. We recall that the empty path is
denoted by ε.

Proposition 3.3 (Proposition 3.1 in [Fan18b]). Let [R,S] be a synchronized
interval in (≤D,D2n). The two Dyck paths R and S are uniquely decomposed
as follows:

R = N ·R`
1 · E ·Rr

1 ·R2, S = N · S1 · E · S2.

Here, the sub-paths R`
1, R

r
1, R2, S1, S2 satisfy

• Each sub-path is either empty or a Dyck path;

• R`
1 = ε if and only if S1 = ε, and in that case we also have Rr

1 = ε;

• R2 = ε if and only if S2 = ε;

• When not empty, [R`
1 ·Rr

1, S1] is a properly pointed synchronized interval,
and [R2, S2] is a synchronized interval.

We then have the following refined decomposition on synchronized intervals
avoiding NNN .

8



Proposition 3.4. Let [R,S] be a synchronized interval, with S = N ·S1 ·E ·S2

in the decomposition of Proposition 3.3. Then, S avoids NNN if and only if
both S1 and S2 are either empty or avoiding NNN , and if S1 is not empty, then
S1 starts with NE.

Proof. Since S1 and S2 are separated by an east step E in S, a pattern NNN
in S occurs either in S1, or in S2, or at the beginning of S when S1 starts with
NN . We thus have the equivalence.

We now use generating functions to enumerate synchronized intervals avoid-
ing EE, following [FPR17]. Given a Dyck path R, a contact is an intersection of
R with the main diagonal x = y. We denote by cont(R) the number of contacts
of R. Since ultimately we want to count intervals of Motzkin paths, we will also
track another statistic. Given a Dyck path S avoiding NNN , we denote by
ds(S) the number of north steps in S that is neither followed nor preceded by
another north steps. In other words, for S written as Na1Eb1 · · ·NakEbk with
ai ∈ {1, 2} and bi > 0, the value of ds(S) is the number of ai’s of value 1. We
have the following properties of ds.

Proposition 3.5. 1. Given a Dyck path R avoiding NNN , its correspond-
ing Motzkin path φ(R) has ds(R) diagonal steps.

2. Given a synchronized interval [R,S] avoiding NNN , we have ds(R) =
ds(S).

Proof. The first point comes from the definitions of φ and ds. The second one
is a direct consequence of Proposition 2.1.

We define the following generating function for intervals in (≤D,D◦2n) for all
n:

F◦(t, u, x) =
∑
n>0

tn
∑

R,S∈D◦2n,R≤DS

uds(S)xcont(R)−1.

We then have the following functional equation for F◦.

Proposition 3.6. The generating function F◦ satisfies the following equation:

F◦(t, u, x) = tux+ tuxF◦(t, u, x)

+ t2x
x(1 + F◦(t, u, x))− 1− F◦(t, u, 1)

x− 1
(1 + F◦(t, u, x)).

Proof. Each term corresponds to a case in the decomposition of a synchro-
nized interval [R,S] avoiding NNN , as in Proposition 3.3, with restrictions in
Proposition 3.4. The first term corresponds to the case S1 = S2 = ε, where
R = S = NE. The second term corresponds to the case S1 = ε but S2 6= ε,
where R = NE ·R2, adding one contact and increasing ds by 1. The third term
corresponds to the case S1 6= ε, which is more complicated.

First we observe that, if S1 starts with NE, then the (not yet pointed) syn-
chronized interval [R1, S1] with R1 = R`

1 ·Rr
1 can be written as [NE ·R′1, NE ·S′1],

with [R′1, S
′
1] a synchronized interval avoiding NNN . The generating function
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of synchronized intervals avoiding NNN that start with NE is thus tux(1 +
F◦(t, u, x)). Then we notice that the extra u, contributed by NE, will not stand
in the final interval, since the NE at the beginning of S1 becomes NNE at the
beginning of S, no longer contributing to ds. Therefore, the final contribution
should be tx(1+F◦(t, u, x)). Now, we see that [R1, S1] gives exactly cont(R1)−1
properly pointed synchronized intervals [R`

1 ·Rr
1, S] with cont(R`

1) ranging from
2 to cont(R1). This is because we can break R1 at any of its contacts, except
the first one, to give a properly pointed variant. In terms of generating function,

the contribution xktn of [R1, S1] turns into tn(x+ x2 + . . .+ xk) = tnxxk−1
x−1 for

its properly pointed variants. Therefore, the contribution of [R`
1 ·Rr

1, S1] is

x
tx(1 + F◦(t, u, x))− t(1 + F◦(t, u, 1))

x− 1
.

The contribution from [R2, S2] is simply 1 + F◦, and we also have two extra
steps. We thus conclude this case.

