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Object-Oriented paradigm is a common paradigm for introductory programming courses.

However, many teachers find that transitioning to teaching this paradigm is a difficult task. To overcome this complexity, many experienced teachers use microworlds to give beginner students an intuitive and rapid understanding of fundamental abstract concepts of Object-Oriented Programming, leading to a more effective learning. Microworlds have thus, become known to be engaging and facilitating complex concepts understanding, however, we know little on the process by which microworlds can be effective for learning, and how they motivate beginners. In this article, we attempt to identify the design principles of microworlds that offer support structures for providing engaging and meaningful learning activities that facilitate programming learning. We will explore individually each design principle, while focusing on its relation to learning and its relevance for learning Object-Oriented Programming. We finally, present PrOgO, a novel programming microworld, we designed on the basis of existing microworlds.

Introduction

Teaching Object-Oriented Programming (OOP) to beginners is widely known to be quite problematic [START_REF] Börstler | Transitioning to OOP/Java -A never ending story[END_REF]. Abstract concepts are the main difficulty students face in learning OOP. The concepts of object and class are the basic concepts that govern the Object-Oriented (OO) paradigm. As a type sets the properties of a variable, a class is often defined as a data structure representing a mold or a template for the object, while the object is an embodiment, a reproducible copy of its class [START_REF] Bersini | L'orienté objet: cours et exercices en UML 2 avec Java 5, C Sharp 2, C++[END_REF]. The basics of OO paradigm comprise also the concept of hierarchical relationships among classes, such as inheritance, which is a mechanism that allows factoring what is common to several classes into one class, in order to reduce the number of treatments.

Students struggle to understand more complex concepts, if they cannot grasp the basic class and object thinking way. Teaching introduction to programming is not about abstract OO concepts and practical programming skills alone, but about the interactions of both. Therefore, a teaching approach without balancing the two sides may not succeed in practice [START_REF] Yan | Teaching object-oriented programming with games[END_REF].

According to [START_REF] Kölling | BlueJ-The Hitch-Hikers guide to object orientation[END_REF], this difficulty of learning is not due to any complexity inner to OOP, but rather is in relation with the teaching methods and materials. They argued that many books authors often do not have teaching experience in the OOP paradigm, and that many development environments are not suited to this paradigm and fail to capture its full potential.

In order to understand how beginner students learn OOP, some computer science education researchers focus their attention on computer science teaching and particularly on teaching introductory programming. There exist many teaching introductory programming approaches, and since the mid-1990s, there has been considerable attention given to teaching OOP early [START_REF] Bennedsen | What does objects-first mean?: An international study of teachers' perceptions of objects-first[END_REF].

The recent literature on introductory programming teaching is directed towards the use of microworlds (e.g., [START_REF] Becker | Teaching CS1 with Karel the robot in Java[END_REF]Cooper, Dann, & Pausch, 2003a;[START_REF] Cooper | Using animated 3D graphics to prepare novices for CS1[END_REF][START_REF] Henriksen | Greenfoot: combining object visualization with interaction[END_REF][START_REF] Xinogalos | An introduction to object-oriented programming with a didactic microworld: objectKarel[END_REF]. There are several reasons underlying interest of training professionals and educators in the use of microworlds. First, there has been a major shift in the field of learning, from a traditional model of instruction to a learner-centered model, emphasizing a more active learner role [START_REF] Garris | Games, motivation, and learning: A research and practice model[END_REF]. A second reason is that some empirical evidence exists that microworlds can be effective tools for enhancing learning and understanding complex programming concepts (e.g., [START_REF] Pears | A survey of literature on the teaching of introductory programming[END_REF][START_REF] Bennedsen | What does objects-first mean?: An international study of teachers' perceptions of objects-first[END_REF]. Third, training professionals are also interested in the involvement and engagement that microworlds can invoke [START_REF] Pears | A survey of literature on the teaching of introductory programming[END_REF].

