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Abstract

A model of crystal plasticity is developed in which the effects of plastic flow non-uniformity
are described through the full dislocation density tensor. The micromorphic approach is
used in which the dislocation density tensor is represented by the curl of an independent
constitutive variable called microdeformation. The microdeformation tensor is enforced by
an energetic penalty term to be close to the actual plastic distortion tensor. The curl of
microdeformation tensor enters the constitutive model in two independent but complemen-
tary ways. First, it is an argument of the free energy density function, which describes the
kinematic-type hardening in cyclic non-uniform deformation. Second, its rate influences the
rates of critical resolved shear stresses, which corresponds to additional isotropic hardening
caused by incompatibility of the plastic flow rate. The latter effect, missing in the standard
slip-system hardening rule, is described in a simple manner that does not require any ex-
tra parameter in comparison to the non-gradient theory. In the proposed model there are
two independent internal length scales whose interplay is examined by means of 1D and 2D
numerical examples of plastic shearing of a single crystal.

Keywords: Gradient theory; Crystal plasticity; Dissipation; Length scale; Cyclic
deformation; Numerical regularization

1. Introduction

The aim of this paper is to examine a crystal plasticity model that combines in a novel
way two physically related but conceptually and mathematically distinct effects of plastic
flow non-uniformity on the material hardening. The first one is due to the influence of the
dislocation density tensor, being a measure of accumulated geometrical incompatibility of the
plastic deformation, on the free energy density of the material. In the classical terminology,
it leads to kinematic hardening since reverse deformation can reduce this effect to zero.
The second effect is due to the influence of the current rate of dislocation density tensor,
representing incompatibility of the current plastic flow rate, on the rate of critical resolved
shear stresses. In particular, the rate of average density of the dislocations induced by the
current slip-rate gradients can be assumed non-negative, which leads to isotropic hardening,
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also for cyclic deformations. The gradient effects are accompanied by the usual anisotropic
hardening of a uniformly deformed crystal that encompasses self-hardening (diagonal) and
latent-hardening (non-diagonal) terms of the slip-system hardening matrix.

To describe the first effect outlined above, it is proposed to include the full dislocation
density tensor, defined by Nye (1953), Bilby et al. (1955), Kröner (1960), Le and Stumpf
(1996), Steinmann (1996) and Cermelli and Gurtin (2001), among others, into the constitutive
setting. Such strain gradient plasticity models have been developed for instance by Gurtin
(2006) and more recently by Kaiser and Menzel (2019). The use of the full dislocation
density tensor instead of individual densities of geometrically necessary dislocations as done
for instance in (Gurtin, 2000; Bayley et al., 2007; Gurtin et al., 2007; Bargmann et al., 2014)
is more efficient from the computational point of view and contains essential features of strain
gradient plasticity as discussed in (Mesarovic et al., 2015; Wulfinghoff et al., 2015). Strain
gradient plasticity based on the dislocation density tensor can be viewed as a limit case of
the microcurl model proposed by Cordero et al. (2010) which results from the application
of the micromorphic approach by Forest (2009) to gradient crystal plasticity. According to
the micromorphic theory by Mindlin (1964); Eringen and Suhubi (1964), the material point
is endowed with new degrees of freedom, namely a second order (generally) non–symmetric
tensor called microdeformation, in addition to the usual displacement vector. In the microcurl
model, this microdeformation and its curl are introduced as constitutive variables in the free
energy density function. A penalization is introduced such that the microdeformation almost
coincides with the plastic distortion tensor. As a result the curl of the microdeformation
tensor will practically coincide with the usual dislocation density tensor. This approach
can be regarded as an efficient method to implement strain gradient crystal plasticity in
finite element codes. The microcurl model was applied to the continuum modeling of grain
size effects in polycrystals by Cordero et al. (2012) and to Bauschinger effects in laminate
microstructures (Forest, 2008; Wulfinghoff et al., 2015). The microcurl model was extended
by Alipour et al. (2019) to include grain boundary yielding effects. A simplified version of
the microcurl model was proposed in (Wulfinghoff and Böhlke, 2012; Wulfinghoff et al., 2013;
Erdle and Böhlke, 2017). Instead of considering a microdeformation tensor, these authors
introduce a scalar micromorphic variable related to the accumulated plastic slip, and its
gradient into the free energy density function. The advantage of this model is the reduction
of complexity from the computational mechanics point of view. The drawback is that this
enhancement does not induce size-dependent back-stress effects in contrast to the original
microcurl model. The full micromorphic deformation tensor will therefore be used in the
present work.

To describe the second effect, i.e. of the current incompatibility of the plastic flow rate
on the isotropic part of the hardening rate, the approach proposed recently by Petryk and
Stupkiewicz (2016) is used. Incompatibility of the plastic distortion rate is measured by the
effective slip-gradient rate, χ̇, defined as a norm of the rate of the dislocation density tensor.
The associated evolving internal length scale, `, has been derived from phenomenological
relationships established in the dislocation-based theory of plasticity and expressed through
standard parameters of a non-gradient hardening law, including the material constants in
Taylor’s formula (Taylor, 1934) and the current stress and hardening modulus θ. The prod-
uct θ`χ̇ added to the conventional formula for anisotropic hardening rate for a single crystal
constitutes its simple gradient-enhancement. It has been shown that this modification alone
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can provide realistic predictions of the experimentally observed indentation size effect (Stup-
kiewicz and Petryk, 2016). An evolving length scale was also introduced recently into other
models of strain gradient plasticity (Dahlberg and Bo̊asen, 2019; Scherer et al., 2019).

The present paper extends the earlier works to a novel combination of the ‘microcurl’
model of micromorphic type (Cordero et al., 2010) and the ‘minimal’ gradient-enhancement
of the incremental hardening law (Petryk and Stupkiewicz, 2016). It is distinct from the
related work by Ryś and Petryk (2018) which was limited to the Gurtin-type models of
gradient plasticity (Gurtin, 2000; Gurtin et al., 2007; Bargmann et al., 2014) combined with
the gradient-enhanced hardening law. In particular, unlike in the previous works, the effective
slip-gradient rate χ̇ is expressed here by a norm of the curl of the micromorphic rate-variable.
The numerical treatment here is also different since the micromorphic variable acts as an
additional degree of freedom of a global type, so that the dual-mixed formulation applied in
(Ryś and Petryk, 2018) is not needed here. One advantage of the micromorphic approach to
strain gradient plasticity is its numerical efficiency due to the introduction of independent
degrees of freedom connected at the constitutive level to standard mechanical variables,
as demonstrated in contributions related to strain localization phenomena by Anand et al.
(2012); Peerlings et al. (2012). In particular there is no need for front-tracking methods for
the interface between plastically loaded zones and elastic domains of the structure, in contrast
to some strain gradient implementation methods (Liebe et al., 2003). Numerical efficiency
of the micromorphic-type modelling has recently been confirmed in 3D setting, although
only for a scalar micromorphic variable, in the study of martensitic phase transformation by
Rezaee-Hajidehi et al. (2019).

The paper is organized as follows. In Section 2 the microcurl model in crystal plasticity is
presented in the small deformation framework. The field equation and boundary condition for
the generalized couple stress tensor are derived in two alternative ways, with and without the
use of the method of virtual power. In Section 3, the condition for plastic flow is derived using
the compatibility of actual and virtual dissipation rates. The minimal gradient enhancement
of the incremental hardening law with an associated natural length scale ` is presented along
with its adjustment to the micromorphic approach. Sections 4 and 5 contain several numerical
examples that visualise two different effects of plastic flow incompatibility on the material
behaviour that come from the gradient-dependence of the condition for plastic flow and
incremental hardening law. In section 4, 1D examples of plastic simple shear of a two-phase
laminate and shearing of a constrained strip are analyzed, and numerical results are compared
to analytical ones. In section 5 the analysis is extended to 2D finite element examples of
cyclic simple shear of a square single crystal and an idealized polycrystal. Throughout this
paper, the attention is limited to quasi-static isothermal deformation.

