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Introduction

In recent decades, modeling of multiphase uid ows has been taken a large interest of researchers, scientists and engineers, due to its large applications in natural and industrial elds. Numerical models in both Mesh-based and Meshless-based approaches are available to deal with multiphase uid ows simulations problems via the discretization of Navier-Stokes equations. In the context of grid-based approach,techniques for the capturing or tracking of interface phases are usually required. The most common techniques include the VOF (Volume Of Fluid) method [START_REF] Hirt | Volume of uid (vof ) method for the dynamics of free boundaries[END_REF], the LS (level set) method [START_REF] Osher | Level set methods: an overview and some recent results[END_REF] and the front tracking method [START_REF] Tryggvason | A front-tracking method for the computations of multiphase ow[END_REF] [START_REF] Unverdi | A front-tracking method for viscous, incompressible, multi-uid ows[END_REF]. The main drawback of these techniques is the diculty to predict the evolution of a moving interface. The inaccurate prediction of the evolution of interface phases causes subsequently a wrong approximation of its curvature and normal vector which explicitly causes errors in terms of surface tension forces. The use of adaptive mesh renement algorithms [START_REF] Berger | Local adaptive mesh renement for shock hydrodynamics[END_REF] can minimize these errors. However, the generation of a large amount of grid cells in these methods leads to a large computational time.

The Smoothed Particle Hydrodynamics (SPH) method, is a meshless method that has the ability to deal with moving interfaces naturally, without using any algorithm for interface tracking. This method was rst developed in 1977 to treat astrophysical simulations [START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF] [START_REF] Lucy | A numerical approach to the testing of the ssion hypothesis[END_REF]. Later, in 1988 it was applied to the simulation of uid ows [START_REF] Monaghan | An introduction to sph[END_REF]. Since then, the SPH method has received lots of attention and large improvements have been developed.

In the context of SPH method, several surface tension formulations were developed to deal with multiphase uid ows problems. Most of them are based on the continuum surface force (CSF) method developed by Brackbill et al [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] or with its variant, the Continuum Stress Surface (CSS) method [START_REF] Lafaurie | Modelling merging and fragmentation in multiphase ows with surfer[END_REF].

For more details please refer to the Appendix A). CSF and CSS methods were initially developed for mesh-based applications. Morris [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF] extended these formulations to meshless applications in the framework of the SPH method. Hu and Adams reported in [START_REF] Hu | A multi-phase sph method for macroscopic and mesoscopic ows[END_REF] that when the CSS formulation is applied, a negative pressure contribution to the surface stress according to the momentum equation is observed. This negative pressure might cause instability problems near to the uids interface.R1: Therefore, Hu and Adams [START_REF] Hu | A multi-phase sph method for macroscopic and mesoscopic ows[END_REF] have evaluated this contribution of negative pressure and proposed a modication to the CSS formulation in order to eliminate it. Afterwards, this formulation was applied to many multiphase uid ows applications [START_REF] Hu | An incompressible multi-phase sph method[END_REF][17] [START_REF] Grenier | An hamiltonian interface sph formulation for multi-uid and free surface ows[END_REF] [19] [START_REF] Neethling | Using smooth particle hydrodynamics (sph) to model multiphase mineral processing systems[END_REF]. However, as it is reported in [START_REF] Grenier | Modélisation numérique par la méthode SPH de la séparation eau-huile dans les séparateurs gravitaires[END_REF], this formulation does not fulll the tangential character of the surface stress tensor (capillary pressure tensor). For more details about the tangential character please refer to Appendix B. An alternative formulation of the surface tension for SPH was presented in [START_REF] Hunter | Surface tension in smoothed particle hydrodynamics[END_REF] [23] [24]. This formulation consider SPH particles as real uid particles with attractive/repulsive forces among them. Dening these forces to reproduce the eects of surface tension obtained promising results in several test cases involving drops and ow through fractured media.

In this work, we present an extension of the surface tension formulation proposed by Adami et al [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF] to be applicable in the case of more than two uid phases simulations. It is based on the Continuum Stress Surface formulation (CSS) [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF]. On the one hand, the proposed formulation enhances the stability by using a rst order consistency approximation to calculate the divergence operator. On the other hand, this formulation respects the physical tangential character (as it is shown in appendix B). Similarly to [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF], in this formulation the eect of the surface tension is added as a body force.