In brief, the potential of microworlds as tools for training is appealing. However, we know little on the process by which microworlds engage learners, and the types of learning outcomes that can be achieved through microworlds, in fact, few studies exist on the impact of microworlds on learning and education (e.g., [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF][START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF][START_REF] Mavrikis | Sowing the seeds of algebraic generalization: Designing epistemic affordances for an intelligent microworld[END_REF][START_REF] Plass | Multimedia learning with simulations and microworlds[END_REF]. Moreover, there may exists a risk of designing microworlds that neither instruct nor engage the learner. The purpose of this article is to explore the ways by witch microworlds can be relevant in introductory OOP courses. Our goal is to examine the aspects of microworlds that can enhance introductory programming learning.

We focus on the conceptual foundations of microworlds that are of interest from an instructional perspective, and how they affect programming learning.

After introducing microworlds, we will examine each of their design principles. We will provide working definitions for each design principle, with a focus on its relation with learning in general and learning programming in particular. We will also present a novel programming microworld called PrOgO, we designed to help beginner students to learn the basics of OOP in the C++ programming language.

Defining Microworlds

Prior to dealing with these issues, it is useful to provide some definitions of what the term microworld means. According to [START_REF] Bruillard | Les machines à enseigner[END_REF], the term microworld had its genesis in the Winograd's SHRDLU program (Winograd, 1972), which operates within a small area (the SHRDLU's world) to move various basic objects around in it. In the context of computer supported education, this term has been introduced for the first time by [START_REF] Minsky | Artificial intelligence progress report[END_REF] in an internal MIT research report. It has been later popularized by Papert with the LOGO programming language [START_REF] Papert | Mindstorms: Children, computers, and powerful ideas[END_REF], which consists of a set of commands used to control a virtual or a robotic turtle within a small world.

According to [START_REF] Lawler | Computer microworlds and reading: An analysis for their systematic application[END_REF], important functions of a microworld are the creation and manipulation of objects. [START_REF] Papert | Microworlds: Transforming education[END_REF] has described these objects as transitional between the objects that we can manipulate in the real world, and the objects that we know in science. They are a kind of objects that help to manipulate other abstract objects and serve as a link between intuitive learning and formal learning [START_REF] Bruillard | Les machines à enseigner[END_REF]. [START_REF] Bruillard | Les machines à enseigner[END_REF] has provided perhaps the most comprehensive analysis of microworlds, describing a microworld as an artificial world in which the behavior of objects we manipulate adheres to some constraints of fidelity and consistency. The essential idea in this statement is the fidelity and the consistency of a certain model embodied in the microworld. In fact, [START_REF] Bruillard | Les machines à enseigner[END_REF] noted that microworlds establish a strong semantic link between something formal or abstract and something real, simulated or of reference, while maintaining the precise meaning. He proposed to schematize the various constituent parts of a microworld by distinguishing between a real world (a reference world) containing objects that are familiar to the learner, and a formal world (abstract world) containing science objects (see Figure 1). A modeling process or an exemplifying process relates these two worlds. The formal world is considered as a model of the real world, while the real world is an instance of the formal world. The learner can manipulate objects through an interface according to the underlying formal world, and their external aspects visualized through this interface recall the real world. Moreover, the Bruillard's general schema emphasizes the existence of mental models on which microworlds are funded on. [START_REF] Bruillard | Les machines à enseigner[END_REF] describes a mental model as a representation in which symbolic objects behave similarly to the ones contained in the situations where they are represented. These mental models may change through the learner's experience within the proposed environments [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF][START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF][START_REF] Bruillard | Les machines à enseigner[END_REF]. Since microworlds embody a concept, the learner's role is to mentally represent this concept in order to grasp it [START_REF] Bruillard | Les machines à enseigner[END_REF].

Figure 1. The Bruillard's general schema of microworlds [START_REF] Bruillard | Les machines à enseigner[END_REF].