2. The microcurl model

2.1. Kinematics

In the small deformation framework adopted in this paper, the spatial displacement gra-
dient, denoted interchangeably as ∇u ≡ u ⊗ ∇, is split additively into elastic (He) and
plastic (Hp) parts,

H = He +Hp , H = u⊗∇ . (1)
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The second-order tensors H ,He,Hp are generally non-symmetric and can be decomposed
into their symmetric and skew-symmetric parts,

H = ε+ ω , He = εe + ωe , Hp = εp + ωp , (2)

respectively. The rate Ḣp of plastic distortion of a single crystal reads

Ḣp =
∑
α

γ̇αsα ⊗mα =
∑
α

γ̇αNα , (3)

where γ̇α is the slip rate on the α-th slip system defined by slip direction sα and slip-plane
normal mα whose scalar product vanishes to ensure plastic incompressibility, sα ·mα = 0.
As usual, ⊗ stands for a tensor product.

Geometrical incompatibility of a spatial field of Hp (or −He, equivalently) is measured
by its curl, commonly called Nye’s tensor (Nye, 1953), defined here using the following sign
convention

curlHp := εjkl
∂Hp

ik

∂xl
ei ⊗ ej = −curlHe, (4)

where ei denotes an orthonormal basis in Euclidean space R3 and εjkl the permutation symbol,
with the summation convention for repeated indices.

Following the micromorphic approach (Forest, 2009) that extends the original theory by
(Mindlin, 1964; Eringen and Suhubi, 1964), as a counterpart to Hp a micromorphic variable
κp is introduced and treated in the calculations as a global variable corresponding to local
Hp.

2.2. Free energy density

In the microcurl model of crystal plasticity (Cordero et al., 2010), extended to include
local internal variables in analogy to (Steinmann, 1996), (Menzel and Steinmann, 2000)
and (Aslan et al., 2011), the Helmholtz free energy density function per unit volume, ψ,
at a given temperature is assumed to have the four arguments: the elastic strain εe, local
internal variables ξ = (ξα), the relative plastic strain ep := Hp − κp, and Γp as the curl of
micromorphic variable κp. In the computational version of the model used in this paper, ψ
is assumed in the following additive form

ψ(εe, ξ, ep,Γp) = ψe(εe) + ψp(ξ) + ψmicro(ep) + ψcurl(Γp) , (5)

where, using a central dot to denote full contraction of tensors,

ψe(εe) =
1

2
εe ·C εe, εe = ε− εp ,

ψmicro(ep) =
1

2
ep ·Hκe

p, ep = Hp − κp ,

ψcurl(Γp) =
1

2
Γp ·AΓp, Γp := curlκp .

(6)

In the previous functions, the fourth order tensor C is the standard tensor of the elastic
moduli determined by two independent moduli µ, ν in the isotropic case. For the sake of
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simplicity, the additional fourth order tensors Hκ and A are characterized by the generalized
moduli Hκ and A, respectively, assuming Hκ = Hκ 1 and A = A1, where 1 denotes the
fourth-order identity tensor operating on non-symmetric second order tensors.

The choice of a quadratic potential ψcurl is justified by micromechanical analyses like
the consideration of stacked pile–ups in (Baskaran et al., 2010) or direct comparison with
discrete dislocation dynamics in (Chang et al., 2016). Other higher order energy potentials
have been proposed involving the norm of the dislocation density tensor or the logarithm
of the norm (Berdichevsky, 2006; Le and Sembiring, 2008; Forest and Guéninchault, 2013).
However, these potentials are associated with singularities which significantly complicate the
numerical analysis (Wulfinghoff et al., 2015).

There are two possible interpretations of the Hκ material parameter in ψmicro. It can
first be seen as a numerical regularization parameter in order to implement strain gradient
plasticity in a simple way. It should then take sufficiently large values. It can also be
regarded as a true material parameter that requires calibration from appropriate experimental
or numerical data. For instance, Cordero et al. (2012) calibrated values for Hκ so as to
reproduce the Hall-Petch relationship from finite element polycrystal simulations, at least in
a certain range of grain sizes. It involves intermediate values of Hκ that will be explored in
the examples of Section 4.

The term ψp is needed for thermodynamic consistency of the model that includes sta-
tistical storage of dislocations, as it represents mechanically unrecoverable changes in the
residual free energy which do not contribute to isothermal dissipation. Its rate is assumed in
the form

ψ̇p =
∑
α

∂ψp

∂ξα
ξ̇α =

∑
α

pαγ̇α, ξ̇α = ηαγ̇α, (7)

which can be given a physical interpretation but may be left unspecified in the calculations,
see (Ryś and Petryk, 2018) and section 3.1 for more details.

Quantities related to partial derivatives of function ψ are as follows

σ =
∂ψ

∂εe
, pα =

∂ψ

∂ξα
ηα , s = − ∂ψ

∂ep
, M =

∂ψ

∂Γp
, (8)

where σ is the (symmetric) Cauchy stress tensor, pα – internal forces, s – the (non-symmetric)
microstress tensor, M – the generalized couple stress tensor, see section 2.4. The stress σ
and negative microstress −s resolved on the α-th slip system are denoted by

τα := σ ·Nα , xα := −s ·Nα , (9)

where τα is the standard resolved shear stress and xα plays below the role of a kinematic
hardening component (back-stress).

The rate of free energy density ψ is calculated straightforwardly as follows

ψ̇ = σ · ε̇e +
∑
α

pαγ̇α − s · ėp +M · Γ̇p

= σ · ε̇−
∑
α

(ταγ̇α − pαγ̇α)− s · (
∑
α

γ̇αNα − κ̇p) +M · Γ̇p

= σ · ε̇+ s · κ̇p +M · curlκ̇p −
∑
α

(τα − xα − pα)γ̇α .

(10)
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The quantity
πα := τα − xα − pα (11)

that appears in the above expression for ψ̇ may be identified with the thermodynamic driving
force conjugate to γ̇α that results from the assumed form of the free energy density function
ψ.

2.3. Balance equations

We consider a continuous deformable body that in the geometrically linear setting occu-
pies a domain V of boundary ∂V in an Euclidean space R3. The assumed basic kinematic
fields are (Cordero et al., 2010)

{u̇, κ̇p} . (12)

The fields u̇ and κ̇p are assumed to be continuous and sufficiently smooth so that their
gradients along with the divergence theorem have a mathematical sense. Note that the field
of slip rates γ̇α is not treated as a global kinematic variable, due to the fact that the proposed
theory is based on the full dislocation density tensor (curlκp) instead of the individual GND
densities.

