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AN ASYMPTOTIC PRESERVING SCHEME FOR CAPTURING
CONCENTRATIONS IN AGE-STRUCTURED MODELS ARISING IN

ADAPTIVE DYNAMICS∗

LUIS ALMEIDA† , BENOIT PERTHAME† , AND XINRAN RUAN†

Abstract. We propose an asymptotic preserving (A-P) scheme for a population model struc-
tured by age and a phenotypical trait with or without mutation. As proved in [24], Dirac concen-
trations on particular phenotypical traits appear in the case without mutation, which makes the
numerical resolution of the problem challenging. Inspired by its asymptotic behaviour, we apply a
proper WKB representation of the solution to derive an A-P scheme, with which we can accurately
capture the concentrations on a coarse, ε-independent mesh. The scheme is thoroughly analysed and
important properties, including the A-P property, are rigorously proved. Furthermore, we observe
nearly spectral accuracy in time in our numerical simulations. Next, we generalize the A-P scheme to
the case with mutation, where a nonlinear Hamilton-Jacobi equation will be involved in the limiting
model as ε → 0. It can be formally shown that the generalized scheme is A-P as well, and numerical
experiments indicate that we can still accurately resolve the problem on a coarse, ε-independent
mesh in the phenotype space.

Key words. asymptotic preserving, Dirac concentration, age-structured population dynamics,
phenotype, renewal equation, Hamilton-Jacobi equation, finite difference method
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1. Introduction. To describe the evolution of a phenotypical trait x in an age
structured population model, a generic equation is

(1.1)


ε∂tnε + ∂anε + d(a, x)nε = 0,

nε(t, a = 0, x) =(1−m)

∫ ∞
0

b(a, x)nε da

+
m

ε

∫ ∞
0

∫ ∞
0

b(a, y)M

(
x− y
ε

)
nε(t, a, y)dady,

for t ≥ 0, a ≥ 0 and x ≥ 0 and where n(t, a, x) is the population density of individuals
with age a and a phenotypical trait x at time t. The parameter 0 ≤ m ≤ 1 represents
the proportion of birth with mutations and the rate of change from the initial trait
y to the inherited trait x is described by the probability density function 1

εM(x−yε ).
Here, 0 < ε� 1 measures the effect of mutations on the phenotype.

We assume that M is a smooth probability density and that both the birth rate
function b(a, x) and the death rate function d(a, x) are non-negative. Ageing, leads to
assume that b(a, x) is uniformly compactly supported in a and that there is a smallest
value a∗ > 0 such that

(1.2) b(a, x) = 0, ∀a ≥ a∗, ∀x ≥ 0.

When the birth rate b(a, x) is large enough, the population will grow exponen-
tially. To better show the natural selection with the model, it is preferable to study
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the normalized population ñε(t, a, x) defined as

(1.3) ñε(t, a, x) :=
nε(t, a, x)

ρε(t)
, ρε(t) =

∫ ∞
0

∫ ∞
0

nε(t, a, x) dadx.

Then, one can expect that the fittest trait is selected which is expressed in terms of
concentration of the population density at some moving point x̄(t), with a profile N ,
namely

(1.4) ñε(t, a, x)→ δ(x− x̄(t))N(a, x̄(t)) as ε→ 0+,

assuming the population is monomorphic.
Because of this singular behaviour, the direct simulation of equation (1.1) requires

expensive methods with an extremely fine mesh to capture the Dirac mass. Here,
based on the asymptotics developed in [24], we propose a new numerical strategy
which is Asymptotic Preserving, i.e., able to capture the singular limit ε→ 0 without
refining the mesh.

Our purpose is to use the representation of solutions as a ‘smooth’ part multiplied
by a singular part given by the solution of a Hamilton-Jacobi equation in order to
compute accurately the concentration effect, as illustrated in (1.4), with a coarse grid
which does not require any refining in order to be able to follow the Dirac mass.
This question also appears in other types of asymptotic problems arising in kinetic
equations, see [16].

This type of concentration is associated to the selection process of adaptive popu-
lation dynamics. In this setting, x̄(t) represents the adaptive dynamics of a population
which at the beginning is concentrated at a trait x̄(0) which might not be the fittest,
and which will thus have to evolve to adapt to the environment (described by the birth
rate b(a, x) and death rate d(a, x)). The question has raised an important interest in
the last decade after the initial introduction of the subject in mathematical biology
(see [15, 12]). The population view has also been widely studied theoretically (see
[4, 13, 11]). Several biologically-relevant examples have been treated, e.g. competitive
interactions [18], the chemostat [5, 6] and the evolution of senescence [29].

The age structured equation (1.1) has also been used many times to model various
phenomena in evolution biology (see for instance [32, 22, 24, 29]). In particular, it
can be used to study how evolution affects the way cancer incidence depends on age
(see, for instance, [14, 25]). In this setting, the trait x indicates the age beyond which
the aggressiveness of the disease increases suddenly. Intuitively, the smaller the x is,
the more dangerous the disease is. It was observed that, in nature, cancer mainly
affects individuals beyond their reproductive age, which will correspond to age a∗ in
our formalism. A recent description of these issues and of the role of natural cancer
prevention mechanisms in the transmission of germinally inherited cancer-causing
mutant alleles is given in [2].

The paper is organized as follows. We first review the proper WKB representation
of the solution in the case without mutations in Section 2. Then, we propose in
Section 3 the detailed asymptotic preserving finite difference scheme based on the
representation. In Section 4, we generalize the scheme to the case with mutations.
In Section 5, we show numerical results to illustrate the efficiency of our method.
Finally, conclusions are drawn in Section 6.

2. Case without mutation (m = 0). Our numerical strategy is based on
the WKB representation for solutions of equation (1.1). We first present the simple
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situation when m = 0. The dynamics of ñε(t, a, x) is governed by the equation

(2.1)

 ε∂tñε + ∂añε + d(a, x)ñε = −λε(t)ñε,

ñε(t, a = 0, x) =

∫ ∞
0

b(a, x)ñε(t, a, x) da,

which is coupled with the dynamics of ρε via

(2.2) λε(t) := ε
ρ̇ε
ρε

=

∫ ∞
0

∫ ∞
0

[b(a, x)− d(a, x)]ñε(t, a, x)dadx.

It is obvious from (2.2) that

(2.3) inf
a,x
{b(a, x)− d(a, x)} ≤ λε(t) ≤ sup

a,x
{b(a, x)− d(a, x)},

and the two bounds are independent of ε and t.

2.1. Spectral problem. It is useful and standard, as a preparation to the next
steps, to introduce the following spectral problem. For each fixed x, we define the
leading eigenvalue Λ(x) and the corresponding normalized eigenfunction N(a, x) > 0
of the operator ∂a+d(a, x), with the same boundary condition. With assumption (1.2),
thanks to an explicit representation, we may assume that we can define (Λ(x), N(a, x))
as
(2.4) ∂aN(a, x) + d(a, x)N(a, x) = −Λ(x)N(a, x),

N(a = 0, x) =

∫ ∞
0

b(a, x)N(a, x) da, N(a, x) > 0,

∫ +∞

0

N(a, x) da = 1.

Also, we can define the dual eigenproblem of (2.4) as

(2.5)

{
−∂aΦ(a, x) + d(a, x)Φ(a, x) = −Λ(x)Φ(a, x) + b(a, x)Φ(0, x),∫ +∞

0
Φ(a, x)N(a, x) da = 1, Φ(a, x) > 0.

The eigenvalue Λ(x) only depends on values of b(a, x), d(a, x) for 0 < a < a∗.
Indeed, the eigenvalue Λ is defined by the relation

(2.6)

∫ a∗

0

b(a, x)e−[Λ(x)a+
∫ a
0
d(a′,x) da′]da = 1.

The integrability condition for N means that, for a large, d(a, x) is large enough
compared to −Λ(x). At least, we need that

(2.7) d(a, x) > −Λ(x), for a large.

The above assumption is easy to be satisfied since Λ(x) is independent of d(a, x) for
all a > a∗. It is also convenient, in order to avoid loss of mass at infinity in x, to
assume that

(2.8) Λ(x) < 0 for x large.

Furthermore, these problems have been widely studied. As shown in [27], the
solutions N and Φ are bounded.
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2.2. Asymptotic variable separation. The recent studies mentioned before
show the asymptotic concentration of ñ(t, a, x) at some x̄(t) as ε→ 0, a fact indicating
the existence of a singularity according to (1.4). The approach initiated in [13],
consists in writing ñ(t, a, x) in the form

(2.9) ñε(t, a, x) = e
uε(t,x)

ε qε(t, a, x).

We assume this representation is true initially with both q0
ε(a, x) and u0

ε(x) being
smooth and satisfying, for some 0 < γ(x) < γ(x),

(2.10) 0 < γ(x)N(a, x) ≤ q0
ε(a, x) ≤ γ(x)N(a, x),

and

(2.11)

∫ ∞
0

e
u0
ε(x)

ε dx = 1, u0
ε(x)→ u0(x) ≤ 0 uniformly as ε→ 0+.

With additional technical assumptions, it implies that limε→0+ e
u0
ε(x)

ε = δ(x−x0) when
x0 = arg maxx u

0(x) is unique. An example of assumption is that u0
ε is uniformly

concave in ε and x, see [21].
In the following, we establish dynamical equations for qε(t, a, x) and uε(t, x),

respectively. We use the theory in [24] in order to get the exact equation for uε(t, x),
as ε → 0, which deals with the singularity and is easy to solve. Then, it turns out
that the information in a-direction, described by qε(t, a, x), is fully regular.