The proposed formulation benets of all the advantages of the formulation of Adami et al [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF], and in addition, it can be applied to simulations with more than two uid phases. These advantages make our surface tension formulation as a good alternative to the one proposed by Adams and Hu [START_REF] Hu | A multi-phase sph method for macroscopic and mesoscopic ows[END_REF] which is widely used in the context of SPH method [START_REF] Hu | An incompressible multi-phase sph method[END_REF][17] [START_REF] Grenier | An hamiltonian interface sph formulation for multi-uid and free surface ows[END_REF] [19] [START_REF] Neethling | Using smooth particle hydrodynamics (sph) to model multiphase mineral processing systems[END_REF].

However, and similarly to [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF], the formulation does not conserve exactly the total momentum. Moreover, we present an extension of the damping technique presented in [START_REF] Adami | A generalized wall boundary condition for smoothed particle hydrodynamics[END_REF] to allows for simulations of multiphase gravitational interfacial uid ows. This technique treats the jump in initial pressure condition via the acceleration and redistribution of the initial particle distribution. This procedure has a stabilization eect during the simulation process. In addition, we also present a modication of generalized wall boundary conditions for using the SPH method in multi-phase uid ows.

A series of benchmarks are performed to show the eciency of the proposed formulation. These benchmarks are organized on three categories test: the rst category is dedicated to test the consistency and the convergence of the proposed non-conservative surface tension force formulation. The second one investigates the ability of the presented SPH model to simulate multiphase uid ows caused by the gravity acceleration eect (gravitational multiphase uid ows). The third category regroups the rst two ones, with some more challenging physical constraints (high ratio of density and viscosity and presence of triple point junction [START_REF] Li | An arbitrary lagrangian eulerian method for three-phase ows with triple junction points[END_REF]). The obtained results show good agreement comparing with the analytical, numerical, and experimental ones available in literature.

Multiphase model

Governing equations

In this work we assume a weakly compressible viscous uid ow in isothermal conditions. Under these hypothesis, the Navier-Stokes and displacement equations expressed in Lagrangian form read as

     dρ dt = -ρ∇.v dv dt = 1 ρ -∇p + F V is + F ST + g dr dt = v (1) 
where d(.) dt represents the material derivative following an innitesimal uid element. ∇ is the nabla operator (gradient), ρ, p, v, r and g represent density, pressure, velocity vector, position vector, and the gravitational acceleration vector, respectively. F Vis and F ST denote the viscous and surface tension forces, respectively.

The weakly compressible smoothed particle hydrodynamics approach (WC-SPH) was used in this work [START_REF] Monaghan | Simulating free surface ows with sph[END_REF]. In order to close the system (1)it is required the use of an equation of state (EOS) which explicitly denes the pressure from the density instead to solve the Poisson equation. In this work the isothermal equation of state [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF] is used which is expressed as

p = p r ρ ρ 0 -1 + p b (2) 
where ρ 0 , p r and p b denote the reference density, the reference pressure, and the background pressure, respectively. For the linear constitutive equation of state given by equation( 2) the reference pressure is a function of the reference density and reference speed of sound c 0

p r = ρ 0 c 2 0 (3) 
The use of the physical speed of sound R2: c phy as a reference leads to a very small time step according to the stability conditions explained in 2.4, which causes a very large computational time. It is then a common practice to use an articial speed of sound as a reference. Thus, following [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF] and [START_REF] Sivanesapillai | A csf-sph method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas[END_REF] the value of c 0 is determined here as

c 2 0 ≥ max U 2 0 δρ , g L 0 δρ , σ ρ 0 L 0 δρ , µU 0 ρ 0 L 0 δρ (4)
Where U 0 , L 0 , µ and σ are the reference velocity, reference length, dynamic viscosity and surface tension coecient, respectively. δρ denote the dimensionless density variation which is set to 1% (δρ = 0.01 ).