Research and theory of mental models suggest that people form mental models of the physical world in an attempt to successfully understand and interact with the world [START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF]. [START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF] reported three attributes of mental models relevant to microworlds design: a target system, which is the system of interest that comprises the science objects; the user's current mental model of the target system, which describes the person's current understanding of the target system; and a conceptual model of the target system, which is an artificial artifact. This confirms the Bruillard's definition of the microworlds' constituents [START_REF] Bruillard | Les machines à enseigner[END_REF]. By referring to the Bruillard's general schema, the target system would correspond to the formal world, while the conceptual model would correspond to the reference world. [START_REF] Rieber | Multimedia learning in games, simulations, and microworlds[END_REF] has later defined a microworld as an interactive digital environment that enables users to interact with models of situations and phenomena. This environment generates dynamic feedback based on a set of underlying rules, models, or computations as responses to the user's manipulations of objects and parameters [START_REF] Rieber | Multimedia learning in games, simulations, and microworlds[END_REF]. This links up with the definition made by [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF], who considers a microworld as an interactive learning environment, which is a conceptual model of some aspects of the real world. An environment which is usually idealized and simplified, in which learners explore or manipulate the logic, rules, or relationships of the modeled concept, as determined by the designer [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF]. It is therefore, defined as a cognitive tool, which is used as a means to simplify and design models of the real world, allowing students to manipulate and observe constraints and variables individually [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF].

Research into microworlds involves computer-based simulations and games [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF]. However, microworlds, simulations and games are not synonymous, though in some cases they can considerably overlap [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF][START_REF] Rieber | Computers, graphics & learning[END_REF]. Simulations that are not different from real life experience, such as flight training simulators, are considered entirely distinct from microworlds [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF][START_REF] Rieber | Computers, graphics & learning[END_REF]. According to [START_REF] Rieber | Computers, graphics & learning[END_REF], simulations start to become microworlds, when they are designed to let a novice begin to understand the underlying model. In order to take advantage from games, microworlds incorporate usually gaming techniques [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF][START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF]. Microworlds generally provide learners with game design as a way to learn about abstract subjects [START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF]. Learners are equipped to invent highly imaginative games to understand the world [START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF]. We would propose that microworlds contain game and simulation features, but they are neither games, nor simulations.
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We argue in the following sections that there are four key dimensions that characterize microworlds: Metaphors, visualizations, constructivism and gaming. We later present PrOgO which we refer to as a microworld designed to help begginers to learn OOP in C++ programming language.

Programming Microworlds