Specifically, as it is standard [28, 24], we build uε(t, x) as the solution of the
equation

(2.12) ∂tuε = Λ(x)− λε(t), uε(0, x) = u0
ε(x)

where λε(t) is defined in (2.2). Then it is immediate that qε(t, a, x) satisfies

(2.13)


ε∂tqε + ∂aqε + d(a, x)qε = −Λ(x)qε,

qε(t, a = 0, x) =

∫ ∞
0

b(a, x)qε(t, a, x) da,

qε(t = 0, a, x) = q0
ε(a, x).

The dynamics of uε(t, x) is coupled with the dynamics of qε(t, a, x) via λε(t). In this
setup, the following properties of qε(t, a, x) and uε(t, x) can be proved as in [24].

Theorem 2.1. Consider the two solutions uε(t, x) and qε(t, a, x) of (2.12)– (2.13),
with initial constraints (2.10) and (2.11). Then, the following properties hold.
(1) (Maximum principle of qε) For all t ≥ 0, we have

(2.14) 0 < γ(x)N(a, x) ≤ qε(t, a, x) ≤ γ(x)N(a, x).

(2) (Conservation law) For all t ≥ 0, we have

(2.15)

∫ +∞

0

qε(t, a, x)Φ(a, x) da ≡
∫ +∞

0

q0
ε(a, x)Φ(a, x) da, ∀x.

(3) (Limiting equations) We define, after extraction of a subsequence, u(t, x) =
limε→0+ uε(t, x) (uniform) and q(t, a, x) = limε→0+ qε(t, a, x) (weak-* limit). Then,
the dynamics of u(t, x) and q(t, a, x) are governed by

(2.16) ∂tu(t, x) = Λ(x)− λ(t),
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where the function λ(t) adapts automatically in such a way that maxx u(t, x) = 0 for
all t ≥ 0, and

(2.17) q(t, a, x) = ρ0(x)N(a, x), ρ0(x) :=

∫ +∞

0

q0(a, x)Φ(a, x) da.

As a remark, limε→0+ λε is the Lagrange multiplier associated with the constraint

maxx u(t, x) = 0, which is necessary for the unit mass condition
∫∞

0

∫∞
0
qε(t, a, x)da e

uε(t,x)
ε dx =

1. Together with (2.17), we conclude that
∫∞

0
q(t, a, x)da = ρ0(x), and thus, for a

measure µ(x, t), after extraction,

(2.18) e
uε(t,x)

ε → µ (weak limit), and

∫
ρ0(x)dµ(x) = 1.

Proof. We simply recall roughly the main ideas of the proof because these are
just variants of those in [24, 27, 23].
(1) The conclusion follows from the comparison principle of a transport equation.
(2) Multiplying both sides of (2.13) and (2.5) by Φ and qε, respectively, and subtract-
ing, we get

(2.19) ε∂t(qεΦ) + ∂a(qεΦ) = −b(a, x)qεΦ(0, x).

It follows by integrating the equation over a and noticing the boundary condition in
(2.13) that

(2.20)
∂

∂t

∫ +∞

0

qε(t, a, x)Φ(a, x) da = 0

holds true for any x and t > 0.
(3) Because λε is bounded, uε converges uniformly after extraction. And qε is bounded
noticing (2.14). Therefore we may extract a convergent subsequence as indicated.
Next, we identify the limiting equation for q(t, a, x) , which by linearity satisfies ∂aq + d(a, x)q = −Λ(x)q,

q(t, a = 0, x) =

∫ ∞
0

b(a, x)q(t, a, x) da.

Because the dominant eigenvalue in problem (2.4) is simple, we find that q(t, a, x) =
ρ(t, x)N(a, x) for some function ρ(t, x) which is independent of a. Then, we may pass
to the limit in (2.15) and find∫ +∞

0

q0(a, x)Φ(a, x) da ≡
∫ +∞

0

q(t, a, x)Φ(a, x) da = ρ(t, x)

∫ +∞

0

N(a, x)Φ(a, x) da = ρ(t, x).

Noticing that
∫ +∞

0
e

uε(t,x)
ε dx is uniformly bounded with respect to ε since the

following holds,
(2.21)

0 < γ(x)

∫ +∞

0

e
uε(t,x)

ε dx ≤ 1 =

∫ ∞
0

∫ ∞
0

q(t, a, x)e
uε(t,x)

ε dadx ≤ γ(x)

∫ +∞

0

e
uε(t,x)

ε dx,

by (2.4), (2.14) and the normalization condition. As a result, we must have

(2.22) max
x
{u(t, x)} = 0 for any t > 0,

which leads to the limiting equation (2.16) for u(t, x).
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Remark 2.2. Notice that ρ0(x)N(a, x)e
uε(t,x)

ε are exact solutions of (2.1). Theo-
rem 2.1 implies immediately that, these solutions attract all solutions.

Remark 2.3. The question to know if the weak limit (in measures) of e
uε(t,x)

ε is
a multiple of a Dirac mass δ(x − x̄(t)) is related to know if the maximum in (2.22)
is unique. This holds if both u0

ε and Λ are strictly concave (then u(t, ·) is) [21]. This
also holds if Λ(x) is monotonic [3].

3. Finite difference discretization: Case without mutation. Based on
the dynamic equations (2.13) and (2.12) for qε and uε, respectively, we show the
detailed numerical scheme discretized via finite difference method, which generates a
discretized solution of (2.1), compatible with the limit ε→ 0.

3.1. Notations. For simplicity of notations, we introduce JK1,K2K := [K1,K2]∩
Z and define δ−x and δ+

x to be the backward and forward finite difference operators
approximating ∂x, respectively. Similarly, we can define δ−a , δ+

a and δ+
t . Let us take

Ω = (0,∞) × (0,M)2 to be the computational domain of (t, a, x) and denote the
uniformly distributed grid points as

(3.1) tn = n∆t, aj = j∆a, xk = k∆x,

for n ∈ N ∪ {0}, j ∈ J0,KaK and k ∈ J0,KxK, with ∆a = M
Ka

and ∆x = M
Kx

being the
mesh sizes in a- and x-direction, respectively. Let unk and qnj,k be the corresponding
numerical approximations of uε(tn, xk) and qε(tn, aj , xk), and denote

(3.2) un = (unk )T ∈ RKx+1, Qn = (qnj,k) ∈ R(Ka+1)×(Kx+1).

Then ñnj,k, which is defined as

(3.3) ñnj,k = qnj,ke
un
k
ε

for all n ≥ 0, j ∈ J0,KaK, k ∈ J0,KxK, is the numerical approximation of the normal-
ized population ñ(tn, aj , xk). Collecting all elements ñnj,k in a matrix, we get

(3.4) Ñn = (ñnj,k) ∈ R(Ka+1)×(Kx+1).

Here we introduce I1(·) and I2(·) to be the finite difference approximations of the
1D integral in x-direction and the 2D integral in both a- and x-directions, respectively,

(3.5) I1(u) := ∆x

Kx∑
k=0

w
(x)
k uk, I2(Q) = ∆a∆x

Ka∑
j=1

Kx∑
k=0

w
(x)
k qj,k,

with the weights

(3.6) w
(x)
k =

2− δk,0
2

=

{
1
2 , for k = 0,

1, otherwise.

For each k ∈ J0,KxK, we consider the discretized eigenvalue problem of (2.4) as

(3.7)


δ−a Nj,k + d(aj , xk)Nj,k = −ΛkNj,k, j ∈ J1,KaK,

N0,k = ∆a

Ka∑
j=1

b(aj , xk)Nj,k, and ∆a

Ka∑
j=0

w
(a)
j Nj,k = 1,
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where w
(a)
j =

2−δj,0
2 , Λk and Nj,k are the numerical approximations of Λ(xk) and

N(aj , xk), respectively. With the matrix Mk = (m
(k)
i,j ) ∈ RKa×Ka defined in (A.1)

and denoting

(3.8) nk := (N1,k, N2,k, . . . , NKa,k)T ∈ RKa ,

the equation (3.7) can then be formulated in a more compact form as

(3.9) Mknk = −Λknk,

and −Λk is the leading eigenvalue of the matrix Mk. By the way, it would be conve-
nient for later use to introduce the following notations

(3.10) λ = (Λk)T ∈ RKx+1, N = (Nj,k) ∈ R(Ka+1)×(Kx+1).

Noticing that m
(k)
i,j ≤ 0 for all i 6= j, Mk, which is closely related to an M-matrix,

has a positive left eigenvector φk := (φ0,k, φ1,k, . . . , φKa−1,k)T ∈ RKa corresponding
to the same eigenvalue −Λk by the Perron-Frobenius theorem. In other words, the
eigenpair (Λk,φk) is the dual eigenpair of (Λk,nk) and satisfies

(3.11) φTkMk = −Λkφ
T
k ,

or more precisely
(3.12){

−δ+
a φj−1,k + d(aj , xk)φj−1,k = −Λkφj−1,k + b(aj , xk)φ0,k, j ∈ J1,Ka − 1K

∆a
∑Ka

j=1Nj,kφj−1,k = 1, φKa,k = 0,

where the boundary condition is artificial to make the eigenvector unique. Obviously,
the problem (3.12) approximates the problem (2.5) in a discrete form.

As a remark, instead of solving the eigenvalue problem directly, the leading eigen-
values can be easily computed by solving the following nonlinear equation

(3.13) 1 = ∆a

Ka∑
j=1

b(aj , xk)

j∏
s=1

1

1 + ∆a(d(as, xk) + Λk)
, k ∈ J0,KxK,

which has a unique solution in the feasible set

(3.14) Ωk := {Λk ∈ R | 1 + ∆a(d(as, xk) + Λk) > 0}.

Furthermore, the corresponding eigenvectors nk and φk can be computed explicitly.
The derivation of the equation (3.13) and the detailed formula of nk and φk can be
referred to Appendix B.