When neglecting body and inertia forces, the power density of internal forces in V is
assumed in the following form, consistent with Eq. (10),

pint = σ · ∇u̇ + s · κ̇p +M · curlκ̇p, (13)

and the power density of external contact forces on ∂V as

pext = t · u̇ +m · κ̇p , (14)

where t is the traction vector and m – the double traction tensor. The respective volume
integrals

P int =

∫
V

pintdV, Pext =

∫
∂V

pextdS (15)

are assumed to be equal, by the virtual power equality (Germain, 1973)

P int = Pext (16)

that is assumed to hold for arbitrary fields of u̇ and κ̇p and for every subset Π of V .
The integral P int is transformed with the help of the divergence theorem as follows

P int =

∫
V

(σ · ∇u̇ + s · κ̇p +M · curlκ̇p)dV

= −
∫
V

divσ · u̇dV −
∫
V

(εkjlMik,l − sij)κ̇pijdV

+

∫
∂V

σijnju̇idS +

∫
∂V

Mijεjklnlκ̇
p
ikdS ,

(17)

where n is an external normal to ∂V .
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Since equality (16) is assumed to hold for arbitrary fields of u̇ and κ̇p then, following
(Cordero et al., 2010), we obtain the field equations in V

divσ = 0 , curlM + s = 0 (18)

along with the boundary conditions over ∂V

t = σ · n , m = Mε · n , (19)

where (Mε)ikl = Mijεjkl.

2.4. Dissipation inequality

By the first law of thermodynamics (for isothermal and quasi-static processes) we have

Ḟ + Ḋ = Pext , (20)

where F =
∫
V
ψ dV is the Helmholtz free energy and Ḋ is the dissipation rate which is

non-negative by the second law of thermodynamics. Based on this and using Eq. (16), the
following frequently used local form of dissipation inequality is obtained

pint − ψ̇ ≥ 0 . (21)

On taking the time derivative of Eq. (5) in the form (10) but without making use of Eqs. (8),
it follows that(
σ − ∂ψ

∂εe

)
· ε̇e − ∂ψp

∂ξ
· ξ̇ −

(
s+

∂ψ

∂ep

)
· ėp +

(
M − ∂ψ

∂Γp

)
· Γ̇p + (σ + s) · Ḣp ≥ 0 . (22)

Eqs. (8)1, (8)3 and (8)4 are recovered if the inequality is required to hold identically, by the
usual argument assuming that ε̇e, ėp and Γ̇p are unconstrained. On substituting Eqs. (7) and
(10) into inequality (22), the intrinsic dissipation rate inequality is expressed in the reduced
form

(σ + s) · Ḣp −
∑
α

pαγ̇α =
∑
α

(τα − xα − pα)γ̇α =
∑
α

παγ̇α ≥ 0 . (23)

2.5. An alternative approach

Instead of assuming the form of both internal and external power densities (13) and (14)
in advance, one can calculate the dissipation rate from Eq. (20) without using Eq. (16). In
analogy to (Ryś and Petryk, 2018), for every subdomain Π ⊆ V the external power is taken
in the form

Pext = Pext
0 + Pext

m , Pext
0 =

∫
∂Π

t · u̇ dS, Pext
m =

∫
∂Π

pextm dS, (24)

obtained by replacing the last term in Eq. (14) with a yet unspecified micromorphic extension
pextm of the standard mechanical power of contact tractions. It is the external power expression
which enables classification of continuum theories in a manner separated from constitutive
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assumptions (Del Piero, 2014a,b). On substituting Eqs. (10) and (24) into Eq. (20), the total
dissipation rate in the state of mechanical equlibrium reads

Ḋ = Pext
m +

∫
Π

(∑
α

παγ̇α − s · κ̇p −M · curlκ̇p

)
dV . (25)

By using the divergence theorem to split the total dissipation rate into the bulk and surface
terms, it follows that

Ḋ = Pext
m +

∫
Π

(∑
α

παγ̇α − (sij + εjklMik,l)κ̇
p
ij

)
dV −

∫
∂Π

Mijεjklnlκ̇
p
ikdS . (26)

The last integrand can be of either sign for any given Mijεjklκ̇
p
ik 6= 0 since Π and hence the

direction of an external normal n to boundary ∂Π of Π are arbitrary. This statement for a
point on a short boundary segment ∂Π ∗ can be extended, by employing a known argument,
to the sum of the last two integrals for a sufficiently thin disk Π adjacent to ∂Π ∗ when
κ̇p = 0 on ∂Π \ ∂Π ∗, so that the contribution of the volume integral becomes negligible. To
ensure that Ḋ ≥ 0 for all Π ⊆ V and for every field of κ̇p, the term Pext

m must cancel out the
above surface dissipation term over ∂Π . This is so if

pextm := m · κ̇p and m := Mε · n (27)

which is in agreement with Eq. (19)2 but has been obtained on another route than in (Cordero
et al., 2010).

On substituting Eq. (27) into Eq. (26), we arrive at the following expression for the
dissipation rate

Ḋ =

∫
Π

(∑
α

παγ̇α − (s+ curlM ) · κ̇p

)
dV . (28)

Finally, equality s+curlM = 0 is obtained if an arbitrary field of κ̇p is assumed not to affect
the dissipation rate.

Remark 1. The right-hand equations in Eqs. (18) and (19) have been derived above without
assuming the specific form (13) of the internal power density, and consequently without
the need to appeal to the principle of virtual power (16) once the free energy density rate
has been expressed by Eq. (10). Eqs. (18)2 and (19)2 have been obtained instead by using
thermodynamic arguments: equation m = Mε · n by requiring the surface dissipation term
to be always non-negative (and thus to be cancelled out by the external power term), and
s + curlM = 0 by assuming that the micromorphic variable rate κ̇p is not associated with
the dissipation rate. Hence, these basic equations of the microcurl model (Cordero et al.,
2010) have been recovered on another route.

3. The plastic flow and hardening laws

3.1. The condition for plastic flow

Following Ryś and Petryk (2018), the condition for plastic flow can be derived using the
compatibility of the actual and virtual dissipation rates. They are distinct in general since
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the value of the actual one follows from the entropy imbalance while the virtual one is defined
by a constitutive assumption, cf. (Petryk, 2005). Here, Eq. (23) is treated as an expression
for the actual dissipation rate density. The virtual dissipation rate is defined pointwise by
introducing a dissipation function D of γ̇α, assumed to be independent of κ̇p,

D =
∑
α

πv
αγ̇α ≥ 0 . (29)

To encompass both the rate-independent and rate-dependent dissipation, it is assumed that

πv
α := (τ cα − |pα|)

∣∣∣∣ γ̇αγ̇0
∣∣∣∣m signγ̇α , τ cα ≥ |pα|, m ≥ 0 , (30)

where τ cα is the critical resolved shear stress on the α-th slip system, strain-rate sensitivity
coefficient m > 0 corresponds to rate-dependent dissipation and m = 0 to rate-independent
dissipation, and pα appears in expression (7) for ψ̇p. If ψ̇p describes free energy increase
due to statistical multiplication of dislocations then it is natural to identify ξ̇α with (ρ̇α)S
discussed in the next section. Accordingly,

ξ̇α := (ρ̇α)S =
1

bλα
|γ̇α| ≥ 0 ,

∂ψp

∂ξα
≥ 0 , pα :=

1

bλα

∂ψp

∂ξα
signγ̇α , pαγ̇α = |pα||γ̇α|.