The earliest and the most well known microworld that was designed to learn programming is LOGO [START_REF] Papert | Mindstorms: Children, computers, and powerful ideas[END_REF]. The LOGO microworld consists of a turtle geometry that allows learners access to principals of programming through interactive graphics. The LOGO statements manipulate a graphical turtle while a visual feedback includes geometric drawings such as lines, circles and squares (see Figure 2). The majority of the programming microworlds that have been developed later are based on the same principle than Logo's system. Their main objective is to reduce the complexity of programming learning for novices. In the context of OOP, computing objects are given some of the properties of physical objects, such as appearance, behavior, and responsiveness to the user's actions, in order to be more easily graspable by novices. Abstract concepts are brought out to the user by means of a direct manipulation interface. Programming microworlds focus on concepts rather than language syntax, and usually use subset of conventional programming languages [START_REF] Cooper | Alice: a 3-D tool for introductory programming concepts[END_REF][START_REF] Buck | Design early considered harmful: graduated exposure to complexity and structure based on levels of cognitive development[END_REF]. Moreover, they tend to engage students in learning programming by allowing them to write programs about games, stories and simulations [START_REF] Cooper | Alice: a 3-D tool for introductory programming concepts[END_REF][START_REF] Henriksen | Greenfoot: combining object visualization with interaction[END_REF]. Representative OOP microworlds are Karel++ and its descendants, Alice and Greenfoot. Karel++ [START_REF] Bergin | Karel++: A gentle introduction to the art of Object-Oriented Programming[END_REF], Karel J Robot [START_REF] Buck | JKarelRobot: a case study in supporting levels of cognitive development in the computer science curriculum[END_REF][START_REF] Bergin | Karel J Robot: A gentle introduction to the art of Object-Oriented Programming in Java[END_REF], and ObjectKarel [START_REF] Xinogalos | An introduction to object-oriented programming with a didactic microworld: objectKarel[END_REF] are programming learning environments that provide a display with a discrete 2D world of a robot called Karel, to which students can assign various programmable tasks (see Figure 3). [START_REF] Buck | JKarelRobot: a case study in supporting levels of cognitive development in the computer science curriculum[END_REF] noted that the power of Karel the robot is its ability to strip away details that are not important to the learned concepts. It rather allows students to build a more intuitive conceptual model [START_REF] Buck | JKarelRobot: a case study in supporting levels of cognitive development in the computer science curriculum[END_REF]. 
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Alice is a 3D interactive programming environment for building virtual worlds, animations, narrations and games. Alice allows students to populate a 3D virtual world with 3D models of objects, and control their appearance and behavior by writing simple scripts in a drag and drop editor, using drag and drop instructions [START_REF] Cooper | Alice: a 3-D tool for introductory programming concepts[END_REF][START_REF] Conway | Alice: Lessons learned from building a 3D system for novices[END_REF] (see Figure 4). [START_REF] Cooper | Using animated 3D graphics to prepare novices for CS1[END_REF] and [START_REF] Moskal | Evaluating the effectiveness of a new instructional approach[END_REF] reported the use of Alice to teach programming for novices. They emphasized a design and a low number of details the students must master. They argued that working with an easy-to-use 3D graphics environment is attractive and highly motivating to today's generation of media conscious students. They observed that the visual nature and immediate feedback of program visualizations make it easy for students to see the impact of a statement or group of statements. Moreover, the 3D modeled classes and instantiated objects provide a very concrete notion of the concept of an object. Greenfoot is an integrated development environment comprising a 2D world, in which students can place objects and program their behavior to create game scenarios and animations [START_REF] Kölling | The Greenfoot programming environment[END_REF] (see Figure 5). Greenfoot provides an API (Application Programming Interface) that offers a set of functionalities the student can use to create programs to control the animations inside the 2D scene. Greenfoot offers a display that includes a class diagram corresponding to the classes of the graphical objects represented in the 2D scene. A separate editor is also available allowing students to access to an existing code related to the available classes. This enables students to read a well-written code before creating code themselves. 