3.2. Numerical scheme. With the notations, the scheme works as follows from
tn to tn+1.
Step 1: Update Qn := (qnj,k) ∈ R(Ka+1)×(Kx+1) based on the discretization of (2.13),
i.e.

(3.15)


ε
qn+1
j,k −q

n
j,k

∆t + δ−a q
n+1
j,k + d(aj , xk)qn+1

j,k = −Λkq
n+1
j,k , j ∈ J1,KaK,

qn+1
0,k = ∆a

Ka∑
j=1

b(aj , xk)qn+1
j,k .
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It is worth noticing that, in (3.15), the stiff term must be treated implicitly to ensure
stability.
Step 2: Update un := (un0 , u

n
1 , . . . , u

n
Kx

)T based on the discretization of (2.12), i.e.

(3.16)
un+1
k − unk

∆t
= Λk − Ln, k ∈ J0,KxK,

where Ln is chosen such that

(3.17) I2(Ñn+1) = ∆a∆x

Ka∑
j=1

Kx∑
k=0

w
(x)
k qn+1

j,k e
u
n+1
k
ε = 1.

To compute effectively Ln, we set

(3.18) vn := (vnk )T ∈ RKx+1, vnk = e
un
k+∆tΛk

ε , k ∈ J0,KxK, n ≥ 0,

then

(3.19) Ln =
ε

∆t
ln
(
I2(Qn+1 ◦ vn)

)
,

where the operator ◦ denotes the generalized Hadamard product between a matrix
and a vector

(3.20) Qn+1 ◦ vn := (qn+1
j,k · v

n
k ) =


qn+1
0,0 vn0 qn+1

0,1 vn1 . . . qn+1
0,Kx

vnKx

qn+1
1,0 vn0 qn+1

1,1 vn1 . . . qn+1
1,Kx

vnKx

...
...

. . .
...

qn+1
Ka,0

vn0 qn+1
Ka,1

vn1 . . . qn+1
Ka,Kx

vnKx

 .

Then the scheme (3.16) can be rewritten as

un+1
k = unk + ∆tΛk − ε ln

(
I2(Qn+1 ◦ vn)

)
(3.21)

Remark 3.1. In practical computation, we need to normalize the vector vn for
stability issues when ε is small. Noticing that

(3.22) ε ln (‖vn‖l∞) = ‖un + ∆tλ‖l∞ ,

we can reformulate the scheme (3.16) to be

un+1
k = unk + ∆tΛk − ‖un + ∆tλ‖l∞ − ε ln

(
I2(Qn+1 ◦ ṽn)

)
,(3.23)

where ṽn := vn

‖vn‖l∞ is normalized in the sense ‖ṽn‖l∞ = 1.

3.3. Theoretical properties. As an analogous to Theorem 2.1 for the continu-
ous case, we can show the corresponding properties for the discrete case in Theorem 3.2
and Theorem 3.6.

Theorem 3.2. Taken un, Qn and N defined in (3.2) and (3.10). We assume
that the initial data Q0 satisfies the constraint

(3.24) 0 < γkNj,k ≤ q0
j,k ≤ γkNj,k
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for any j ∈ J0,KaK and k ∈ J0,KxK, and update un and Qn via (3.23) and (3.15),
respectively. Then the following properties hold.
(1) (Maximum principle of Qn) For any n ≥ 0, we have

(3.25) 0 < γkNj,k ≤ qnj,k ≤ γkNj,k,

where j ∈ J0,KaK and k ∈ J0,KxK.

(2) (Discrete conservation law) Define Fnk = ∆a
∑Ka

j=1 q
n
j,kφj−1,k for each k ∈ J0,KxK

and n ≥ 0, where φj,k is defined in (3.12). Then we have

(3.26) Fnk ≡ F 0
k .

Proof. (1) We prove (3.25) by induction. By assumption, the conclusion (3.25)
holds true at n = 0. As a result, we only need to show that (3.25) holds true at
t = tn+1, assuming that it holds true at t = tn. The proof is based on the discrete
entropy inequality generalized from [27]. For simplicity of notations, we reformulate
the scheme (3.15) to be

(3.27) ε
qn+1
k − qnk

∆t
= M̃kq

n+1
k ,

where M̃k = (m̃
(k)
i,j ) ∈ RKa×Ka is defined to be −Mk−ΛkI with the matrix Mk defined

in (A.1), and qnk := (qn1,k, q
n
2,k, . . . , q

n
Ka,k

)T . It is then immediate that M̃knk = 0 and

φTk M̃k = 0T and all off-diagonal elements of M̃k are nonnegative, i.e. m̃i,j ≥ 0 if
i 6= j. Define the discrete form of the general relative entropy to be

(3.28)

Ka∑
j=1

φj−1,kNj,kH(
qnj,k
Nj,k

),

where H(·) is an arbitrary convex function. Then we claim that

(3.29)

Ka∑
j=1

φj−1,kNj,kH(
qn+1
j,k

Nj,k
) ≤

Ka∑
j=1

φj−1,kNj,kH(
qnj,k
Nj,k

).

In fact, a direct calculation shows that

Ka∑
j=1

φj−1,kNj,k

(
H(

qn+1
j,k

Nj,k
)−H(

qnj,k
Nj,k

)

)
≤

Ka∑
j=1

φj−1,kH
′(
qn+1
j,k

Nj,k
)
(
qn+1
j,k − q

n
j,k

)

=
∆t

ε

Ka∑
i,j=1

φj−1,kH
′(
qn+1
j,k

Nj,k
)m̃j,iq

n+1
i,k =

∆t

ε

Ka∑
i,j=1

φj−1,km̃j,iNi,kH
′(
qn+1
j,k

Nj,k
)

(
qn+1
i,k

Ni,k
−
qn+1
j,k

Nj,k

)

=
∆t

ε

Ka∑
i,j=1

φj−1,km̃j,iNi,k

[
H ′(

qn+1
j,k

Nj,k
)

(
qn+1
i,k

Ni,k
−
qn+1
j,k

Nj,k

)
+H(

qn+1
j,k

Nj,k
)−H(

qn+1
i,k

Ni,k
)

]
≤ 0,

where the equalities M̃knk = 0 and φTk M̃k = 0T are applied in the second and the
third equation and last inequality holds true due to the convexity of H(·) and the fact
that all diagonal terms are 0.

The upper bound of qn+1
j,k with j ∈ J1,KaK can then be proven by taking

(3.30) H(u) = (u− γk)2
+ ≥ 0.



10

By assumptions, we have (3.25) hold true at t = tn, which implies that

(3.31)

Ka∑
j=1

φj−1,kNj,kH

(
qnj,k
Nj,k

)
= 0.

Combining (3.31) with the entropy inequality (3.29), it is then obvious that

(3.32)

Ka∑
j=1

φj−1,kNj,kH

(
qn+1
j,k

Nj,k

)
≤ 0,

which immediately leads to the conclusion qn+1
j,k ≤ γkNj,k noticing the fact that

φj−1,k > 0, Nj,k > 0 and H(·) ≥ 0. Similarly, we can prove the lower bound at
t = tn+1. The boundedness of the boundary terms qn+1

0,k comes from the boundary
conditions in (3.7) and (3.15). As a conclusion, we have (3.25) hold true at t = tn+1.
Therefore, by induction, we proved the maximum principle (3.25) for all n ≥ 0.

(2) For each k ∈ J0,KxK, multiplying both sides of (3.15) by φj−1,k and summing
over j ∈ J1,KaK, we get

(3.33) Fn+1
k − Fnk =

∆t

ε

Ka∑
j=1

φj−1,k(−δ−a qn+1
j,k − d(aj , xk)qn+1

j,k − Λkq
n+1
j,k ).

Noticing the boundary condition in (3.15) and the fact that φKa,k = 0, we have via
summation by part that

Ka∑
j=1

φj−1,kδ
−
a q

n+1
j,k = −

Ka∑
j=1

qn+1
j,k δ+

a φj−1,k − φ0,k

Ka∑
j=1

b(aj , xk)qn+1
j,k


= −

Ka∑
j=1

qn+1
j,k (δ+

a φj−1,k + b(aj , xk)φ0,k).(3.34)

Substituting (3.34) into (3.33), we get
(3.35)

Fn+1
k −Fnk =

∆t

ε

Ka∑
j=1

qn+1
j,k (δ+

a φj−1,k + b(aj , xk)φ0,k−d(aj , xk)φj−1,k−Λkφj−1,k) = 0,

where the last step is due to (3.12). The conclusion then follows directly from (3.35).

Remark 3.3. Analogous to Remark 2.2, when we choose the initial data to be
Q0 = N , we have Qn = N for all n > 0. All the dynamics is carried by the singular
part unk .

Remark 3.4. A scaling of Qn is recommended at each step to force (3.26) holds
exactly. Otherwise, noticing (3.35), the round-off error will accumulate and be no
longer negligible when time is large or 0 < ε� 1.

It will be shown in Proposition 3.5 that the normalization constant Ln in the
scheme is uniformly bounded with whatever choice of ε,∆t and ∆x. The fact implies
that our scheme will be robust not only for normal cases, but also for the limiting case
0 < ε� 1, where a concentration of the normalized population ñ(t, a, x) appears.
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Proposition 3.5. There are two constants L and L, which are independent of
ε,∆t and ∆x, such that, for any n ≥ 0,

(3.36) L ≤ Ln ≤ L.

Proof. For simplicity of notations, we introduce

(3.37) Λ = max
k∈J0,KxK

{Λk}, Λ = min
k∈J0,KxK

{Λk}, γ = max
k∈J0,KxK

{γk}, γ = min
k∈J0,KxK

{γk}.