In the case of multiphase uid ows, the reference pressure is chosen to be identical for all uid phases, following [START_REF] Colagrossi | Numerical simulation of interfacial ows by smoothed particle hydrodynamics[END_REF]. Therefore, the speed of sound in each phase will be dierent in such a way that the reference pressure for all uid phases will be conserved.

p r = p r 1 = ... = p r N f (5) p r = ρ 0 1 c 2 0 1 = ... = ρ 0 N f c 2 0 N f . ( 6 
)
where the subscript N f denotes the number of uid phases. This condition enhances the numerical stability of the computations [START_REF] Colagrossi | Numerical simulation of interfacial ows by smoothed particle hydrodynamics[END_REF]. Hence, the choice of the articial speed of sound c 0 is taken in such a way that both equations 4 and 6 are satised in all uid phases.

For numerical problems involving single-phase free surface uid ows, the background pressure is generally set to zero (p b = 0). Furthermore, for simulations of single or multiphase conned uid ows, the pressure is chosen as a positive value sucient to guarantee the positivity of the calculated pressure eld via the equation of state in order to avoid the tensile instability [START_REF] Marrone | An accurate sph modeling of viscous ows around bodies at low and moderate reynolds numbers[END_REF]. In this work, the numerical experiments show that the ideal background pressure p b is chosen as a function of the reference pressure and it is proportional to 0.05p r (i.e : p b ∝ 0.05p r ).

Discrete form of governing equations

The smoothed particle hydrodynamics is a meshless method. It discretizes the physical space into many R1: discrete elements, usually called particles, without any connectivity among them. This method is based on the approximation of any physical scalar (or vector) eld using the convolution formulation. Numerically, it is performed by replacing the Dirac delta function with a regular smooth function, which is called kernel. This function must satisfy some conditions such as symmetry (even function), normalization, compactness of it support, among others. We refer the interested reader to [START_REF] Liu | Constructing smoothing functions in smoothed particle hydrodynamics with applications[END_REF] for more details. The kernel function used in this work is the quintic spline [START_REF] Morris | Analysis of smoothed particle hydrodynamics with applications[END_REF] (equation 7) . This kernel was selected since it prevents a high disorder in the particle distribution. The kernel function depends on a parameter h, called the smoothing length, which denes the domain of inuence of the kernel function. In this work, the smoothing length h is a constant which is chosen relative to the initial inter-particle distance δx 0 (h = 1.33δx 0 ). The initial particle volume is taken as V 0 = δx 0 d , with d is the space dimension number. The mass of each particle i of dierent uid phases is chosen to be constant and equal to m = ρ 0 P hase V 0 during all the simulation time.

W (r, h) = α d          (3 -r h ) 5 -6(2 -r h ) 5 + 15(1 -r h ) 5 0 ≤ r h < 1 (3 -r h ) 5 -6(2 -r h ) 5 1 ≤ r h < 2 (3 -r h ) 5 2 ≤ r h < 3 0 r h ≥ 3 (7)
where α d = 7 478h 2 π for 2D cases, and r is the distance between two neighboring particles i and j (r = r ij = r ir j ).

Hu and Adams [START_REF] Hu | A multi-phase sph method for macroscopic and mesoscopic ows[END_REF] developed a formulation that exactly guarantees mass conservation. In this formulation, the continuity equation of the Navier-Stokes system (1), can be replaced by the expression

ρ i = m i n b j W ij (8)
where ρ i and m i are the density and the mass of the particle i, respectively. W ij = W (r ij , h) is the Kernel function, r ij = r i -r j is the distance between the particle i and its neighbours j. The number of particles in the neighborhood of particle i is denoted as n b .

This formulation is widely used in SPH codes, and it works very well in the case of conned uid ow simulations and allows the use of higher values of the CFL number. However, this formulation is very sensitive to the particle disorder. Subtle variations in the particle positions cause high uctuations in the particle density and thus in pressure specially in the case of gravitational uid ows. This problem can be alleviated by an adequate redistribution and acceleration of the initial particle positions and velocities by using a damping technique that will be detailed in Section 2.5.

dv i dt = 1 ρ i -∇p i + F i V is + F i ST + g i (9) 
The acceleration of the particle i due to the gradient of pressure is approximated following the work in [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF] as

1 ρ i ∇p i = 1 m i n b j V 2 i + V 2 j p ij ∇W ij (10) 
Where V i = m i ρ i is the volume of particle i. The term ∇W ij = ∂W ∂r ij e ij is the gradient of the kernel function, and e ij =

r ij r ij = r i -r j r ij
is the unit inter-particle vector.