Characterizing Microworlds

Metaphors

Programming microworlds are built on metaphors. By the use of metaphors, programming microworlds intend to bring the abstract concepts of programming closer to the real world, to be more easily graspable by beginners. This leads to decrease the distance between students' mental models and the programming language [START_REF] Xinogalos | An introduction to object-oriented programming with a didactic microworld: objectKarel[END_REF]. In such environments, a program is experienced as a model of some real world phenomenon, in which the concept of object is experienced as something that is active in a small world (a graphical scene), whereas a class is a description of properties and behavior of the object (see [START_REF] Cooper | Alice: a 3-D tool for introductory programming concepts[END_REF][START_REF] Henriksen | Greenfoot: combining object visualization with interaction[END_REF][START_REF] Bergin | Karel J Robot: A gentle introduction to the art of Object-Oriented Programming in Java[END_REF].

According to [START_REF] Travers | Programming with Agents: New metaphors for thinking about computation[END_REF], computation itself is a structuring metaphor and programming models are built on metaphors. This includes the OOP paradigm, in which computational objects are depicted metaphorically in terms of physical and social objects. Like physical objects, they can have properties and state, and like social objects, they can communicate and respond to communications [START_REF] Travers | Programming with Agents: New metaphors for thinking about computation[END_REF].

Historically, OOP arose out of languages designed for simulation, particularly Simula [START_REF] Kirkerud | Object-oriented programming with SIMULA[END_REF] and for novice programming in graphic environments such as Smaltalk [START_REF] Sharp | Smalltalk by example: The developer's guide[END_REF], in which the computational objects represent real-world objects. A standard example is a spaceship, which is modeled by a computational object that has properties like position, orientation and mass, and can perform actions like rotate and accelerate. The OO metaphor explicitly represents relationship between computational structures and real world objects. This has been reflected in the actual OOP microworlds, which make computational objects real for the user, making them appear to have a solid existence, having the properties of physical and tangible objects and being accessible to the actions of the user [START_REF] Conway | Alice: Lessons learned from building a 3D system for novices[END_REF][START_REF] Bergin | Karel J Robot: A gentle introduction to the art of Object-Oriented Programming in Java[END_REF][START_REF] Kölling | The Greenfoot programming environment[END_REF].
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Several studies have been conducted in order to determine the impact of metaphors on learning. [START_REF] Carroll | Metaphor, computing systems, and active learning[END_REF] reported that most educators have often observed that providing students with comparisons can help them learn, and that metaphors serve to codify and communicate new knowledge in a comprehensible way for new learners. In computer science teaching, most important computing developments are funded on metaphors, therefore, explicit metaphors are often used to teach beginner students how to program [START_REF] Mcconnell | Code Complete: A Practical handbook of software construction[END_REF]. In this field, the term metaphor is used not in a narrow linguistic sense, but in the sense of rich and complex metaphoric models [START_REF] Travers | Programming with Agents: New metaphors for thinking about computation[END_REF]. A metaphoric model is defined as a way to structure the knowledge of one domain by mapping onto it concepts and relations from an existing domain that is already familiar [START_REF] Lakoff | Metaphors we live by[END_REF]. Metaphor in this sense, consists of a fundamental way of learning and a structuring conceptual system [START_REF] Lakoff | Metaphors we live by[END_REF].

Since the purpose of metaphoric models is to describe something that is hidden in terms of something visible, metaphors are often taken from the concrete physical world. Metaphors make programming tangible, since they provide students means to understand the abstruse operations of the computer in terms borrowed from more familiar domains [START_REF] Travers | Programming with Agents: New metaphors for thinking about computation[END_REF]. This is almost very useful for learning about concepts which can not be directly perceived. [START_REF] Mayer | Different problem-solving competencies established in learning computer programming with and without meaningful models[END_REF] has experimentally studied the effectiveness of metaphors in teaching programming concepts. He noted that many programming constructs could be learned more easily when they are presented in the context of a concrete metaphor [START_REF] Mayer | Different problem-solving competencies established in learning computer programming with and without meaningful models[END_REF]. He later observed that giving beginners metaphorical models of computer language interpreters, resulted in improved learning compared to a more literal technical presentation [START_REF] Mayer | The psychology of how novices learn computer programming[END_REF]. He concluded that familiarity with the model aids in the assimilation of technical content by giving it a meaningful context.

Another important aspect of programming microworld metaphors is the use of animations, which have proven to be a powerful conceptual tool for analyzing programming paradigms [START_REF] Travers | Programming with Agents: New metaphors for thinking about computation[END_REF]. Animate metaphors are known to be powerful because they are capable of exploiting our knowledge about humans and human actions [START_REF] Travers | Programming with Agents: New metaphors for thinking about computation[END_REF].This allows to think in terms of purpose and functions, and thus to understand a system, without having to know its implementation details.

Visualizations

Programming microworlds are built within a design that explicitly visualizes fundamental concepts of programming in a realistic and a meaningful context. Direct manipulation of graphics representing OO concepts can help students, as in real life, to think in terms of objects.

Students do not typically start by manipulating source code, they rather start by creating objects by selecting graphics (see [START_REF] Cooper | Alice: a 3-D tool for introductory programming concepts[END_REF][START_REF] Kölling | The Greenfoot programming environment[END_REF]. [START_REF] Gilbert | The role of visual representations in the learning and teaching of science: An introduction[END_REF] defined a visualization as a visual representation which can be internal to an individual (known as a mental image or a personal mentally construction), or external (open to inspection by others). He claimed that the existence of all visualizations depends on the operation of metaphor and analogy, since we initially tend to think of something new in terms of something with which we are more familiar. Metaphors and analogies are very used to explain complex concepts or to illustrate processes, since visual metaphors are arguably much more powerful than verbal ones [START_REF] Baldwin | Learning programming using program visualization techniques[END_REF]. According to [START_REF] Gilbert | The role of visual representations in the learning and teaching of science: An introduction[END_REF], representations are the entities with which all thinking is considered to take place. They serve as means to depict the models that we have created so that the individual concerned can perceive what has been done and can share that with others. They are therefore important in the conduct and learning of science [START_REF] Gilbert | The role of visual representations in the learning and teaching of science: An introduction[END_REF].