Noticing that Λk is the numerical approximation of Λ(xk) after discretization in a-
direction, Λ and Λ are independent of ε,∆t and ∆x. For each element vnk in vn (3.18),
we have

(3.38) e
∆t
ε Λe

un
k
ε ≤ vnk ≤ e

∆t
ε Λe

un
k
ε ,

which, combining together with (3.19), implies that

(3.39) Λ +
ε

∆t
ln(I2(Qn+1 ◦ eun

ε )) ≤ Ln ≤ Λ +
ε

∆t
ln(I2(Qn+1 ◦ eun

ε )),

where I2(·) is the second order numerical quadrature defined in (3.5) and the operator
◦ denotes the generalized Hadamard product defined in (3.20). Besides, the maximum
principle of Qn proved in Theorem 3.2 indicates that

(3.40)
γ

γ
qnj,k ≤ qn+1

j,k ≤
γ

γ
qnj,k

holds true for all n ≥ 0, j ∈ J0,KaK and k ∈ J0,KxK. With all these preparations, now
we are ready to derive an explicit upper bound and lower bound of Ln. The following
two cases will be considered separately.

• Case I: ε/∆t ≥ C,
• Case II: ε/∆t < C,

where the constant C can be chosen arbitrarily as long as

(3.41) C ≥ 2
γ

γ
max
j,k
{|b(aj , xk)− d(aj , xk)− Λk|}.

(I) When ε/∆t ≥ C, recalling (3.15), we have that

I2(Qn+1 ◦ eun

ε ) = ∆a∆x

Ka∑
j=1

Kx∑
k=0

w
(x)
k qn+1

j,k e
un
k
ε

=∆a∆x

Ka∑
j=1

Kx∑
k=0

w
(x)
k

[
qnj,ke

un
k
ε +

∆t

ε
(−δ−a qn+1

j,k − d(aj , xk)qn+1
j,k − Λkq

n+1
j,k )e

un
k
ε

]

=∆a∆x

Ka∑
j=1

Kx∑
k=0

w
(x)
k

[
qnj,ke

un
k
ε +

∆t

ε
(b(aj , xk)− d(aj , xk)− Λk)qn+1

j,k e
un
k
ε

]
,

(3.42)

where the last step is due to the boundary condition in (3.15). Therefore, on one
hand,

I2(Qn+1 ◦ eun

ε ) ≥ ∆a∆x

Ka∑
j=1

Kx∑
k=0

w
(x)
k

[
1− γ

γ

∆t

ε
|b(aj , xk)− d(aj , xk)− Λk|

]
qnj,ke

un
k
ε

≥
[
1− ∆t

ε

C

2

]
I2(Ñn) = 1− C∆t

2ε
,(3.43)
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where Ñn is defined in (3.4). Noticing the relation in (3.39) and the fact that ln(1−
x) ≥ −2x holds true for all x ∈ (0, 1

2 ) and C∆t
2ε ≤

1
2 , we have that

Ln ≥ Λ +
ε

∆t
ln(I2(Qn+1 ◦ eun

ε )) ≥ Λ +
ε

∆t
ln(1− C∆t

2ε
) ≥ Λ− C.(3.44)

On the other hand,

I2(Qn+1 ◦ eun

ε ) ≤ ∆a∆x

Ka∑
j=1

Kx∑
k=0

w
(x)
k

[
1 +

γ

γ

∆t

ε
|b(aj , xk)− d(aj , xk)− Λk|

]
qnj,ke

un
k
ε

≤
[
1 +

∆t

ε

C

2

]
I2(Ñn) = 1 +

C∆t

2ε
.(3.45)

Similarly, combining the relation in (3.39) and the fact that ln(1 + x) ≤ x holds true
for all x ∈ R+, we have that

(3.46) Ln ≤ Λ +
ε

∆t
ln

(
1 +

C∆t

2ε

)
≤ Λ +

C

2
.

To summarize, we have, in this case, that

(3.47) Λ− C ≤ Ln ≤ Λ +
C

2
.

(II) When ε
∆t ≤ C, recalling the relation (3.40) and the fact that I2(Ñn) =

I2(Qn ◦ eun

ε ) = 1, we have that

(3.48)
γ

γ
=
γ

γ
I2(Qn ◦ eun

ε ) ≤ I2(Qn+1 ◦ eun

ε ) ≤ γ

γ
I2(Qn ◦ eun

ε ) =
γ

γ
,

which immediately implies that

(3.49) Λ− C ln

(
γ

γ

)
≤ Ln ≤ Λ + C ln

(
γ

γ

)
.

Combining the two cases, we get that there exist two constants L and L such that

(3.50) L ≤ Ln ≤ L,

where the two constants can be chosen to be

(3.51) L = Λ− C max

{
ln(

γ

γ
), 1

}
, L = Λ + C max

{
ln(

γ

γ
),

1

2

}
.

3.4. Asymptotic Preserving property. The asymptotic preserving (A-P)
schemes are extremely powerful tools as they permit the use of the same scheme
to discretize a perturbation problem and its limit problem, with fixed discretization
parameters [1]. Here we will show that the schemes (3.23) and (3.15) are indeed A-P
schemes.

Theorem 3.6. (Asymptotic preserving) When the discretization parameters ∆a,
∆x and ∆t are fixed and 0 < γkNj,k ≤ Q0

j,k ≤ γkNj,k holds true for any j ∈ J0,KaK
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and k ∈ J0,KxK, then we have
(1) the scheme (3.23) tends to the following scheme as ε goes to 0

(3.52)
un+1
k − unk

∆t
= Λk − Ln,

where Ln is chosen such that maxk u
n+1
k = 0.

(2) the scheme (3.15) tends to the following scheme as ε goes to 0 for any k ∈ J0,KxK,

(3.53)


δ−a q

n+1
j,k + d(aj , xk)qn+1

j,k = −Λkq
n+1
j,k , j ∈ J1,KaK,

qn+1
0,k = ∆a

Ka∑
j=0

b(aj , xk)qn+1
j,k ,

which is identical to (3.7) and implies that

(3.54) qnj,k = ρ0
kNj,k,

where ρ0
k = ∆a

∑Ka

j=1 q
0
j,kφj−1,k.

Proof. (1) Recalling the scheme (3.23), it is sufficient to show that

(3.55) lim
ε→0

ε ln
(
I2(Qn+1 ◦ ṽn)

)
= 0.

On one hand, noticing the fact that ‖ṽn‖l∞ ≤ 1 and the maximum principle of Qn in
Theorem 3.2, we have that

(3.56) I2(Qn+1 ◦ ṽn) ≤ max
k
{γk}I2(N).

On the other hand, since both Qn+1 and ṽn are nonnegative, we have

I2(Qn+1 ◦ ṽn) ≥ 0.(3.57)

Since both the upper bound and the lower bound of I2(Qn+1 ◦ ṽn) are independent
of ε, the limit (3.55) is then obvious. The limiting scheme (3.52) follows directly by
combining (3.23) and (3.55).

(2) The maximum principle of Qn in Theorem 3.2 shows that Qn+1 is uniformly
bounded for all n ≥ 0. Therefore, it is obvious that limε→0 εδ

+
t q

n
j,k = 0 for any

j ∈ J0,KaK, k ∈ J0,KxK and n ≥ 0. The limiting scheme (3.53) then follows directly.
Since the limiting scheme (3.53) is identical to (3.7), we have, for each n ≥ 0, that

(3.58) qnj,k = ρnkNj,k

for some ρnk . The boundary condition in (3.12) implies that

(3.59) ρnk = ∆a

Ka∑
j=1

qnj,kφj−1,k.

Then, by Theorem 3.2, we have that ρnk ≡ ρ0
k.
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4. Case with mutation (m > 0). A more interesting and realistic model is to
include the mutation effect, i.e. m 6= 0. In this case, the equation for the normalized
solution ñ(t, a, x) becomes

(4.1)



ε∂tñε + ∂añε + d(a, x)ñε = −λε(t)ñε,

ñε(t, a = 0, x) =(1−m)

∫ ∞
0

b(a, x)ñε(t, a, x) da

+
m

ε

∫ ∞
0

∫ ∞
0

b(a, y)M

(
x− y
ε

)
ñε(t, a, y)dady,

where λε(t) := ε ρ̇ερε =
∫

[b(a, x) − d(a, x)]ñε(t, a, x)dadx. However the theory is not
fully understood in these cases and the general proof of convergence of the correctors,
beyond the caustics, is a long standing open question. Formally, however the same
method can be applied and uniform bounds can be obtained which are enough to
define an A-P scheme.

4.1. Asymptotic variable separation. Inspired by the case without mutation,
we take the same ansatz (2.9) for ñ(t, a, x), i.e.

(4.2) ñε(t, a, x) = e
uε(t,x)

ε qε(t, a, x),

which leads to the following equation by substituting (4.2) into (4.1)
(4.3)

qε∂tuε + ε∂tqε + ∂aqε + d(a, x)qε + λε(t)qε = 0,

qε(t, a = 0, x) =(1−m)

∫ ∞
0

b(a, x)qε(t, a, x) da

+
m

ε

∫ ∞
0

∫ ∞
0

b(a, y)M

(
x− y
ε

)
qε(t, a, y)e

uε(t,y)−uε(t,x)
ε dady.

For convenience of the numerical computation, we introduce z = (x−y)/ε and rewrite
the boundary condition in (4.3) as

qε(t, a = 0, x) =(1−m)

∫ ∞
0

b(a, x)qε(t, a, x) da

+m

∫ ∞
−∞

(∫ ∞
0

b(a, x− εz)qε(t, a, x− εz) da
)
M (z) e

uε(t,x−εz)−uε(t,x)
ε dz,(4.4)

where we force qε(t, a, x) = 0 when x < 0. Following the case without mutations, we
will establish the dynamical equations for uε(t, x) and qε(t, a, x), respectively, based
on (4.3) and (4.4).