(31)
A field of slip rate γ̇α is called admissible if it satisfies the requirement

Ḋ =

∫
Π

D dV (32)

of compatibility of the actual and virtual dissipation rates, separately for each α and for
every Π ⊆ V . In view of Eqs. (23) and (29), this is equivalent to imposing the pointwise
condition

παγ̇α = πv
αγ̇α , (33)

which on substituting Eq. (11) yields the condition for plastic flow

τα − xα = πv
α + pα if γ̇α 6= 0 . (34)

On using Eqs. (30) and (31)4 , it can be rewritten as follows

τα − xα = τ cα

∣∣∣∣ γ̇αγ̇0
∣∣∣∣m signγ̇α +

(
1−

∣∣∣∣ γ̇αγ̇0
∣∣∣∣m )pα if γ̇α 6= 0 . (35)

In the limit as m → 0, the last term becomes negligible, and the resulting condition for
plastic flow takes the familiar form

τα − xα = τ cα signγ̇α if γ̇α 6= 0 and m = 0 . (36)

Recall that xα is the micromorphic back-stress defined by Eq. (9)2. Eq. (36) is complemented
with the inequality constraint

|τα − xα| ≤ τ cα if γ̇α = 0 and m = 0 . (37)

The evolution equation for τ cα (i.e. the hardening law) is addressed in the next section.
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Remark 2. The rate-independent condition (36) for plastic flow has not been assumed a priori
by analogy to the Schmid law but has been derived using the thermodynamic condition (32) of
compatibility of the actual and virtual dissipation rates under assumption (29). Remarkably,
condition (36) is independent of pα, in analogy to the non-gradient case (Petryk and Kursa,
2015), hence pα may be left unspecified in calculations. On the other hand, pα is needed
in a consistent thermodynamic framework that includes statistical storage of dislocations,
especially if rate-sensitivity is also encompassed.

3.2. The hardening law with slip-rate gradient effect

This section follows closely Petryk and Stupkiewicz (2016), with the distinction that the
role of the effective slip-rate gradient will be played by a norm of the micromorphic variable
curlκ̇p. According to the (generalized) Taylor formula (Taylor, 1934), which is one of the
basic phenomenological laws in the materials science literature on plasticity of metals, an
isotropic flow stress τ c is a function of the total dislocation density ρ,

τ c = τρ(ρ) = aµb
√
ρ , (38)

where coefficient a, elastic shear modulus µ and Burgers vector modulus b are given material
constants. To determine the rate of τ c, the rate ρ̇ (and not ρ itself) is decomposed into the
sum of the average density rate (ρ̇)S of statistically generated dislocations, and the average
density rate (ρ̇)G of dislocations induced by the current slip-rate gradients,

ρ̇ = (ρ̇)S + (ρ̇)G . (39)

It means that in distinction to the approach by Ashby (1970), Fleck et al. (1994), Nix and Gao
(1998) and others, not the existing dislocations themselves but rather their current sources
are split according to their statistical or geometrical character. Hence, a time integral of (ρ̇)G
need not define the current density of existing GNDs (geometrically necessary dislocations).

By adopting the known formula for the rate of statistical accumulation of dislocations
(Kocks and Mecking, 2003) in its simplest form, it is postulated that

(ρ̇)S =
1

bλ
γ̇ =

1

bλ

∑
α

|γ̇α| or (ρ̇α)S =
1

bλα
|γ̇α| , (40)

where λ denotes the dislocation mean free path, specialized as λα for the α-th slip system,
whose inverse is defined as the incremental mean length of dislocation stored per area swept.
Since the analysis in this paper is limited to small plastic strain with respect to an annealed
state, annihilation of dislocations and their transport are not included in formulae (40).
However, the formula (44) below for the internal length scale remains valid also if Eq. (40)1
is extended to include another term that corresponds to dislocation annihilation (Petryk and
Stupkiewicz, 2016).

The geometrically induced dislocation density rate is postulated in another simple form,

(ρ̇)G =
1

b
χ̇, χ̇ = ||curlκ̇p||, (41)

where χ̇ is the effective slip-rate gradient, assumed here to be represented by the Euclidean
norm of a curl of the micromorphic rate-variable κ̇p. In case of cyclic loadings, a time
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integral of χ̇ scaled by b cannot be interpreted as the current GND density, rather, as the non-
decreasing contribution to a total dislocation density coming from the history of incompatible
plastic distortion rate.

Combination of Eqs. (39)÷(41) with the time derivative of formula (38) defines the con-
tribution of χ̇ to the rate of the isotropic flow stress τ c,

τ̇ c =
τ ′ρ
bλ

(γ̇ + λχ̇) , τ ′ρ :=
dτρ(ρ)

dρ
, (42)

that is missing in the conventional incremental hardening law. Consistency with the standard
formula τ̇ c = θγ̇, where θ is the scalar hardening modulus in the non-gradient case, requires
that

τ̇ c = θ(γ̇ + `χ̇) , where ` =
τ ′ρ
bθ

= λ for θ 6= 0 . (43)

If function τρ is specified by the Taylor formula (38)2 then the evolving internal length scale
` is expressed by

` =
a2µ2

2τ cθ
b . (44)

It is pointed out that only the standard quantities of a non-gradient hardening law appear
on the right-hand side of Eq. (44), so that no additional assumption is needed to determine
`. Moreover, ` has a physical interpretation through its direct link to the dislocation mean
free path λ which is a well-known length-scale parameter in the physically-based dislocation
theory of plasticity.

The conventional incremental hardening law can be expressed as follows

τ̇ cα =
∑
β

hαβ|γ̇β| = τ̇ c +
∑
β

(hαβ − θδαβ)|γ̇β| if χ̇ = 0. (45)

Assuming that only the isotropic part τ̇ c is influenced by nonzero χ̇ and substituting Eq. (43),
the gradient-enhanced anisotropic hardening law is obtained

τ̇ cα =
∑
β

hαβ|γ̇β|+ θ`χ̇︸︷︷︸
P-S term

=
∑
β

hαβ|γ̇β|+
a2µ2b

2τ c
χ̇︸ ︷︷ ︸

P-S term

. (46)

The last term that includes a ‘natural’ length scale ` defined by Eq. (44) will be referred to as
’P-S term’ (Petryk and Stupkiewicz, 2016). It provides a ‘minimal’ gradient-enhancement of
the incremental hardening law as a consequence of Eqs. (38)-(41). Note that the coefficient
θ` at χ̇ varies in time inversely proportional to τ c.

Hardening moduli hαβ are frequently taken in the form

hαβ = (καβ + q(1− καβ))θβ , (47)

with

καβ =

{
1 if mα ×mβ = 0,

0 otherwise .
(48)
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Here, q is a latent hardening parameter, and θα is a self-hardening parameter for the α-th
slip system, defined by (Anand and Kothari, 1996)

θα =

θ0
(

1− τ cα
τmax

)p
for τ cα ≤ τmax ,

0 for τ cα > τmax ,
(49)

where θ0, τmax and p are constant parameters, the same for all slip systems. For isotropic
counterparts θ and τ c the index α is omitted, so that

θ = θτ (τ
c) =

θ0
(

1− τ c

τmax

)p
for τ c ≤ τmax ,

0 for τ c > τmax .
(50)

4. Numerical and analytical 1D examples

4.1. Shearing of a strip

In the following section we consider two typical examples of shearing of a strip. The first
example concerns plastic simple shear of a single crystal with the slip direction and slip plane
normal collinear with global x-y ⇔ 1-2 coordinate system as in (Cordero et al., 2010) and
(Aslan et al., 2011). The second example addresses shearing of a constrained strip with two
symmetric slip systems as in Stupkiewicz and Petryk (2016). The sketches of the problems
under consideration are shown in Fig. 1. In the following 1D examples, 500 elements of a
regular mesh and quadratic shape functions for both fields are used.

(a) (b)

Figure 1: Schematic of the shearing problem: (a) shearing of a periodic single-slip single crystal composed
of soft (s) and hard (h) phases, and (b) shearing of a double-slip single crystal.