The equation in Proposition 3.6 can be rearranged into:

F◦(t, u, x) = tx(1 + F◦(t, u, x))

(
u+ t+ t · xF◦(t, u, x)− F◦(t, u, 1)

x− 1

)
. (1)

Maybe not much of a surprise, (1) is very close to the functional equa-
tion of synchronized intervals in [FPR17]. In particular, it is also a functional
equation with one catalytic variable, in the scope of [BMJ06]. We thus know
immediately from [BMJ06] without solving the equation that the generating
function F◦(t, u, x) is algebraic in its variables. We now solve (1) with the
method in [BMJ06]. To simplify the notations, we denote F◦ ≡ F◦(t, u, x) and
F1 ≡ F1(t, u) ≡ F◦(t, u, 1). We only need F1 to be able to count intervals in
(≤D,D◦2n), which correspond to intervals in (≤M,Mn). According to Proposi-
tion 3.5, the variable u counts the number of diagonal steps in elements of an
interval in (≤M,Mn).

Theorem 3.7. The generating function F1(t, u) of intervals in (≤M,Mn) is
algebraic. More precisely, let X be the formal power series in t with coefficients
polynomial in u that satisfies the equation

u2t2X5 − t2(1 + u2)X4 − 2utX3 + 2utX2 +X − 1 = 0. (2)

Then the series F1 can be expressed in terms of X as

F1(t, u) =
u2t2X4 − t(u2t+ ut2 + u+ 2t)X3 + (1 + ut+ t2)X − 1

t2X(utX2 − 1)
. (3)

Proof. A rearrangement of (1) gives

t2x2F 2
◦ + (2t2x2 + x2ut− xut− t2x− x+ 1− t2xF1)F◦

+ t2x2 − t2x+ x2ut− xut− t2xF1 = 0.
(4)
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We notice that F1 does not depend on x. We now regard the left-hand side of
(4) as a polynomial P (F◦, F1, t, u, x). Differentiating (4) by x, we have(

∂F◦
∂x

)
· ∂P
∂F◦

(F◦, F1, t, u, x) +
∂P

∂x
(F◦, F1, t, u, x) = 0.

If there is some Puiseux seriesX such that the substitution ∂P
∂F◦

(F◦, F1, t, u,X) =

0, then automatically we have ∂P
∂x (F◦, F1, t, u,X) = 0 after substitution. A sim-

ple computation of the partial differentiations gives the following equations:

2t2X2F◦(X) + (2t2X2 +X2ut−Xut− t2X −X + 1− t2XF1) = 0, (5)

2t2XF 2
◦ (X) + (4t2X + 2Xut− ut− t2 − 1− t2F1)F◦(X)

+ 2t2X − t2 + 2Xut− ut− t2F1 = 0.
(6)

Along with (4) with x substituted by X, we have a system of three polynomial
equations with three unknowns F◦(X), X, F1. To see that there is only one
power series X in t that satisfies (2), we observe that (2) can be written as
X = 1 + tQ(X), where Q(X) is a polynomial in X with coefficients polynomial
in u, t. Therefore, we have X = 1 + O(t), and its coefficients can be computed
iteratively, thus determined, and they are clearly polynomials in u. After picking
the unique X, we can thus solve for F1 (preferably with a computer algebra
system), which gives the announced result.

By substituting (3) into (1), we can solve for F◦, which means F◦ ≡ F◦(t, u, x)
is also an algebraic series in t, u, x. We omit the exact expression here.

The first terms of F1(t, 1), whose coefficient of tn is the number of intervals
in (≤M ,Mn) thanks to Corollary 2.4, are

F1(t, 1) = t+ 2t2 + 5t3 + 14t4 + 43t5 + 140t6 + 477t7 + 1638t8 + 6106t9 + · · · .

These values agree with experimental results. The sequence

1, 2, 5, 14, 43, 140, 477, 1638, . . .

has appeared on OEIS as A307787, which counts the number of valid hook
configurations of 132-avoiding permutations (cf. [Def]).

4. Extension to Schröder paths

All our constructions and results can be transferred to Schröder paths, which
are essentially Motzkin paths where diagonal steps are counted as of length 2.
It is thus clear that every Schröder path is of even length. We denote by S2n the
set of Schröder paths of length 2n. We can construct a partial order (≤S ,S2n)
in the same way as (≤M,Mn), since the only difference is how we count the
length of a path.
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By Corollary 2.4, elements in each connected component of (≤M,Mn) have
the same number of diagonal steps, hence are Schröder paths of the same length.
Therefore, the partial order (≤S ,S2n) is also isomorphic to a disjoint union of
(≤D,D(ν)) with appropriate ν’s. We can thus deduce the following enumeration
results for (≤S ,S2n).

Proposition 4.1. There are 2n connected components in (≤S ,S2n).