Assuming that ∂xuε(t, x) is independent of ε, which will be shown later to be
possible, and introducing η̄[∂xuε] as

(4.5) η̄[∂xuε] :=

∫ ∞
−∞

M (z) e−z∂xuε(t,x) dz

for any given x and t, we can write (4.4) of first order as ε→ 0

(4.6) qε(t, a = 0, x) = (1−m+mη̄[∂xuε])

∫ ∞
0

b(a, x)qε(t, a, x) da.
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Following Section 2.1, it would be useful to consider the following spectral problem
in variable a, where x is a parameter and the parameter η will take the value η̄[∂xuε]
defined in (4.5),

(4.7)


∂aN(a, x, η) + d(a, x)N(a, x, η) = −Λ(x, η)N(a, x, η),

N(a = 0, x, η) = (1−m+mη)
∫∞

0
b(a, x)N(a, x, η) da,

N(a, x, η) > 0 and
∫∞

0
N(a, x, η) da = 1.

In words, Λ(x, η̄[∂xuε]) is the leading eigenvalue of the operator ∂a + d(a, x) with
a parameter dependent boundary condition, which approximates (4.4), and the cor-
responding normalized eigenfunction is N(a, x, η̄[∂xuε]). Theoretical analysis shows
that ∂ηΛ > 0 [24].

Now we choose the Hamilton-Jacobi equation for uε(t, x) as

(4.8) ∂tuε(t, x) = Λ(x, η̄[∂xuε])− λε(t),

where λε(t) is independent of x and only changes uε(t, x) by a time dependent value
in order to ensure the mass 1 conservation law. As shown in [8], the viscosity solution
for the Hamilton-Jacobi equation exists and is unique. Besides, it is easy to verify
that ∂xuε(t, x) is independent of ε noticing the fact that the only term related to ε is
λε(t), which is independent of x.

Combining (4.3) and (4.8), the function qε(t, a, x) satisfies
(4.9)

ε∂tqε + ∂aqε + d(a, x)qε = −Λ(x, η̄[∂xuε])qε,

qε(t, a = 0, x) =(1−m)

∫ ∞
0

b(a, x)qε(t, a, x) da

+m

∫ ∞
−∞

∫ ∞
0

b(a, x− εz)M (z) qε(t, a, x− εz)e
uε(t,x−εz)−uε(t,x)

ε dadz.

The limiting equations of uε(t, x) and qε(t, a, x) as ε→ 0+ can be derived. Denote
u(t, x) and q(t, a, x) to be the limit function of uε(t, x) and qε(t, a, x), respectively.
Similar to the case without mutation, we must have

(4.10) sup
x
{u(t, x)} = 0.

By taking the limit ε→ 0+ in (4.9), we can easily get the equation for q(t, a, x) to be

(4.11)

{
∂aq + d(a, x)q = −Λ(x, η̄[∂xu])q,

q(t, a = 0, x) = (1−m+mη̄[∂xu]))
∫∞

0
b(a, x)qε(t, a, x) da.

4.2. Finite difference discretization. Based on the dynamical equation (4.8)
for uε(t, x) and the one (4.9) for qε(t, a, x), we are ready to detail the numerical scheme
with finite difference discretization in space.

4.2.1. Notations. For simplicity, we choose the same notations as in Section 3
and assume the mutation function M(z) to be compactly supported on the interval
(−Z,Z). Discretize the interval with uniformly distributed grid points as

(4.12) zl = l∆z, for l ∈ J−Kz,KzK,

where ∆z = Z
Kz

, and denote Ml to be the numerical approximation of M(zl).
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The parameter η̄[∂xuε] defined in (4.5) plays an important role in the case with
mutation. For each k ∈ J0,KxK and n > 0, we compute ηnk , the numerical approx-
imation of η̄[∂xuε](tn, xk), via the finite difference method. The first-order upwind
scheme [9, 10, 26, 30] is applied for computing the first order derivatives. To be more
specific, we set

(4.13) ηnk = g(δ−x u
n
k , δ

+
x u

n
k ),

where the function g(α, β) is defined as

(4.14) g(α, β) = ∆z

Kz∑
l=0

w
(z)
l

(
M(−l)e

−z(−l)β +Mle
−zlα

)
,

with weights

(4.15) w
(z)
l = 1− δl,0 + δl,Kz

2
=

{
1
2 , if l = 0 or Kz,

1, otherwise.

To avoid the difficulties with the boundary conditions, we simply assume δ−x u
n
0 =

δ+
x u

n
Kx

= 0 for any n ≥ 1. This does not have much effect because it corresponds
to very negative values of un, whose effect on the normalized population is exponen-
tially small and is thus negligible. Obviously, the scheme (4.13) is independent of ε.
More accurate finite difference approximations for the first order derivatives, such as
WENO [19, 20, 31], as well as approximations via other methods, including the finite
volume method and DG method [7, 17, 33], could be applied as well. However, the
corresponding schemes would obviously be much more complicated noticing that all
unk must be updated implicitly.

The eigenpair (Λk(ηnk ),nk(ηnk )), which now depends on the parameter ηnk , satisfies
the following discretized eigenvalue problem of (4.7)

(4.16)


δ−a Nj,k(ηnk ) + d(aj , xk)Nj,k(ηnk ) = −Λk(ηnk )Nj,k(ηnk ), j ∈ J1,KaK,

N0,k(ηnk ) = (1−m+mηnk )∆a

Ka∑
j=1

b(aj , xk)Nj,k(ηnk ),

∆a
∑Ka

j=0 w
(a)
j Nj,k(ηnk ) = 1,

where nk(ηnk ) = (N1,k(ηnk ), N2,k(ηnk ), . . . , NKa,k(ηnk ))T and k ∈ J0,KxK. The equation
(4.16) can be written in a more compact form with Mk(ηnk ) ∈ RKa×Ka defined in
(A.1) as

(4.17) Mk(ηnk )nk(ηnk ) = −Λk(ηnk )nk(ηnk ).

Then Λk(ηnk ) is defined to be the leading eigenvalue of the matrix Mk(ηnk ). Again the
Perron-Frobenius theorem indicates the existence of the positive eigenvector nk(ηnk )
for each k ∈ J0,KxK and any ηnk > 0.

4.2.2. Numerical Scheme. With all these preparations, now we are ready to
show the detailed scheme to update un and Qn.
Step 1a: Theoretical computation of ũnk , an approximation of un+1

k . The computation
of ũnk is based on the finite difference discretization of

(4.18) ∂tũ(t, x) = Λ(x, η̄[∂xũ]).
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The backward-Euler method is applied in time to ensure the stability of the scheme.
Denote ũn := (ũn0 , ũ

n
1 , . . . , ũ

n
Kx

)T and define

(4.19) η̃nk = g(δ−x ũ
n
k , δ

+
x ũ

n
k ),

where the function g(·, ·) is defined in (4.14). Then, the scheme works as follows

(4.20)
ũnk − unk

∆t
= Λk(η̃nk ) = Λk(g(δ−x ũ

n
k , δ

+
x ũ

n
k )), k ∈ J0,KxK, n ≥ 0,

where Λk(η̃nk ) is the leading eigenvalue of the matrix Mk(η̃nk ).
Intuitively, the solution of the equation (4.18) differs from the solution of (4.8) by

a function of time, which is independent of x. As a result, un+1
k can be obtained from

ũnk by adding a constant which will be determined later for the mass 1 normalization.
The following lemma shows that the scheme (4.20) is an unconditionally monotone

scheme.

Lemma 4.1. The scheme (4.20) is a monotone scheme for any ∆t > 0.

Proof. On one hand, un can be viewed as a function of ũn via (4.20). Differenti-
ating both sides of (4.20), we get
(4.21)
∂unk
∂ũnk

= 1−∆tΛ′k(η̃nk )
∂η̃nk
∂ũnk

,
∂unk
∂ũnk−1

= −∆tΛ′k(η̃nk )
∂η̃nk
∂ũnk−1

,
∂unk
∂ũnk+1

= −∆tΛ′k(η̃nk )
∂η̃nk
∂ũnk+1

.

Noticing that Λ′k(η) > 0,
∂η̃nk
∂ũn

k±1
> 0 and

∂η̃nk
∂ũn

k
= − ∂η̃nk

∂ũn
k−1
− ∂η̃nk

∂ũn
k+1

< 0, the tridiagonal

Jacobian matrix Jun is an M-matrix for whatever ∆t > 0, which implies that J−1
un

exists and all its elements are non-negative.
On the other hand, for each un, there exists a unique solution ũn, where the

existence and uniqueness of the solution will be proven in Lemma C.1 later. Therefore,
ũn can be viewed as a function of un as well, whose Jacobian matrix,

(4.22) Jũn(un) = [Jun(ũn)]−1,

is a matrix with all elements to be non-negative. In other words, we have
∂ũn

k̃

∂un
k
≥ 0 for

any k, k̃ ∈ J0,KxK, which means that the scheme (4.20) is a monotone scheme.