4.1.1. Single slip

In the first example the strip consists of soft phase (s) in the middle and hard phase (h)
on both sides imitating hard elastic inclusions which form obstacles to dislocation movement
(Fig. 1a). Such a two-phase laminate is subjected to plastic simple shear γ(x) by applying
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a mean shear strain γ̄ in the x direction. The periodic boundary condition along x-axis
is imposed on the displacement u2 in y direction and microdeformation κp. We consider
displacement and microdeformation fields of the form:

u1 = γ̄y , u2(x) , u3 = 0 , κp12(x) , κp21(x) . (51)

For so-defined problem there is only one resolved shear stress τ = σ12 = µ(γ̄ − γ + u2,x),
one component of the generalized couple stress tensor M13 = −Aκp12,x and two components
of the microstress tensor s12 = −Hκ(γ − κp12) and s21 = Hκκ

p
21. However, from the balance

equation s = −curlM = −A curl (curlκp), we obtain

κp21 = 0 , γ − κp12 = −`2micκ
p
12,xx , where `mic :=

√
A

Hκ

(52)

and thus s21 = 0. Hence, the plastic flow criterion is obtained in the following form

|τ + s12| = |τ + Aκp12,xx| = τ c . (53)

So far the analysis coincides with that in (Cordero et al., 2010) and (Aslan et al., 2011).
Now, we extend it by including the P-S term as in Eq. (46), which in the single slip case
reads

τ̇ c = θ|γ̇|+ θ`χ̇ , θ` =
a2µ2b

2τ c
, (54)

χ̇ = ||curlκ̇p|| = |κ̇p12,x| . (55)

From the above equations, it is clear that size effects in the current model stem from two
internal length scales `mic and `, where the former is related to curl(curlκp) and the latter
to curlκ̇p. An analytical solution of the above problem, in the case when the P-S term is
absent (` = 0) and for linear hardening (p = 0 in Eq. 49), was derived in Aslan et al. (2011).
The main equations of the analytical solution are provided in Appendix A. If the P-S term
is included then the rate equation resulting from Eq. (53) involves a variable coefficient θ`
that varies both in time and space. The authors have not found a way to solve that equation
analytically.

In the analysis it is assumed that soft (s) and hard (h) phases have different parameters
Hκ and A specified by the corresponding superscripts. The 1D results, shown below, are
calculated for l = 1µm and the soft phase fraction fs = 0.7. Importantly, the value of
penalty parameter Hκ was taken such that profiles of microdeformation variable κp12 and
plastic slip γ nearly coincide in the soft phase.

In Fig. 2, analytical and numerical results are presented for the plastic microdeformation
variable κp12 for different values of As = 0.05, 1, 50 GPa·µm2 (i.e. millinewtons) and the same
value of Hκ = 500 GPa (thus in the soft phase `mic = 0.01, 0.045, 0.32µm), while the other
parameters were fixed and are given in Table 1 (with annotation a). The results computed
without the P-S term coincide with the analytical results of Aslan et al. (2011). For smaller
values of parameter As the parabolic profile of microdeformation is observed while for larger
values the profile is almost flat in the soft phase. This is related to the dislocation pile-up
at the interfaces. In the case of small difference in the material paramater A in two phases
(As ≈ Ah) the GNDs pile up at the interfaces but they can also be smoothly distributed within
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the soft phase. On the other hand, when increasing the difference between the parameters
(but keeping As > Ah), GNDs tends to concentrate in the close vicinity of the interfaces.
Including P-S term in the model increases the maximum value of microdeformation variable
in the soft phase. This is more noticeable for smaller values of As (Fig. 2b).

Table 1: Material parameters

Elastic shear modulus µ 35a or 40.3b GPa
Poisson’s ratio ν 0.3 -
Constant hardening rate θ0 5000a or 180b MPa
Initial slip resistance τ0 40a or 16b MPa
Burgers vector magnitude b 0.256 nm
Coefficient in Taylor’s formula a 0.33 -
Coupling modulus Hκ case study GPa
Gradient modulus in the soft phase As case study GPa·µm2

Gradient modulus in the hard phase Ah 0.05 or 0.0005 GPa·µm2

a after Aslan et al. (2011)
b after Ryś and Petryk (2018)
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Figure 2: (a) Profiles of plastic microdeformation κp at 0.002 overall plastic strain obtained for Hκ=500 GPa
and the set of material parameters given in Table 1 (with annotation a), and (1) for the same value of the
moduli, Ah = As = 0.05 GPa·µm2, (2) with a smaller difference, Ah = 0.05 GPa·µm2 and As = 1 GPa·µm2,
and (3) with a bigger difference Ah = 0.05 GPa·µm2 and As = 50 GPa·µm2. (b) The value of κp at x = 0 as
a function of the parameter As.

The effect of the P-S term (Eq. (46)) depends on the evolving length scale, `, which is
not adjustable as it is uniquely expressed through standard parameters of a non-gradient
hardening law. However, the relative strength of this effect depends on the strip size l and
is also influenced by other parameters, cf. (Stupkiewicz and Petryk, 2016) and (Ryś and
Petryk, 2018). For this reason, for some range of parameters values, the P-S term may play
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a significant role in the model or not. In the above results, the hardening parameter θ0 is
quite large and despite the difference in microdeformation profiles that are noticable, the
differences in stress-strain plots, which are not shown here, are negligible. To show how the
P-S term affects the stress-stain response we compute the same example but with parameters
taken from (Ryś and Petryk, 2018) (Table 1 with annotation b).

In Fig. 3a the macroscopic stress Σ12|γ=0.05 at 0.05 average plastic strain as a function of
the length l of the two-phase microstructure is presented in a log-log diagram. The following
results are for a constant value of As = 0.05 GPa·µm2 (Ah = As/100) and different values of
coupling modulus Hκ = 1, 10 and 100 GPa. Analytical results are compared with numerical
ones in the case where P-S term was not included, i.e. `χ̇ = 0, and perfect coincidence was
obtained. In the case where P-S term was included in the model, a significant increase in
macroscopic stress is observed for the range of l values between 0.1 and 100µm, with the
maximal difference for l ≈ 2µm (Fig. 4a). It should be noted, however, that the range and
significance of the effect of P-S term may change with the value of As (Fig. 4b). On the
other hand, the difference (γ − κ12) is sensitive to the value of Hκ at small l.

The influence of P-S term on the maximum value of microdeformation κp12, which is in
the middle of the structure, has been shown in Fig. 3b. The maximum values are not only
higher when P-S term is included but also shifted to the range of higher values of l (Fig. 4a).
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Figure 3: (a) Macroscopic stress Σ12|γ=0.05 at 0.05 average plastic shear strain as a function of the microstruc-

ture length scale l, computed for Hκ = 1, 10 and 100 GPa and As = 0.05 GPa·µm2 (Ah = As/100), (b) values
of micromorphic variable κp

12 at the center (x = 0) of the two-phase laminate.
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Figure 4: Relative difference Σ12(with PS)−Σ12(no PS)

Σ12(no PS)
in macroscopic stress at 0.05 average plastic strain in the

cases when the P-S term is included or disregarded for (a) various Hκ and fixed As = 0.05 GPa·µm2, and
(b) various values of As and fixed Hκ = 100 GPa.