Proof. We observe that Schröder paths in S2n are exactly those ending at (n, n).
On the path, when passing from y-coordinate k to k + 1, we have either an
east step or a diagonal steps. We thus have 2n different classes in S2n, each
corresponding to a connected component according to Corollary 2.4. This result
can also be seen as a consequence of Proposition 3.2, with a translation between
the Schröder and the Motzkin path length.

Let G(t, u) be the generating function for intervals in (≤S ,S2n) for all n
defined as

G(t, u) =
∑
n>0

tn
∑

P,Q∈S2n,P≤SQ

u# diagonal steps in P .

We can now deduce G(t, u) from F1(t, u).

Theorem 4.2. The generating function G(t, u) of intervals in (≤S ,Sn) is al-
gebraic. More precisely, let X ′ is the formal power series in t with coefficients
polynomial in u that satisfies the equation

u2t2X ′5 − t(1 + u2t)X ′4 − 2utX ′3 + 2utX ′2 +X ′ − 1 = 0. (7)

Then G(t, u) can be expressed in terms of X ′ as

G(t, u) =
u2t2X ′4 − (u2t2 + ut2 + ut+ 2t)X ′3 + (1 + ut+ t)X ′ − 1

tX ′(utX ′2 − 1)
. (8)

Proof. Since diagonal steps are counted as 2 towards the length of a Schröder
path, we have

G(t2, u) = F1(t, ut).

The result follows from appropriate substitutions of formulas in Theorem 3.7.

The first terms of G(t, 1), whose coefficient of tn is the number of intervals
in (≤S ,S2n), are

G(t, 1) = 2t+8t2 +46t3 +320t4 +2500t5 +21120t6 +188758t7 +1760256t8 + · · · .

The sequence of its coefficients is not yet on OEIS.
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5. Discussions

We now discuss the result of Baril and Pallo in [BP14]. It has a flavor
that is very close to our result. More precisely, they analyzed the sub-poset of
the Tamari lattice induced by the so-called “Motzkin words”, which are well-
parenthesized words defined by the generative grammar S  ε | (SS), with ε
the empty word. If we read opening (resp. closing) parenthesis as north (resp.
east) steps, the set of Motzkin words can be regarded as a set of Dyck paths,
with the generative grammar R  ε | N · R · R · E. We can prove by a simple
induction that every Dyck path generated in this way, which corresponds to
a Motzkin word, must have the form N · R′ · E, with R′ a Dyck path whose
type avoids NN . However, we know from Proposition 5.2 and Theorem 1.2 of
[PRV17] that Dyck paths with type w are in bijection with those of type ←−w ,
where←−w is the word w read from right to left while replacing N by E and E by
N . Furthermore, this bijection is an order isomorphism from the Tamari lattice
to its order dual. As a consequence, under our definition of the Tamari lattice
in Section 1, the restriction of the Tamari lattice to Dyck paths whose types
avoid NN is isomorphic to the order dual of the restriction to Dyck paths whose
types avoid EE, which is exactly the poset we studied in Section 2, isomorphic
to our poset of Motzkin paths.

Then why did Baril and Pallo had a different poset (which is connected by a
maximal element) from ours, if we studied the same poset restricted to (roughly)
the same set of elements? It is because our definitions of the Tamari lattice on
Dyck paths differ. More precisely, both the definition here and that in [BP14]
can be seen as coming from the Tamari lattice defined on binary trees, where
the order relation is given by tree rotation (cf. [PRV17]). We then have different
ways to convert binary trees into Dyck paths. Given a binary tree T , either it is
empty, denoted by T = εT , or it has the form T = (T`, Tr), where T` (resp. Tr)
is the left (resp. right) sub-tree. There are at least two ways to define a bijection
from binary trees to Dyck paths recursively. The first one is what we take here
implicitly, which is also taken in various other works [PRV17, BB09, FPR17]:

δ1(εT ) = ε, δ1((T`, Tr)) = δ1(T`) ·N · δ1(Tr) · E.

Another is the one taken in [BP14]:

δ2(εT ) = ε, δ2((T`, Tr)) = N · δ2(T`) · E · δ2(Tr).

Since the mappings are different, it is reasonable that the posets obtained are
different, as the same tree is mapped to different Dyck paths. Via the two
mappings, we are in fact looking at different portions of the Tamari lattice,
leading to different posets.

Motivated by the generalization from the Tamari lattice to the m-Tamari
lattice, we can also consider similar constructions defined on m-ballot paths,
a generalization of Dyck paths. An m-ballot path is a lattice path formed by
north steps and east steps that always stays above the m-diagonal x = my.
The construction in Section 1 that defines partial orders on Dyck path and
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Motzkin paths, when applied to m-ballot paths, gives the m-Tamari lattice (see
[BPR12]). For the counterpart of Motzkin paths in this case, there are two
natural choices for the “diagonal step”: either we take the usual diagonal step
D = (1, 1), or we take the m-diagonal step Dm = (m, 1). For both cases, the
structure of the poset is not clear and requires further exploration.
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