Step 1b: Practical computation of ũnk . Iterative techniques will be used to solve the
implicitly formulated equation (4.20). However, it is difficult to solve (4.20) directly
since there is no explicit formula of the function Λk(η). As an alternative, we update
Λk(ηn+1

k ) first and then compute ũnk via (4.20). Following a similar procedure as in
Appendix B, we get the following linear system for Λk(ηn+1

k ),
(4.23)

1 = (1−m+mη̃nk )∆a

Ka∑
j=1

b(aj , xk)

j∏
s=1

1

1 + ∆a(d(as, xk) + Λk(η̃nk ))
, k ∈ J0,KxK,

where

(4.24) η̃nk = g(δ−x u
n
k + ∆tδ−x Λk(η̃nk ), δ+

x u
n
k + ∆tδ+

x Λk(η̃nk )),

by combining (4.13) and (4.20). Then iterative methods, such as the Newton method,
can be applied for the system (4.23)-(4.24) to solve Λk(ηn+1

k ).
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For completeness, here we present the detailed Newton’s method for solving the
system (4.23)-(4.24). For simplicity of notations, we introduce

(4.25) λ(l) = (Λ
(l)
0 ,Λ

(l)
1 , . . . ,Λ

(l)
Kx

)T ∈ Ω,

where Ω := {λ ∈ Rn | 1 + ∆a(d(as, xk) + Λk) > 0, k ∈ J0,KxK} is the feasible set of
λ, and introduce the functions Y nk (λ), where k ∈ J0,KxK, to be the right-hand side
of (4.23). Then the system (4.23)-(4.24) can be rewritten as

(4.26) Yn(λ) = 1Kx+1,

where 1Kx+1 = (1, 1, . . . , 1)T ∈ RKx+1 and Yn(λ) = (Y n0 (λ), Y n1 (λ), . . . , Y nKx
(λ))T ∈

RKx+1. The Jacobian matrix JYn , which is defined as

(4.27) JYn(λ) =



∂Y n
0

∂Λ0

∂Y n
0

∂Λ1

∂Y n
0

∂Λ2
. . .

∂Y n
0

∂ΛKx

∂Y n
1

∂Λ0

∂Y n
1

∂Λ1

∂Y n
1

∂Λ2
. . .

∂Y n
1

∂ΛKx

...
...

...
. . .

...

∂Y n
Kx

∂Λ0

∂Y n
Kx

∂Λ1

∂Y n
Kx

∂Λ2
. . .

∂Y n
Kx

∂ΛKx


∈ R(Kx+1)×(Kx+1),

is tridiagonal, where all non-zero elements can be explicitly computed, and strictly
diagonally dominate with negative diagonal elements, which implies that its inverse
[JYn(λ)]−1 exists everywhere with all elements non-positive. Then we update an

intermediate solution λ(l) via

(4.28) λ(l+1) = λ(l) + [JYn(λ(l))]−1(1Kx+1 −Yn(λ(l))), l ≥ 0,

and the detailed Newton’s method works as follows. It will be shown in Appendix C
that the sequence {λ(l)} will converge to the desired solution.

Algorithm 4.1 Newton’s iteration for solving the system (4.23)-(4.24) (or equiva-
lently (4.26))

1: For each n ≥ 1 and k ∈ J0,KxK, compute Λ
(0)
k such that (1−m)Sk(Λ

(0)
k ) = 1

2: l← 0, λ(0) ← (Λ
(0)
0 ,Λ

(0)
1 , . . . ,Λ

(0)
Kx

)T

3: while ‖1Kx+1 −Yn(λ(l))‖l∞ > tolerance do

4: λ(l+1) ← λ(l) + [JYn(λ(l))]−1(1Kx+1 −Yn(λ(l)))
5: l← l + 1
6: end while

Remark 4.2. There is no need to compute [JYn(λ)]−1 in Algorithm 4.1. Instead,

we can evaluate the part [JYn(λ(l))]−1(1Kx+1 −Yn(λ(l))) as a whole via the Tridi-
agonal matrix algorithm (TDMA), which is much more computationally efficient.

Step 2: Update Qn := (qnj,k) ∈ RKa×Kx based on the finite difference discretization of
(4.9). Again, the stiff terms must be treated implicitly to ensure the stability of the
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scheme.

(4.29)



ε
qn+1
j,k −q

n
j,k

∆t + δ−a q
n+1
j,k + d(aj , xk)qn+1

j,k = −Λk(η̃nk )qn+1
j,k ,

qn+1
0,k =(1−m)∆a

Ka∑
j=1

b(aj , xk)qn+1
j,k +

m∆z

Kz∑
l=−Kz

w̃
(z)
l

∆a

Ka∑
j=1

b(aj , xk − εzl)qn+1
j,k−ε̃l

Mle
ũn
k−ε̃l−ũn

k
ε ,

where ε̃ = ε∆z/∆x and ũnk−ε̃l − ũnk and qn+1
j,k−ε̃l are the numerical approximations of

uε(tn+1, xk − εzl)− uε(tn+1, xk) and qε(tn+1, aj , xk − εzl), respectively, and the new

weights w̃
(z)
l for l ∈ J−Kz,KzK are defined as

(4.30) w̃
(z)
l =

{
w

(z)
|l| , if l 6= 0,

2w
(z)
0 , if l = 0.

Here we assume qε(t, ·, ·) is constantly 0 outside the computational domain (0,M)2.
A simple way to evaluate ũnk−ε̃l− ũnk and qn+1

j,k−ε̃l is via linear interpolation. When

0 < ε < ∆x
Kz∆z , we have k − ε̃l ∈ [k − 1, k + 1] for all l ∈ [−Kz,Kz]. Therefore,

(4.31)

qn+1
j,k−ε̃l =

{
qn+1
j,k − εzlδ+

x q
n+1
j,k ,

qn+1
j,k − εzlδ−x q

n+1
j,k ,

ũnk−ε̃l − ũnk =

{
−εzlδ+

x ũ
n
k , for −Kz ≤ l ≤ 0,

−εzlδ−x ũnk , for 0 < l ≤ Kz.

Then, the boundary condition in (4.29) can be reformulated as
(4.32)

qn+1
0,k = (1−m)∆a

Ka∑
j=1

b(aj , xk)qn+1
j,k +m∆a

Ka∑
j=1

(C
n,(0)
j,k qn+1

j,k +C
n,(−1)
j,k qn+1

j,k−1+C
n,(1)
j,k qn+1

j,k+1),

where the coefficients can be explicitly computed as

C
n,(0)
j,k = ∆z

Kz∑
l=0

w
(z)
l (1− εzl

∆x
)
[
b(aj , xk − εzl)Mle

−zlδ−x ũ
n
k

+b(aj , xk + εzl)M(−l)e
zlδ

+
x ũ

n
k

]
> 0,(4.33)

and

C
n,(−1)
j,k = ∆z

Kz∑
l=0

w
(z)
l

εzl
∆x

b(aj , xk − εzl)Mle
−zlδ−x ũ

n
k > 0,(4.34)

C
n,(1)
j,k = ∆z

Kz∑
l=0

w
(z)
l

εzl
∆x

b(aj , xk + εzl)M(−l)e
zlδ

+
x ũ

n
k > 0.(4.35)

Similarly, when ε ≥ ∆x
Kz∆z , the boundary condition in (4.29) can be proved to be

of form

(4.36) qn+1
0,k = (1−m)∆a

Ka∑
j=1

b(aj , xk)qn+1
j,k +m∆a

Ka∑
j=1

Kx−k∑
l=−k

C
n,(l)
j,k qn+1

j,k+l,
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where C
n,(l)
j,k ≥ 0 for all j ∈ J0,KaK, k ∈ J0,KxK, l ∈ J−k,Kx − kK and n ≥ 0. The

nonnegativity of the coefficients C
n,(l)
j,k comes from the fact that qn+1

j,k−ε̃l is obtained

by the linear interpolation of Qn+1, which implies that
∂qn+1

j,k−ε̃l

∂qn+1

j̃,k̃

≥ 0 holds true for all

j, j̃ ∈ J0,KaK and k, k̃ ∈ J0,KxK. The explicit formula for the coefficients is omitted
here for brevity.

Remark 4.3. Unlike the case without mutation, now we no longer have the same
maximum principle of qε on both the discrete and continuous level because of the
coupling in x-direction that appeared in the boundary conditions.

Step 3: Compute un+1 via normalization. For each k ∈ J0,KxK, we define

(4.37) un+1
k = ũnk −∆t Ln,

where Ln is the normalization constant making sure that I2(Ñn+1) = 1 with Ñn+1

defined in (3.4). The constant Ln can be computed explicitly as in (3.19), i.e.

(4.38) Ln =
ε

∆t
ln
(
I2(Qn+1 ◦ vn)

)
,

where vn := (vnk )T ∈ RKx+1 with vnk = e
ũn
k
ε , and the operator ◦ denotes the general-

ized Hadamard product defined in (3.20). Similar to the case without mutation, we
can then reformulate the scheme (4.37) to be a more robust one

(4.39) un+1
k = ũnk − ‖ũn‖l∞ − ε ln

(
I2(Qn+1 ◦ ṽn)

)
.

where ṽn := vn

‖vn‖l∞ is the normalized vector in the sense ‖ṽn‖l∞ = 1.

4.3. Asymptotic preserving (A-P) property. Due to the lack of the maxi-
mum principle of Qn+1, we can only formally verify the A-P property of the schemes
proposed in Section 4.2. Assuming Qn+1 is bounded, the limiting scheme for un can
be derived similarly as in Theorem 3.6. As for the limiting scheme for Qn, it is enough
to consider the case 0 < ε < ∆x

zKz
, where the updating scheme (4.29) becomes

(4.40)


ε
qn+1
j,k −q

n
j,k

∆t + δ−a q
n+1
j,k + d(aj , xk)qn+1

j,k = −Λk(η̃nk )qn+1
j,k ,

qn+1
0,k = (1−m)∆a

Ka∑
j=1

b(aj , xk)qn+1
j,k +

m∆a
∑Ka

j=1(C
n,(0)
j,k qn+1

j,k + C
n,(−1)
j,k qn+1

j,k−1 + C
n,(1)
j,k qn+1

j,k+1),

where the positive coefficients C
n,(−1)
j,k , C

n,(0)
j,k and C

n,(1)
j,k are defined in (4.33)-(4.35).