4.1.2. Double slip

In the second 1D example we consider monotonic shear of a constrained strip of thickness
H as shown in Fig. 1b. For this problem, a semi-analytical solution has been derived by
Stupkiewicz and Petryk (2016) by using the ’minimal gradient-enhancement’ of the classical
model, i.e. when in the present formulation the terms ψmicro and ψcurl in the Helmholtz free
energy are not included. Then there is no length-scale effect related to the second gradient
of plastic slip, but there is another length-scale effect due to the first gradient of plastic slip
rate, accounted for in the P-S term. The ’minimal’ gradient-enhanced model was originally
formulated within the classical continuum theory, in which no additional actions except the
standard ones are included in the external power. In (Stupkiewicz and Petryk, 2016) it was
also indicated that it required some regularization in order to obtain numerical solutions ef-
fectively, and non-local slip-rates were introduced as additional global unknowns that average
and smoothen the local slip-rates. An averaging equation inspired by the so-called implicit-
gradient model was used, which in 1D case is basically analogical to Eq. (52)2 but with an
element scale parameter lh rather than `mic =

√
A/Hκ. Such an algorithmic approach was

also used more recently in (Lewandowski and Stupkiewicz, 2018), where in certain circum-
stances oscillations in numerical solutions for the wedge indentation problem were reported.
Similarly, spurious oscillations can occur when the so-called dual-mixed method is used and
the regularization is insufficient in vicinity of a kink in the analytical solution (Ryś and
Petryk, 2018). Since the P-S term may have a crucial impact on predicting correctly the
experimentally observed indentation size effect at the micron scale (Stupkiewicz and Petryk,
2016), it is of interest to check whether a micromorphic model can be more suitable for reg-
ularization purposes. It can be expected that the smaller the value of `mic (while keeping Hκ

sufficiently high) the closer the solution to the semi-analytical one obtained in Petryk and
Stupkiewicz (2016).

In this example, the strip with two symmetric slip planes (α = 1, 2), of the orientation
specified by φ = π/3, is subjected to shearing in plane strain conditions (Fig. 1b). Plastic
slips are constrained at the boundaries by applying κp = 0 at y = 0 and y = H. Only
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isotropic hardening is considered here, thus q = 1, so that hαβ = θ1 = θ2 = θ (with p = 1
and τmax = 148 MPa), cf. Eqs. (47) and (49). Symmetry implies γ1 = γ2 and τ1 = τ2 which
are both negative for σxy > 0 and φ = π/3. Denoting τ = τ1 = τ2, we obtain

τ = σxy cos 2φ , where σxy = µ(ux,y − 2γ1 cos(2φ)) . (56)

There is one non-zero component of the generalized couple stress tensor M23 = Aκp21,y and
two components of the microstress tensor s12 = −Hκ(H

p
12 − κ

p
12) and s21 = −Hκ(H

p
21 − κ

p
21).

The balance equation s = −curlM results in

Hp
12 − κ

p
12 = 0 , Hκ(H

p
21 − κ

p
21) = −Aκp21,yy . (57)

Since Hp
12 = κp12, the component s12 does not appear in the flow condition. Note also that

κp12 does not contribute to the dislocation density tensor. The plastic flow criterion takes the
form

|σ21 cos(2φ)− s21 sin2(φ)| = |σ21 cos(2φ)− Aκp21,yy sin2(φ)| = τ c , (58)

where

τ̇ c1 = τ̇ c2 = τ̇ c = θ(γ̇ + `χ̇) , γ̇ = |γ̇1|+ |γ̇2| , θ` =
a2µ2b

2τ c
, χ̇ = |κ̇p21,y| . (59)

In the calculations of this example, the penalty parameter Hκ = 1000 GPa is adopted
which has been found sufficiently high for the fields of Hp

21 and κp21 to be practically coincident.
The value of parameter A = 0.1 GPa·µm2 has been taken small so that the influence of
the microstress s21 be small, but on the other hand, A cannot be too small to provide
the required numerical regularization. Other parameters are as in Table 1, annotation b.
Comparison of the analytical and numerical results is presented in Fig. 5, where solid lines
correspond to analytical results for A = 0 while dashed lines represent numerical results. In
Fig. 5a the overall response it terms of the normalized shear stress, σ̄xy = σxy/σxy,0 (with
σxy,0 = | cos 2φ|τ0) versus the overall shear strain is plotted, and in Fig. 5b the shear strain
profiles, γxy(y) at the overall shear strain 〈γxy〉 = 0.05, are shown for different values of strip
thickness H. The size effect, driven almost solely by the length scale `, is clearly visible
in both figures. The kink in γxy profiles, resulting from the analytical solution for γ, is
more noticable for the smaller strip thickness. The kink in γ1 solution results in the jump
in γ1,y. In Figs. 5b and 6 it can be seen that the kink as well as the jump were properly
smoothed by the finite element solution. Importantly, a better agreement between numerical
and experimental results has been obtained than in the previous work where the dual-mixed
method was used (Ryś and Petryk, 2018). In particular, no oscillations were observed on γ1,y
and γ1,yy profiles, neither for local variable γ1 nor for its global counterpart κp21/(2 sin2 φ). It
can be concluded that the micromorphic approach provides a better reqularization technique
in this particular case. However, it is worth mentioning that if a linear shape function for
κp21 was used instead of the quadratic one then some oscillations occurred in vicinity of the
kink.
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Figure 5: Comparison of the semi-analytical solution of Stupkiewicz and Petryk (2016) (solid lines) with
the present FE solution for A = 0.1 GPa·µm2 and Hκ = 1000 GPa (broken lines): (a) overall stress-strain
response, (b) shear strain profiles for overall shear strain 〈γxy〉 = 0.05.
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Figure 6: Profiles of the (a) first and (b) second gradient of (local) plastic slip γ1 , and global counterparts
κp

21,y/(2 sin2 φ) and κp
21,yy/(2 sin2 φ).
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5. Numerical 2D examples

In this section, we consider shearing of a square under plane strain conditions. First, a
single crystal is considered and then a square composed of four differently oriented grains.
In both cases, each grain deforms plastically on two slip systems rotated relative to each
other by an angle 2φ = 2π/3. In the first case the systems are oriented symmetrically to
the direction of shear (Fig. 7a), and in the second case, the slip system pairs are rotated
relative to each other as shown in Fig. 7b. In the single crystal, displacement in the vertical
direction is forbidden at all nodes on the external edges of the square, and zero displacement
in the horizontal direction is also prescribed on the bottom edge, while uniform horizontal
displacement is prescribed on the upper edge. Plastic slips are indirectly constrained by
κp = 0 at the external edges of the single crystal. In the case of the square with four grains,
periodic boundary conditions for the displacement and micromorphic variable κp are imposed
over the external boundary, the shear is enforced at the corner points, while on the grain
interfaces continuity of fields u and κp

12 is assumed (cf. Sec. 5.3). The mesh of a crystal
or grain is built with 100×100 regular square finite elements with 9 Gauss points in each
element, and quadratic shape functions are used for both fields. The computations have
been carried out using the AceFEM package.

(a) (b)

Figure 7: Schematic of shearing of a square element of dimension H: (a) single crystal and (b) idealized
polycrystal.