The term p ij is dened to ensure the continuity of pressure even for the case of discontinuous density between uid particles (for example, when they belongs to dierent phases). Following [START_REF] Hu | An incompressible multi-phase sph method[END_REF] this term reads as

p ij = ρ j p i + ρ i p j ρ i + ρ j (11) 
The acceleration due to the viscous forces can be expressed as in [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF] 1

ρ i F i V is = 1 m i n b j V 2 i + V 2 j µ ij v ij r ij ∂W ∂r ij (12) 
Where v ij = v iv j is the relative velocity between the particle i and j. The term µ ij is the inter-particle-averaged dynamic viscosity which is dened as

µ ij = 2µ i µ j µ i + µ j (13) 
In equation ( 13), µ i is the dynamic viscosity of the particle i.

This form of viscous acceleration conserves the linear momentum [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF], and performs well in the case of short-time simulations. In this work we have chosen an alternative formulation [START_REF] Hu | Angular-momentum conservative smoothed particle dynamics for incompressible viscous ows[END_REF] which conserves both angular and linear momentum in order to perform long-time simulations. This alternative formulation reads as

1 ρ i F i V is = ζ m i n b j V 2 i + V 2 j µ ij v ij r ij r 2 ij ∇W ij (14) 
Where ζ = d + 2, and d is the space dimension number.

The surface tension force:

In the case of a two-phase uid, a Continuum Surface Force (CSF) formulation [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] may be used to represent the surface tension force. This formulation describes the pressure-jump condition normal to the separation interface of the uids. Assuming that the surface tension coecient σ (1-2) is constant between two uid phases (1 and 2), the expression of the force can be expressed as

F ST (1-2) = -σ (1-2) κ n δ Σ (15) 
In equation [START_REF] Hu | A multi-phase sph method for macroscopic and mesoscopic ows[END_REF], κ, n and δ Σ denote the curvature, the normal vector to the interface (see gure 17) and the delta function, respectively. In the context of the SPH method, equation ( 15) reads as

F ST (1-2) i = -σ (1-2) ∇ • n i ∇C ( 16 
)
where C is the color function that has a unit jump across the interface. It's equal to 1 in one particle uid phase and 0 in its neighboring particle of other uid phase. Thus, an alternative formulation should be used in these cases. The Continuum Surface Stress (CSS) [START_REF] Lafaurie | Modelling merging and fragmentation in multiphase ows with surfer[END_REF] is a tensorial formulation of the surface tension force equivalent to the CSF formulation given in equation ( 16). The CSS formulation can be expressed as a body force applied through a transition region of nite thickness. The size of this nite thickness is equal to the diameter of Kernel function (see gure 1)

F ST i = ∇ • Π i (17) 
where Π i denes the immiscible mixture surface stress tensor of the particle i (capillary pressure tensor). Assuming that the particle i belongs to the l uid phase, then the mixture surface stress can be expressed as

Π i = k =l Π kl i (18) 
In equation 18, Π kl i is the uid surface stress tensor between phases k and l, dened as

Π kl i = σ kl ∇C kl i ∇C kl i 2 I -∇C kl i ⊗ ∇C kl i ( 19 
)
By assuming that the particle i belongs to the phase l, the gradient of the color function at the interface between two dierent phases k and l (∇C kl i ) reads as [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF] ∇C

kl i = 1 V i n b j V 2 i + V 2 j C kl ij ∇W ij (20) 
The inter-particle-averaged color function C kl ij is dened as