Visualization is largely used to graphically illustrate various concepts in computer science (e.g., [START_REF] Esteves | OOP-Anim, a system to support learning of basic object oriented programming concepts[END_REF][START_REF] Milne | Ogre: Three-dimensional program visualization for novice programmers[END_REF][START_REF] Moreno | Visualizing programs with Jeliot 3[END_REF][START_REF] Sajaniemi | Animation metaphors for object-oriented concepts[END_REF][START_REF] Osman | Effectiveness of combining algorithm and program animation: A case study with data structure course[END_REF]. The impetus for visualization in computing comes from the inherent abstractness of the basic concepts. OOP paradigm is itself an especially natural foundation for visualization [START_REF] Jerding | Using visualization to foster object-oriented program understanding[END_REF], since it fundamentally involves the manipulation of concrete things: instances, messages, methods, and so on. Thus, building visualization for OO concepts follows naturally from their correspondence to a visual representation. By making these concepts more concrete, graphical representations help to better understand how they work. [START_REF] Naps | Exploring the role of visualization and engagement in computer science education[END_REF] claimed that using visualizations can positively impacts learning and thus help students to learn computing concepts. [START_REF] Henriksen | Greenfoot: combining object visualization with interaction[END_REF] have moreover observed that visualization and interactivity in a learning environment allow experimentation, generate curiosity, and thus create student engagement.

Programming microworlds are developed with a view to make programming more accessible to novices, enabling learners to program by building and manipulating animated visual representations of programming concepts. To make computational objects real for novices, who have not yet developed the skills to mentally visualize them. Objects are reified so that the result of command execution is visible as the position, size, rotation, and other visible state and behavior of the object changes (see [START_REF] Cooper | Alice: a 3-D tool for introductory programming concepts[END_REF][START_REF] Xinogalos | An introduction to object-oriented programming with a didactic microworld: objectKarel[END_REF][START_REF] Kölling | The Greenfoot programming environment[END_REF]. The purpose of such design is to allow the user to think of computational objects as identical with their graphic representations, and thus to structure a correct understanding of what programming concepts consist of. and programming. He suggested that OO knowledge must be actively constructed by learners, rather than being passively transmitted by teachers. Program development must be guided by OO concepts, rather than language technicalities, and traditional modes of teaching such as lectures, must be replaced by a set of activities where the students are actively engaged in the knowledge being constructed. The activities must focus around a set of realistic and intrinsically motivating problems. These principles fit into the goals of microworlds, constructivism is therefore one of their instructional pillars.

Gaming

Another feature of microworlds is their incorporation of gamelike elements. Nowadays, games become popular implementations of microworlds (Cooper, Dann, & Pausch, 2003a;[START_REF] Rieber | Multimedia learning in games, simulations, and microworlds[END_REF][START_REF] Kölling | The Greenfoot programming environment[END_REF][START_REF] Plass | Multimedia learning with simulations and microworlds[END_REF]. The belief is that students' familiarity with games can be used to motivate computer science learning and attract future generations of computer scientists [START_REF] Tapia | Building virtual spaces[END_REF]. Usually, in the context of OOP microworlds, learners are provided with game design as a way to learn about abstract programming concepts. Examples of OOP microworlds that use game design and building as a learning activity are typically Alice [START_REF] Conway | Alice: Lessons learned from building a 3D system for novices[END_REF] and Greenfoot [START_REF] Kölling | The Greenfoot programming environment[END_REF], which allow students to create game scenarios by making programs.

Characteristics of games may provide some practical means of meeting the assumptions of a successful microworld. One important characteristic of microworlds is a design principle that provides learning activities that are intrinsically motivating [START_REF] Papert | Mindstorms: Children, computers, and powerful ideas[END_REF]. Games represent the instructional artifacts most matching this characteristic [START_REF] Garris | Games, motivation, and learning: A research and practice model[END_REF].