Obviously, by taking ε→ 0, we have

(4.41) lim
ε→0

C
n,(1)
j,k = lim

ε→0
C
n,(−1)
j,k = 0, lim

ε→0
C
n,(0)
j,k = b(aj , xk)ηn+1

k ,

where ηn+1
k = η̃nk is defined in (4.19). Therefore, by formally taking the limit ε → 0

in the scheme (4.40), we get the limiting scheme

(4.42)



δ−a q
n+1
j,k + d(aj , xk)qn+1

j,k = −Λk(ηn+1
k )qn+1

j,k ,

qn+1
0,k = (1−m)∆a

Ka∑
j=1

b(aj , xk)qn+1
j,k +m∆a

Ka∑
j=1

b(aj , xk)ηn+1
k qn+1

j,k ,

= (1−m+mηn+1
k )∆a

∑Ka

j=1 b(aj , xk)qn+1
j,k .
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It is easy to check that the limiting scheme (4.42) is indeed the direct finite difference
discretization of the limiting equation for qε (4.11) at t = tn+1.

5. Numerical experiments. We illustrate the performance of the scheme and
its A-P property with extensive numerical experiments. In particular, we focus on the
case without mutation, where the concentration of the normalized population is more
clear both theoretically and numerically. We show the efficiency and accuracy of the
proposed scheme by comparing it with the standard explicit scheme, which solves the
equation (2.1) directly. The case with mutation will be studied as well at the end.

5.1. Case without mutation. For the numerical test, we choose

(5.1) b(a, x) = max

{
1− (a− 2)2

1 + (x)+
, 0

}
, d(a, x) = 0.5a+ 10(a− (x)+)2

+,

where (x)+ := max{x, 0}. Here we choose the initial data

(5.2) ñ(0, a, x) = e−0.8a− (x−0.5)2

2 ,

and the computation domain of (a, x) to be Ω = (0, 5) × (0, 5). Obviously, the birth
rate function is uniformly compact supported in the interval (1, 3) in a-direction and
the death rate function satisfies the assumptions as well. As shown in Figure 5.1,
the concentration of the normalized population in x-direction will be more and more
obvious as time progresses.

1.4 1.6 1.8 2 2.2 2.4

0
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4
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12
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t=20

t=50

t=200

Evolution Time

Fig. 5.1. With ε = 0.1 fixed, we observe sharper concentration as time progresses.

To begin with, we confirm that our method (3.15)-(3.23) does solve the original
equation (2.1) correctly by comparing it with a standard implicit discretization of the
equation (2.1), i.e.

(5.3)


ε
ñn+1
j,k −ñ

n
j,k

∆t + δ−a ñ
n+1
j,k + d(aj , xk)ñn+1

j,k = −λnñn+1
j,k , j ∈ J1,KaK,

ñn+1
0,k = ∆a

Ka∑
j=1

b(aj , xk)ñn+1
j,k ,

where ñnj,k is the numerical approximation of ñ(tn, aj , xk), j ∈ J0,KaK, k ∈ J0,KxK,
n ≥ 0, and λn is a constant making sure that

(5.4) ∆a∆x

Ka∑
j=1

Kx∑
k=0

w
(x)
k ñnj,k = 1.
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For numerical experiments, we fix ε = 0.01 and do the computation till t = 1. Though
the implicit scheme (5.3) is stable with large time steps, a small time step is still
necessary for accuracy reasons. Here we choose ∆t = 10−4 for the scheme (5.3) under
a mesh ∆a = ∆x = 0.05, which is fine enough for the direct scheme to catch the
concentration of the normalized population in x-direcction during the time. For our
scheme (3.15)-(3.23), we apply ∆t = 10−1 and choose a coarse mesh in x-direcction
with ∆x = 0.5 and the same mesh in a-direction, i.e. ∆a = 0.05. Then the solution
can be accurately reconstructed on the fine mesh via an accurate interpolation, such
as the spline interpolation. Figure 5.2 shows the normalized population computed via
the two methods at time t = 0.1 and t = 1. As shown in the figure, the numerical
solutions computed in two different ways are almost identical, which indicates not
only the validity of our scheme (3.15)-(3.23), but also the efficiency since a much
larger time step and an ε-independent mesh can be applied.
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Fig. 5.2. Comparison of the normalized population density ñ(t, a, x) computed via a direct
implicit scheme (left column) or via the A-P scheme (right column). For the the implicit scheme,
we choose ∆t = 10−4 and ∆x = 0.05, while for the A-P scheme, we choose ∆t = 10−1 and ∆x = 0.5.

Figure 5.3 shows the accuracy of Qn, u and Ñn in a- and x-direction. Here we
don’t do any interpolation in x-direction. A roughly first-order accuracy in a-direction
can be observed, which is consistent with our expectations since the upwind method,
which is only first-order accurate, is applied for the derivatives in (3.15). The accu-
racy in x-direction is second order, which is consistent with our expectation as well
since the system is completely decoupled in x-direction and the second order accu-
rate quadrature rule is applied to the numerical integral in (3.17) for normalization.
Besides, Qn seems to converge as ε→ 0+, which is consistent with Theorem 3.6.

One of the great advantage of our scheme (3.15)-(3.23) is that we can easily cap-
ture the concentration of the normalized population in x-direction with a coarse mesh.
Since both the functions qε(t, a, x) and uε(t, x) are regular, an interpolation of Qn and
un computed on a coarse mesh can help accurately reconstruct the normalized popu-
lation Ñn on a fine mesh. Figure 5.4 shows the accuracy with different interpolation
methods. Obviously, the spline interpolation seems to be a good choice. Figure 5.5
compares the interpolated normalized population with the ‘exact’ one. Here we apply
the spline interpolation in two ways. One way is to apply the spline interpolation for
both un and Qn as mentioned before, and the other way is to apply the spline inter-
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polation for Ñn directly. As shown in the figure, the direct interpolation of Ñn would
fail when the mesh is coarse while the interpolation performed on un and Qn always
works perfectly to catch the concentration. It implies that the WKB representation
(3.3) plays an essential role in our A-P scheme, which enables us to use a coarse,
probably ε-independent mesh in the x-direction to accurately capture the solution,
and thus makes our A-P scheme efficient.
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Fig. 5.3. Accuracy of Q (left), u (middle) and Ñ (right) at time T = 1 with fixed ∆t = 10−3.
The figures on the first row show the accuracy in a-direction, where we choose ∆x = 0.01 and
the ‘exact’ one computed with ∆a = 0.001. The figures on the second row show the accuracy in
x-direction, where we choose ∆a = 0.01 and the ‘exact’ one computed with ∆x = 0.01.
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Fig. 5.4. Numerical accuracy of the normalized population Ñ , which are computed via the WKB
representation (3.3) with Q and u computed on a coarse mesh in x-direction and then interpolated
onto a fine mesh via different methods. Here we choose T = 1, ε = 0.1 and ∆t = ∆a = 0.01.

Another great advantage of our method is that our scheme is unconditionally
stable and the numerical solutions at some fixed time T would converge extremely fast
as ∆t → 0+ if T � ε, which is somewhat surprising since we applied the backward
Euler method, which is only first-order accurate, in our scheme (3.15). Figure 5.6
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Fig. 5.5. Comparison of the reconstructed solutions
∫∞
0 ñ(t, a, x) da at T = 20 with the ‘exact’

one. Here we choose ε = 0.01, ∆t = 0.5, ∆a = 0.02 and compute the ‘exact’ solution on a fine
mesh with ∆x = 0.001. The reconstructed solutions are firstly computed on a coarse mesh and then
interpolated onto a fine mesh with the spline interpolation method (‘sp-interp.’). The left figure and
the right figure show the solutions computed on coarse meshes with ∆x = 0.25 and ∆x = 0.025,
respectively. Here we do the interpolation in two ways. In one way, we interpolate Ñ directly. In
the other way, we do interpolation to Q and u and then reconstruct Ñ via (3.3).

shows the comparison of the numerical solutions computed via our scheme (3.15)-
(3.23) with a fixed mesh size ∆a = ∆x = 0.01 and different choices of the time step
∆t. The ‘exact’ solution is assumed to be the one computed with ∆t = 0.1. On
one hand, it is easy to observe from the figure the spectral accuracy in time. On the
other hand, we find our scheme is robust and efficient since the solution is somewhat
accurate even with only one time step, i.e. the time step is chosen to be equal to the
final time. Intuitively, the high accuracy of Qn is due to its asymptotic behaviour
shown in Theorem 3.6. As a remark, although Ñn will finally be less accurate with a
smaller ε, which is reasonable since the numerical error is amplified by the exponential

part e
uε(t,x)

ε , the error is still small and we can observe the spectral accuracy in time
as well. To sum up, our scheme is stable, efficient and accurate, and thus works
perfectly in the case without mutation.
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Fig. 5.6. Temporal convergence of Q (left) and Ñ (right) under the l1-norm at time T = 64
with a fixed mesh and different choices of time steps. The ‘exact’ solutions Qex and Ñex are chosen
to be the one computed with the same mesh and an extremely small time step.



25

5.2. Case with mutation. Now we apply our method to the case where the
mutation effect is included. The mutation between different traits prevents the nor-
malized population to converge to a multiple of the Dirac function in the x-direction.
In our model, two parameters, i.e. m and ε, are applied to describe the mutation
effect. Intuitively, the parameter m measures the frequency of the mutation and
the parameter ε measures the effect of mutations on the phenotype of new borns.
Figure 5.7 shows the effect of the two parameters on the normalized population. Ob-
viously, the concentration of the normalized population will be less obvious with a
stronger mutation effect, i.e. when m and ε are large.
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Fig. 5.7. Illustration of the mutation effect parameterized via ε and m.

Figure 5.8 shows the accuracy of Ñn computed via our method in a- and x-
directions. As shown in the figure, we have a roughly first order accuracy in a-direction
but a nearly second order accuracy in x-direction, which is similar to the case without
mutation but somewhat unexpected since the upwind scheme, which is only first order
accurate, is applied to evaluate η̃nk (4.19).