C kl ij = ρ i ρ i +ρ j
if the particle j belongs to the k uid phase 0 Otherwise [START_REF] Grenier | Modélisation numérique par la méthode SPH de la séparation eau-huile dans les séparateurs gravitaires[END_REF] The CSS formulation given by equations ( 18) and ( 19) is a variation of the CSF formulation (equation [START_REF] Hu | A multi-phase sph method for macroscopic and mesoscopic ows[END_REF]). The relation between the CSF and the CSS formulations is presented in the Appendix A. In the CSS formulation, the interior eorts associated to the surface stress tensor Π are tangent to the interface, which is coherent with the propriety of surface tension force (the details are presented in the Appendix B ) The direct application of the CSS formulation given in equation [START_REF] Hu | A constant-density approach for incompressible multi-phase sph[END_REF] in the context of the SPH method, could lead to numerical instabilities [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF][START_REF] Hu | A multi-phase sph method for macroscopic and mesoscopic ows[END_REF][START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF]. R1: In this work, the divergence formulation used in [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF] for the calculation of the curvature of the interface is adopted to calculate the divergence of the capillary pressure tensor (equation ( 17)). This formulation does not require a matrix inversion and gives a rst-order consistency approximation. Or in other words, This formulation can reproduce exactly the divergence of any linear eld .Thus, the modied discrete form of equation ( 17) is

F ST i = d n b j V j Π ij ∇W ij n b j V j r ij ∂W ∂r ij (22) 
where we dene the inter-particle surface stress tensor as

Π ij = Π i -Π j , d
is the number of space dimensions and r ij = r ir j is the inter-particle distance.

R1: Note that with this formulation, the surface tension force does not exactly conserve the total momentum. However, It grantees a good approximation even when a disordered particles distribution is presented or the support of the kernel function is not full with particles contained within the transition region. This force takes the eect as a body one. This formulation takes all advantageous of the formulation proposed in [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF], and in addition it can be applicable in the case of more than two-phases uid ows simulation problems.

Wall boundary conditions

In this work, we also present a modication of the generalized wall boundary condition method proposed by [START_REF] Adami | A generalized wall boundary condition for smoothed particle hydrodynamics[END_REF] to deal with multiphase uid ows. In this method, three layers of dummy particles must be added in the normal direction to the wall interface (see gure 2). The dummy particles are placed to represent the wall in such a way that it is ensured the completeness of the support of kernel function, in order to obtain an accurate integration of the eld variables near the wall interface. Free-slip or no-slip wall boundary conditions can be applied using this method. The free-slip boundary condition is applied by omitting the viscous interaction between the uid particle with the adjacent dummy particles in the calculation of uid viscous forces (equation 14). In the case of no-slip wall boundary condition, a virtual velocity v w is imposed to the wall-dummy particle interacting with the uid particle i in equation 14. This velocity is dened as

v w = 2v i -ṽi (23)
where v i is the prescribed velocity of wall particle i and ṽi denotes the in- terpolation of the smoothed velocity eld of the uid phase to the dummy particle position. The term n f refers to the number of neighboring uid particles j of the wall particle i.

ṽi = n f j v j W ij n f j W ij (24)
The pressure in the dummy-wall particle is calculated from the neighboring uid particles j according to [START_REF] Adami | A generalized wall boundary condition for smoothed particle hydrodynamics[END_REF] 

p w = n f j p j W wj + (g -a w ) n f j ρ j r wj W wj n f j W wj (25)
where the term a w represents a prescribed wall acceleration, if moving walls are present.

The method proposed in [START_REF] Adami | A generalized wall boundary condition for smoothed particle hydrodynamics[END_REF] computes the density of the dummy particle via the equation of state. This formulation is applicable for the case of single uid with constant viscosity or in case of multiphase inviscid ows [START_REF] Monaghan | Shock simulation by the particle method sph[END_REF] noted when the neighboring particles belong to dierent uid phases. Here we solve this ambiguity by using a method based on the uid particle mirror similarity. We assume that each uid particle considers all their wall-dummy neighbor particles as similar to it in terms of density, viscosity and volume.