Motivational researchers have linked intrinsic motivation to a number of other characteristics. [START_REF] Malone | What makes computer games fun?[END_REF] proposed that the primary factors that make an activity intrinsically motivating are challenge, curiosity, and fantasy. Such characteristics are widely applied in the design of instructional games [START_REF] Garris | Games, motivation, and learning: A research and practice model[END_REF][START_REF] Dondlinger | Educational video game design: A review of the literature[END_REF]. Fantasy is used to encourage learners to imagine that they are completing activities inside an imaginary world having no impact on the real world [START_REF] Garris | Games, motivation, and learning: A research and practice model[END_REF]. Challenge and curiosity closely conform to the process of equilibrium [START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF]. When confronted with a problem without an immediate solution, a learner will seek resolution if a solution seems possible.

Learners are challenged by activities that are neither too easy nor too difficult. Feedback can also easily be provided in order for learners to quickly evaluate their progress against the established game goal [START_REF] Garris | Games, motivation, and learning: A research and practice model[END_REF][START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF].

Games have also the potential to meet the microworld's goal of constructivism learning approach. As stated by several authors: Constructivist learning theory can be guided using games [START_REF] Papert | Mindstorms: Children, computers, and powerful ideas[END_REF]; by building games, students learn programming within a constructivist approach [START_REF] Kafai | Playing and making games for learning instructionist and constructionist perspectives for game studies[END_REF]. Students are actively engaged in discovering and building their own understanding of new concepts and skills, when they design their own programs to create games. Therefore, games provide a good environment for promoting different aspects of microworlds including active learning, self-regulation and intrinsic motivation.

PrOgO: a novel microworld for learning Object-Oriented Programming

PrOgO is a programming microworld, which is based on a constructive game metaphor for learning the basics of OOP in C++ programming language for beginners. We initially referred to the experimental prototype of PrOgO as a 3D virtual game, since it is based on a constructive game metaphor (see [START_REF] Djelil | Towards a 3D virtual game for learning Object-Oriented Programming fundamentals and C++ launguage[END_REF]. However, PrOgO does not sufficiently incorporate game elements such as high levels of fantasy, mystery and challenges. It is rather designed as a programming microworld, which aims to help students to access easily to the conceptual model triggering the OOP paradigm.

The PrOgO gaming objective is to build and animate 3D graphical robots or mechanical structures, whereas each 3D elementary graphic corresponds to a computing object. Based on the principle that a computing object is an active entity within a program, including a set of attributes (knowledge) and methods (skills) that act to achieve some functionalities that constitute the program's objectives, we assume that a constructive game metaphor would be relevant to introduce OOP concepts to beginners. Like a physical block, a computing object has attributes that define its appearance (a position specified in x, y, z coordinates, a rotation, a translation and a color). Like a constructive game piece, a computing object can be connected to another one, to constitute a more complex structure that has enough skills and knowledge to be able to perform actions in a giving environment.

PrOgO provides students with a direct manipulation interface comprising realistic graphics representing OOP concepts, to help them to think about objects as in real life. Students can create objects, visualize their state and behavior, interact with them by changing the values of their attributes, executing their methods and make them communicate with one another. In order to help beginners understanding more easily the implementation of abstract concepts in a specific syntax such as C++, PrOgO interpretes into source code, all the manipulations executed directly on the 3D graphics. Since the visual representations are very close to the abstract concepts, each student's action is automatically interpreted into a C++ statement. This will constitute a complete program that the student can visualize and modify in order to practice programing.
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The PrOgO interface (see Figure 6) comprises, in its center, a 3D scene in which there is permanently a 3D block called base, providing a construction base to witch objects that are being created will be linked. On the lower left corner of the interface, there is the window Classes, which comprises all the 3D elementary blocks a student can instantiate to obtain objects. The top left of the interface displays the tree structure of the objects that have been created and assembled to each other. A code completion editor is anchored on the right side of the 3D scene, to display the C++ code that is being generated during the direct manipulations of the graphics, and allow students to implement the addressed concepts, while avoiding syntax errors. Once an object is created and placed into the 3D scene, the student can view all its attributes and methods.

Once an attribute value is changed, or a method is executed, its result on the state of the object is immediately visualized and the corresponding C++ code is automatically generated. Similarly, once a statement is completed in the code editor its result on the concerned object is immediately visualized in the 3D scene. 