As in the case without mutation, we can rebuild accurately the solution on a fine
mesh in x-direction via a high-accurate interpolation method as long as we evaluate
δ±x Λk(η̃nk ) in (4.24) in a more accurate way and replace the linear interpolations of
qn+1
j,k−ε̃l and ũn+1

k−ε̃l (4.31) by the corresponding high-accurate interpolations. Unlike
the linear interpolation case, where the system (4.29) is linear and the matrix can be
formulated explicitly, the system now becomes nonlinear. One simple way to solve
the system is via an iterative semi-implicit solver, where the mutation part in (4.29) is
treated explicitly while all the other parts are treated implicitly as before. Figure 5.9
shows the accuracy of the normalized population Ñ , which are interpolated in different
ways in x-direction. As shown in the figure, we observe that we can use few points
in the x-direction to accurately rebuild the solution on a fine mesh and the spline
interpolation obviously benefits from the high accuracy.

Figure 5.10 shows the temporal accuracy of the normalized population Ñ at
T = 64. Unfortunately, we no longer have the spectral convergence in time as shown
in Figure 5.6, where no mutation effect is considered. It is due to the fact that the
eigenpair (Λk(ηk),nk(ηk)), where k ∈ J0, NxK, now depends on time, which indicates
that we can no longer evaluate the integral

(5.5)

∫ tn+1

tn

Λk(η̄[∂xuε|x=xk
]) ds

exactly to accurately approximate uε. Though the first order accuracy is expected
since the backward Euler method is applied in the schemes (4.20) and (4.29), Fig-
ure 5.10 shows a nearly second order accuracy in time. Besides, Figure 5.10 shows
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Fig. 5.8. Accuracy of Ñ at time T = 1 with fixed ∆t = 0.02 and m = 0.5. The figure on the
left shows the accuracy in a-direction, where we fix ∆x = 0.02 and compute the ‘exact’ one with
∆a = 0.02. The figure on the right shows the accuracy in x-direction, where we fix ∆a = 0.02 and
compute the ‘exact’ one with ∆x = 0.02.
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Fig. 5.9. The left figure compares
∫∞
0 ñ(t, a, x) da at T = 20. Here we fix ε = 0.1 and m = 0.5.

The interpolated solutions are computed on a coarse mesh with ∆x = 0.25 while the ‘exact’ solution
is computed on a fine mesh with ∆x = 0.01. Again, we do the spline interpolation (sp-interp.) in
two ways — on Ñ directly or on Q and uε seperately. For numerical efficiency, here we choose
∆t = 0.5 and ∆a = 0.02. The right figure shows the order of accuracy at T = 1 of two different
interpolation methods in x-direction with ∆t = ∆a = 0.02.

that the normalized population will be less accurate with a smaller ε, which is reason-
able since the inaccuracy of the approximation of the exponent uε(t, x)/ε dominates
the error.

6. Conclusion. We have presented an asymptotic preserving (A-P) scheme for
capturing concentrations arising in the adaptive dynamics of the age-structured pop-
ulation. A proper WKB representation of the solution, which could perfectly describe
the asymptotic behaviour of the solution in the case without mutation, was adopted
to derive our scheme. Important properties of the scheme, including the A-P prop-
erty, have been rigorously proved for the case. Extensive numerical experiments have
been presented to show the robustness and efficiency of our scheme. In particular,
we found that the concentrations on some particular phenotypical traits can be ac-
curately captured with a rather coarse mesh and a nearly spectral accuracy in time
can be observed. Then we generalized our scheme to the case with mutation. Though
complicated, we showed in details the efficient and stable way to update the solu-
tion in each step. The A-P property was formally shown for the case. Numerical
experiments showed that, though we would lose the spectral accuracy in time, we
can still rebuild accurately the solution on a fine mesh with much fewer points in the
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Fig. 5.10. Temporal accuracy of Ñ at time T = 64 with m = 0.5, ∆a = 0.05, ∆x = 0.001 and
different choices of ε. The ‘exact’ solutions Qex and uex are chosen to be the one computed with
the same mesh and a small time step ∆t = 0.1.

phenotype space.

Appendix A. Reformulation of (3.7) and (4.16) with matrices. Define
the parameter-dependent matrix Mk(η) to be

(A.1) Mk(η) =



d̃1,k − b̃1,k −b̃2,k −b̃3,k . . . −b̃Ka−1,k −b̃Ka,k

− 1
∆a d̃2,k 0 . . . 0 0

0 − 1
∆a d̃3,k . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . d̃Ka−1,k 0

0 0 0 . . . − 1
∆a d̃Ka,k


,

where b̃j,k = (1−m+mη)b(aj , xk) and d̃j,k = 1
∆a +d(aj , xk). Then the equation (3.7)

can be reformulated as

(A.2) Mknk = −Λknk,

where Mk := Mk(1) and (−Λk,nk) is the leading eigenpair of the matrix Mk. Sim-
ilarly, the equation (4.16) can be reformulated in the same form by replacing Mk in
(A.2) by Mk(ηnk ).

Appendix B. Fast computation of the eigenpair (Λk,nk). For each
k ∈ J1,KxK, we get the following relation by solving the first equation in (3.7) directly

(B.1) Nj,k =

j∏
s=1

1

1 + ∆a(d(as, xk) + Λk)
N0,k.

As a result, we only need to solve Λk and N0,k.
Substituting (B.1) into the boundary condition in (3.7) and then canceling out

N0,k on both sides of the equation, we get

(B.2) 1 = ∆a

Ka∑
j=1

b(aj , xk)

j∏
s=1

1

1 + ∆a(d(as, xk) + Λk)
, k ∈ J0,KxK.
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Noticing that the right-hand side of the equation is monotone decreasing from ∞ to
0 over the feasible set Ωk, the equation (B.2) has a unique solution inside Ωk (3.14).
Combining the normalization condition of nk in (3.7) and the relation (B.1), we can
further get

(B.3) N0,k =
1

∆a
[
w

(a)
0 +

∑Ka

j=1 w
(a)
j

∏j
s=1

1
1+∆a(d(as,xk)+Λk)

] .
Similarly, if we denote φj,k = rj,kφ0,k, then the first equation in (3.12) indicates

that the coefficients {rj,k} can be computed recursively in the backward direction as

(B.4) rKa,k = 0, rj−1,k =
rj,k + b(aj , xk)∆a

1 + (d(aj , xk) + Λk)∆a
.

Then r0,k = 1 is exactly the equation (B.2). The normalization condition in (3.12)
implies that

(B.5) φ0,k =
1

∆a
∑Ka

j=1Nj,krj−1,k

.

As a remark, the recursion (B.4) in the forward direction will fail due to numerical
instability.

Appendix C. Properties of the sequence {λ(l)} in Algorithm 4.1. A

direct observation of the sequence {λ(l)} is that, for any l ≥ 0, we have

Yn(λ(l)) ≥ 1Kx+1.(C.1)

In fact, when l = 0, the conclusion holds true due to the non-negativity of fnk (λ).
When l ≥ 1, noticing the relation (4.28) and the fact that Y nk (λ) is convex, we have

Yn(λ(l)) ≥ Yn(λ(l−1)) + [JYn(λ(l−1))](λ(l) − λ(l−1)) = 1Kx+1.(C.2)

With this observation, we can further show the convergence of the sequence {λ(l)}.
The result is summarized as the following lemma.

Lemma C.1. The sequence {λ(l)} computed via Algorithm 4.1 converges. To be
more specific,

(C.3) lim
l→∞

λ(l) = λ∗

for some vector λ∗, which is the unique solution of the nonlinear system (4.26) in the
feasible set Ω.

Proof. On one hand, the sequence {λ(l)} is non-decreasing in the sense

Λ
(l+1)
k ≥ Λ

(l)
k , k ∈ J0,KxK,(C.4)

since [JYn(λ(l))]−1 is elementwisely non-positive and Yn(λ(l)) ≥ 1Kx+1 (C.1).
On the other hand, we claim that, for each n ≥ 1, there exists some bounded

domain Ωn such that {λ(l)} ⊂ Ωn. For any given vector λ, denote k̄ to be the index
such that

(C.5) Λk̄ = ‖λ‖l∞ .
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As a result, δ−x Λk̄ ≥ 0 and δ+
x Λk̄ ≤ 0, which implies that

(C.6) η̃nk̄ ≤ g(δ−x u
n
k̄ , δ

+
x u

n
k̄ ) ≤ g(min

k
{δ−x unk},max

k
{δ+
x u

n
k}),

where the last bound is independent of k. Therefore,

(C.7) Y nk̄ (λ) ≤ [1−m+mg(min
k
{δ−x unk},max

k
{δ+
x u

n
k})]Sk̄(Λk̄).

Obviously, the right-hand side of (C.7) goes to 0 as Λk̄ → ∞, which indicates that
there exists some number Rn such that Y n

k̄
(λ) < 1 if Λk̄ > Rn (or equivalently

‖λ‖l∞ > Rn). Now we take Ωn = {λ | ‖λ‖l∞ ≤ Rn} ∩Ω. Then the fact (C.1) implies

that {λ(l)} ⊂ Ωn.

As a result, there exists a limit λ∗ of the sequence {λ(l)} in Ω. It is easy to
see that λ∗ is the solution of the system (4.26) by taking the limit l → ∞ in (4.28).

Assume that there exists another solution λ̃
∗
, then we must have

(C.8) Yn(λ̃
∗
) = Yn(λ∗) + JYn(λ̃)(λ̃

∗
− λ∗)

for some λ̃ ∈ Ω. Since Yn(λ̃
∗
) = Yn(λ∗) = 1Kx+1 and the matrix [JYn(λ)]−1 exists

everywhere, we must have λ̃
∗

= λ∗, which immediately implies the uniqueness of the
solution.
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