The material parameters used here, listed in the Table 2, correspond to properties of Cu
single crystals and are taken partially from (Anand and Kothari, 1996; Sauzay and Kubin,
2011; Stupkiewicz and Petryk, 2016) following (Ryś and Petryk, 2018). For material param-
eters as in Table 2 and p = 1, the internal length scale ` decreases from an initial value of
8.8µm to a minimum value of 3.4µm as τ c increases from τ0 to 1

2
τmax, and then ` starts to

increase. The rate-dependent version of the model is used, specified by Eq. (30) with pα = 0.
The adopted value of parameter A corresponds to an energetic length scale Len = 0.2µm,
see below.
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Table 2: Material parameters for a Cu single crystal

Elastic shear modulus µ 40.3 GPa
Poisson’s ratio ν 0.3 -
Initial hardening rate θ0 180 MPa
Initial slip resistance τ0 16 MPa
Saturation of slip resistance τmax 148 MPa
Hardening exponent p 0, 1 or 2 -
Ratio of latent-hardening to self-hardening q 1.4 -
Burgers vector magnitude b 0.256 nm
Coefficient in Taylor’s formula a 0.33 -
Rate sensitivity parameter m 0.02 -
Reference slip rate γ̇0 10−3 s−1

Coupling modulus Hκ 100 GPa
Gradient modulus A 0.288 GPa·µm2

5.1. Comparison of energy functions of different GND measures

In this section, we compare numerical results for two free energy density functions in
which different GND measures are used. The present model with the energy function as in
Eq. (6) is compared with the gradient plasticity model with the following form of the free
energy part dependent on GND densities ρGα (Bargmann et al., 2014),

ψd =
1

2
h0b

2L2
en

∑
α,β

(καβ + ιαβ)ρGαρ
G
β , ρGα =

1

b
sα · ∇γα . (60)

Coupling between slip systems is represented by the sum of the coplanarity moduli καβ,
Eq. (48), and interaction moduli ιαβ defined via (Gurtin and Reddy, 2014)

ιαβ = |sα · sβ||mα ×mβ| . (61)

In the present model, in the limit case as κp →Hp, the defect free energy can be written
as

ψcurl(Γ) =
1

2
Γ ·AΓ, Γ := curlHp . (62)

The curl of the tensor Hp, with the sign convention as in Eq. (4), can be rewritten in the
form

curlHp =
∑
α

sα ⊗ (mα ×∇γα)

=
∑
α

((sα · ∇γα)sα ⊗ lα − (lα · ∇γα)sα ⊗ sα) , lα = mα × sα .
(63)

In the case of 2D numerical simulations it is sufficient to consider only edge dislocations, thus
the second term in the above sum vanishes. Taking A = A1 and substituting Eq. (60)2, we
obtain

ψcurl(Γ) =
1

2
Ab2

∑
α,β

ρGαρ
G
β (sα ⊗ lα) · (sβ ⊗ lβ) . (64)
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In the case of two symmetric slip systems which are specified by φ = π/3, full contraction of
the last two terms in the above equation gives 1 for α = β and −0.5 for α 6= β, thus in this
particular case, the free energy becomes

ψcurl(Γ) =
1

2
Ab2

∑
α,β

(δαβ + ςαβ) ρGαρ
G
β , (65)

where δαβ is the Kronecker delta and ςαβ = 0 for α = β and ςαβ = −0.5 for α 6= β. Taking
that A = h0L

2
en and noting that καβ = δαβ in the present case, the two energies (60) and (62)

differ only by the non-diagonal coefficients ςαβ and ιαβ of GND interaction between different
systems, where ιαβ = 0.43 for α 6= β and 0 otherwise. In particular, taking h0 = µ

8(1−ν) after

(Evers et al., 2004) and Len = 0.2µm, the value A = 0.288 GPa·µm2 given in Table 2 is
obtained. A more general analysis regarding differences between various forms of the defect
energy was presented in Mesarovic et al. (2015).

In the example below, the square of side length H = 10µm is subjected to cyclic shear by
prescribed displacement u = ±H/10 on the upper edge. The rate dependent model was used
with rate sensitivity parameter m = 0.02, hardening parameters p = 2, q = 1.4 and others
parameters listed in Table 2. In Fig. 8, the overall shear stress vs overall shear strain for the
two types of defect free energies are plotted. Differences between the results are very small
due to the relatively small value of Len = 0.2µm; it has been checked that for Len = 0.7µm
the differences are no longer negligible. Distributions of the plastic slips, |γα|, and effective
plastic slip, γ =

∫
t

∑
α |γ̇α|dt, are presented in Fig. 9. The fields of components of curlκp as

measures of the geometrically necessary dislocation density are presented in Fig. 10. Plastic
slips and GND distributions are qualitatively and quantitatively similar to those given in
(Ryś and Petryk, 2018). The distribution of the GND measures, however, is smoother and
more regular in comparison to the previous results, which confirms the advantages of the
micrcromorphic approach in regularizing the numerical problem solved.

(dashed lines) current model

(solid lines) Rys and Petryk, 2018

H=10μm
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Figure 8: Comparison of the overall stress - overall strain plots for two energy functions of different GND
measures for cyclic shear of a square element, H = 10µm, A = h0L

2
en = 0.288 GPa·µm2. Inner red plots

refer to the case when P-S term is disregarded.
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Figure 9: Distribution of slips for H = 10µm, final 〈γxy〉 = 0.1.

Figure 10: Distribution of the components and norm of curlκp as the GND density tensor, in µm−1, for
H = 10µm, final 〈γxy〉 = 0.1.

5.2. Effect of the P-S term and the material sample size

In the present work, the GND density tensor affects the material response in two ways,
through Γp in the free energy function and through the P-S term in the hardening law.
If pα = 0 then the P-S term is dissipative in nature, leading to the increase of critical
thermodynamic forces due to newly created GNDs whose density rate is proportional to the
rate of plastic incompatibility tensor. For illustration, two examples of shearing of a square
of side length H = 10 and 1µm are presented for a cycle up to the final overall shear strain
of a small value 〈γxy〉 = 0.01. Here, linear hardening is assumed with p = 0 and q = 1.4; the
remaining parameters are listed in Table 2.

In Fig. 11, overall shear stress vs overall shear strain is plotted for the two side lengths of
the square. In both cases isotropic hardening is influenced by the P-S term, more significantly
for smaller H as expected. On the other hand, the non-local back-stress effect due to the
adopted free energy form is also clearly visible. Final distributions of plastic slips |γα| and
of the effective slip γ =

∫
t

∑
α |γ̇α|dt are presented in Figs. 12-15. The maximum values of

plastic slips and effective slip are higher for the model with the P-S term included, but in
the case of H = 1µm the difference is much smaller.

Distributions of the components of the dislocation density tensor and its norm are pre-
sented in Fig. 16-19. Maximum values of GNDs are lower when the P-S term is included and
the distributions are smoothed, i.e. the concentration of GNDs near the boundary is less
significant.
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H=10 m, P-S term included

H=10 m, P-S term disregarded

H=1 m, P-S term included

H=1 m, P-S term disregarded
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Figure 11: The effect of the P-S term and sample size on the plot of overall shear stress vs overall shear
strain in cyclic deformation.

Figure 12: Distribution of slips for H = 10µm, 〈γxy〉 = 0.01, P-S term included.

Figure 13: Distribution of slips for H = 10µm, 〈γxy〉 = 0.01, P-S term disregarded.
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Figure 14: Distribution of slips for H = 1µm, 〈γxy〉 = 0.01, P-S term included.

Figure 15: Distribution of slips for H = 1µm, 〈γxy〉 = 0.01, P-S term disregarded.

Figure 16: Distribution of the components and norm of curlκp as the GND density tensor, in µm−1, for
H = 10µm, 〈γxy〉 = 0.01, P-S term included.

Figure 17: Distribution of the components and norm of curlκp as the GND density tensor, in µm−1, for
H = 10µm, 〈γxy〉 = 0.01, P-S term disregarded.
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Figure 18: Distribution of the components and norm of curlκp as the GND density tensor, in µm−1, for
H = 1µm, 〈γxy〉 = 0.01, P-S term included.

Figure 19: Distribution of the components and norm of curlκp as the GND density tensor, in µm−1, for
H = 1µm, 〈γxy〉 = 0.01, P-S term disregarded.