Conclusion

Microworlds are cognitive learning tools that are used to promote abstract concepts understanding. They are small, interactive, and contain programmable models of real world environments. They are engaging and appealing for students learning based on constructivist principles: Active participation, individual knowledge construction, discovery and meaningful learning contexts. Microworlds are based on knowledge visualizations that aim at augmenting communication via graphics means that mediate knowledge through metaphors. In the context of OOP, they expand beyond programming languages to allow learners to explore and build models through the direct manipulation of objects on screen. They include game design elements promoting intrinsic motivation, self-regulation and active learning.

Research suggests that strategies involving active learning by the use of metaphors, visualizations, and gaming are excellent ways for people to explore a domain in rich and meaningful ways [START_REF] Rieber | Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games[END_REF][START_REF] Carroll | Metaphor, computing systems, and active learning[END_REF][START_REF] Naps | Exploring the role of visualization and engagement in computer science education[END_REF]. These attributes constitute the pillars that guide the design of microworlds in which they are carefully blended.

Such design provides an effective learning strategy that allows students to master learning concepts, increase their motivation and optimize the ownership of knowledge.

This study allowed to throw light upon the potential of microworlds in introducing OOP concepts, and their learning effectiveness by exploring their design foundations. We concluded that the power of microworlds as learning environments, lies on their design principles that are very rich, leading to an effective learning.

Microworlds succeed as learning environments in introductory OOP courses, since they foster the individual construction of a correct mental model of what is OOP paradigm. This occurs, as microworlds use concrete metaphors that have the potential to help novices to perceive very easily abstract and complex concepts. Using visualizations helps students to think of computational objects as identical with their graphic representations. This is mainly what allows to reify the metaphoric model witch dictates the OOP paradigm, that becomes more easy to be graspable by novices.

Moreover, microworlds succeed as engaging environments, as they incorporate gamelike elements. Games offer many advantages to microworlds design by having the potential to meet most of microworlds' objectives. Games provide characteristics of intrinsic motivation and foster the constructivist nature of microworlds.

Ultimately, this study allowed us to identify significant mediating variables in the design of a new microworld. It was therefore critically important, to choose the right metaphor that can allow beginner students to access easily the conceptual model of the OOP paradigm, and thus to be engaging and effective in introductory OOP courses.
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Constructivism

Microworlds are based on the constructivist learning theory, as indicated by several authors : Microworlds represent an immediate application for the infusion of constructivism into instructional design [START_REF] Rieber | Computer-based microworlds: A bridge between constructivism and direct instruction[END_REF]; microworlds are interactive environments in which we can learn about a specific domain through personal discovery and exploration [START_REF] Papert | Mindstorms: Children, computers, and powerful ideas[END_REF]; the power of microworlds as learning tools is based in the philosophy of constructivism [START_REF] Bliss | Tools for exploratory learning: A research program[END_REF].

Constructivism assumes that we learn best when we actively construct ideas and relationships in our minds based on experiments we do, rather than being told [START_REF] Nix | Cognition, education, and multimedia: Exploring ideas in high technology[END_REF], and that we learn with particular effectiveness when we are engaged in constructing personally meaningful physical artifacts [START_REF] Prensky | Computer games and learning: Digital game-based learning[END_REF]. Constructivism essentially consists of the idea that learning involves individual constructions of knowledge. Microworlds push this responsibility further by helping learners to determine the correctness of their own solutions, rather than reserving this responsibility for a teacher [START_REF] Hogle | Computer microworlds in education: Catching up with Danny Dunn[END_REF]. Microworlds succeed in that, since they offer a graphic and quick feedback leading to self-correction.

Microworlds rely on constructivism, since they are based on visualizations applying metaphors that help novices to construct knowledge and skills by themselves. As it was claimed by [START_REF] Carroll | Metaphor, computing systems, and active learning[END_REF], metaphors' primary function is to stimulate active learning. The use of metaphors facilitate active learning by providing clues for logical inferences through which learners construct their knowledge. Microworlds are therefore, intrinsically based on constructivism.

All this is in concordance with the proposition made by [START_REF] Hadjerrouit | Object-oriented software development education: a constructivist framework[END_REF], who has defined a pedagogical framework rooted in a constructivist epistemology for teaching OO design