5.3. Idealized polycrystal

The last example is devoted to the analysis of a square composed of four grains with the
same set of two slip systems but rotated in each grain as shown in Fig. 7b. Periodic boundary
conditions for the displacement and micromorphic variable are applied. Importantly, we
do not use any additional conditions on grain interfaces. The interfacial conditions arise
from the balance equations for continuous and piecewise smooth fields u, κp and related
simple and double tractions t and m, i.e. any jumps of these fields across grain interfaces
are excluded, cf. (Cordero et al., 2012). This might be a shortcoming since physically
motivated interfacial conditions have been discussed in the literature and introduced in the
micromorphic framework in the form of interface yield conditions by (Wulfinghoff et al., 2013;
Alipour et al., 2019). However, in this work our aim is to analyze the influence of the P-S
term on plastic slip distribution and the GND pile up within the volume, and not on the
dislocation movement across a grain interface.

The parameters are as in the preceding section. The overall shear stress vs overall shear
strain for the square H = 20µm is shown in Fig. 20. Similarly as previously, isotropic
hardening that is significantly influenced by the P-S term and non-local back-stress effects
are clearly visible. Differences in distributions of the plastic slips |γα| and the effective slip
γ =

∫
t

∑
α |γ̇α|dt in the two cases considered are presented in Figs. 20 and 21. Again, the

maximum values of plastic slips and the effective slip are higher for the model with included
P-S term. The use of P-S term also results in more pronounced accumulation of the plastic
slips in the middle of grains. Distributions of the components of the dislocation density
tensor and its norm are presented in Figs. 23 and 24. Interestingly, contrary to the single
crystal examples, the maximum values of GNDs are higher and their concentrations are more
localized when the P-S term is included.
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P-S term included

P-S term disregarded
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Figure 20: Overall shear stress - overall shear strain plots for the idealized polycrystal.

Figure 21: Distribution of slips for H = 20µm, P-S term included.

Figure 22: Distribution of slips for H = 20µm, P-S term disregarded.
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Figure 23: Distribution of the components and norm of curlκp as the GND density tensor, in µm−1, for
H = 20µm, P-S term included.

Figure 24: Distribution of the components and norm of curlκp as the GND density tensor, in µm−1, for
H = 20µm, P-S term disregarded.

6. Conclusion

A new version of the micromorphic model of crystal plasticity has been developed by com-
bining the microcurl model (Cordero et al., 2010) with the minimal gradient-enhancement
of the hardening law (Petryk and Stupkiewicz, 2016). The combination was not entirely
straightforward because both component models required appropriate adjustments to achieve
intrinsic consistency of the compound model. Among the modifications introduced, the con-
dition for plastic flow has been derived, following Ryś and Petryk (2018), using the assumed
compatibility of actual and virtual dissipation rates, and the effective slip-rate gradient in
the enhanced hardening law has been identified here with the curl of the micromorphic rate-
variable.

In result, the curl of the microdeformation tensor as a basic constitutive variable has
entered the computational model in two complementary ways. First, it is an argument of the
free energy density function, and its curl projected on a slip system defines the back-stress
in the condition for plastic flow. Second, its rate enters the expression for the rate of critical
resolved shear stresses, accompanied by a natural length scale ` whose value is evolving in a
manner uniquely defined by standard parameters of a non-gradient hardening law. In general,
the material behaviour is affected by plastic flow non-uniformity in both ways, although not
necessarily to a similar extent.

It has been shown by the analysed examples in which circumstances either one or another
effect of the curl of the microdeformation tensor can be predominant. Since the internal
length scale ` in the hardening law is not adjustable, the freely adopted values of the energetic
length scale `mic and characteristic dimension l of the material sample can decide which effect
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is more substantial, although other material parameters also influence the results. More
specific conclusions have been formulated in the preceding sections.

If all other parameters are fixed then by taking a sufficiently small value of the energy
parameter A, which is proportional to the square of the length scale `mic, the micromorphic
approach can serve as a computational regularization tool. Its effectiveness for regulariza-
tion purposes has been confirmed in the present paper, for instance, by eliminating spurious
numerical oscillations which were present in certain solutions obtained using other regular-
ization methods. Therefore, the micromorphic regularization with A small enough and Hκ

high enough is well suited for exploring predictive capabilities of the numerical modelling
based on the minimal gradient-enhancement of the hardening law in estimating size effects in
crystal plasticity at the micron scale. Dependence of hardness on the normalized penetration
depth in the 3D spherical indentation problem provides a good example of such capabilities
(Stupkiewicz and Petryk, 2016). The progress in experimental measurements of GND den-
sity fields (Dahlberg et al., 2014; Sarac et al., 2016) offers other possibilities of validating the
model, cf. (Lewandowski and Stupkiewicz, 2018).

The proposed model has been presented and applied within the small strain framework.
Extension of the approach to finite deformations is possible along the lines developed for
strain gradient plasticity in (Gurtin, 2006; Kaiser and Menzel, 2019) and micromorphic crystal
plasticity in (Aslan et al., 2011; Forest, 2016; Ling et al., 2018; Alipour et al., 2019).

Acknowledgement. This work by MR and HP has been partially supported by the National
Science Center (NCN) in Poland through Grant No. 2015/17/B/ST8/03242.

Appendix A. Analytical solution

An analytical solution of Eq. (52) for κp profile, in the soft and hard phases, was derived
in Aslan et al. (2011). Because of some misprints in the original work we provide here the
main equations.

The solution for κp in the soft and hard phases, respectively, is as follows

κ
p(s)
12 = Cscosh(ωsx) +D , with ωs =

√
Hs
κH

As(Hs
κ +H)

, (A.1)

κ
p(h)
12 = Chcosh

(
ωh

(
x± s+ h

2

))
, with ωh =

√
Hh
κ

Ah
. (A.2)

The integration constants Cs, D and Ch are derived using continuity at the interface and
periodicity conditions

D = 〈γ〉

fs +

(
2

Hs
κl
− 2

Asl(ωs)2

)coth
(
ωs fsl

2

)
Asωs

+
coth

(
ωh (1−fs)l

2

)
Ahωh

−1

−1

(A.3)

Cs = −〈γ〉

Asωs sinh

(
ωsfsl

2

)fs
coth

(
ωs fsl

2

)
Asωs

+
coth

(
ωh (1−fs)l

2

)
Ahωh

+

(
2

Hs
κl
− 2

As(ωs)2l

)−1
(A.4)
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Ch = 〈γ〉

Ahωh sinh

(
ωh (1− fs)l

2

)fs
coth

(
ωs fsl

2

)
Asωs

+
coth

(
ωh (1−fs)l

2

)
Ahωh

+

(
2

Hs
κl
− 2

As(ωs)2l

)−1 ,
(A.5)

where the average plastic slip is expressed in the following way

〈γ〉 =

〈
κp,s12 −

As

Hs
κ

κp,s12,11

〉
=

(
2Cs

ωsl
− 2AsωsCs

Hs
κl

)
sinh

(
ωsfsl

2

)
+ fsD . (A.6)

Finally the solution for macroscopic stress takes the form:

Σ12 = τ c +HD , (A.7)

where constants τ c and H are denoted in the present paper by τ0 and θ0, respectively.
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Highlights 

 Micromorphic approach to gradient plasticity of single crystals is developed. 

 Interaction of two distinct effects of plastic flow nonuniformity is examined. 

 The full dislocation density tensor is approximated by a micromorphic variable. 

 Its curl projected on a slip-system defines an energetic back-stress. 

 Curl of the rate of micromorphic variable affects the incremental hardening law.  
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