Using this approach we need to modify equations ( 10), ( 12) or ( 14) as follows

1 ρ i ∇p i = 1 m i n b j P V ij ∇W ij (26) 1 ρ i F i V is = 1 m i n b j µ ij V v ij r ij ∂W ∂r ij (27) 
1 ρ i F i V is = ζ m i n b j µ ij V v ij r ij r 2 ij ∇W ij (28) 
Where P V ij and µ ij V are dened as

P V ij = V 2 i + V 2 j ρ j p i +ρ i p j ρ i +ρ j if the particle j is a uid particle V 2 i (p i + p j ) if the particle j is a wall particle ( 29 
)
µ ij V = 2 V 2 i + V 2 j µ i µ j µ i +µ j
if the particle j is a uid particle 2V 2 i µ i if the particle j is a wall particle [START_REF] Liu | Constructing smoothing functions in smoothed particle hydrodynamics with applications[END_REF] Note that the direct application of the proposed wall boundary conditions method can present spurious currents when the interfaces between the uid phases includes a surface tension next to the wall boundaries. To deal with this issue, a special treatment as proposed in [START_REF] Adami | Contact line hydrodynamics with sph[END_REF] can be added to this method. However, this problem is not addressed here since it is out of the scope of the present work.

Time stepping

R1: In this work a Predictor-Corrector scheme is proposed for time integration. An explicit Euler method is used to predict the velocity ( v n+1 i ) and the position ( r n+1 i ) of the particle i. R1: The corrected velocity at n + 1 (v i n+1 ) is approximated by using trapezoidal-rule, using predicted parameters ( .) n+1 instead of the nal ones (.) n+1 . Note that, the density and pressure at time n (ρ n , p n ) and the predicted values of velocity and position ( v n+1 , r n+1 )are used to predict the right hand-side of momentum equation dv i dt n+1

. The nal position r i n+1 is ad- vected by the corrected velocity.

The following algorithm summarizes the prediction step.

v n+1 i = v i n + δt dv i dt n r n+1 i = r i n + δt dr i dt n (31) 
and the correction step is summarized as follows

   v i n+1 = v i n + δt 2 dv i dt n + dv i dt n+1 = 1 2 v i n + v n+1 i + δt 2 dv i dt n+1 r i n+1 = r i n + δtv i n+1 (32) 
The nal density (at time n+1) is calculated as

ρ n+1 i = m i n b j W ( r ij ) n+1 . Afterwards, the nal pressure p n+1 = p(ρ n+1 ) is calculated according to the equation of state (2), p n+1 = p(ρ n+1 ).
The superscripts n and n + 1 refers to the time step, whereas {.} refers to the predicted physical parameter {.} . For more details about the use of this scheme in the context of interfacial multiphase SPH model please see Appendix C.

To ensure the stability of the method, the time step (δt) must be chosen to fulll the kinetic, viscous, body force and surface tension conditions [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF] 

[1] δt = CF L h max(c 0 i ) + max( v i ) (33) δt ≤ 0.125 h 2 max( µ i ρ 0 i ) (34) δt ≤ 0.25 h g 1/2 (35) δt ≤ 0.25 min(ρ k , ρ l )h 3 2πσ k-l 1/2 (36) 
By using the density summation formulation (equation 8) with this time integration scheme, the simulations were stable with CFL numbers equal to one. In the numerical simulations presented here, a value of CF L = 1 is employed.

Damping strategy for multiphase uid ow

In the framework of weakly compressible uid ows, the accuracy on the determination of the pressure eld using an equation of state depends on the density estimation. Here, the density of the particles is updated using the equation [START_REF] Unverdi | A front-tracking method for viscous, incompressible, multi-uid ows[END_REF]. It becomes obvious that a good estimation of the position of the particles is crucial to obtain a good approximation of the pressure.

In this work, an initial regular lattice distribution of particles is chosen to perform the simulation. However, in the context of gravitational uid ow problems, the use of the density summation formulation (equation ( 8))

to update density (and thus the pressure with equation ( 2)) in a regular distribution particles may spoil the imposed initial hydrostatic pressure and cause spurious high-frequency oscillations. In single uid ow formulations, such artifacts can be reduced using a damping technique during the initial transient of simulations [START_REF] Adami | A generalized wall boundary condition for smoothed particle hydrodynamics[END_REF][START_REF] Monaghan | Sph particle boundary forces for arbitrary boundaries[END_REF]. This damping smooths both the distribution and the velocity of the particles to mitigate the oscillations. In fact, we introduce a mitigation factor (ξ D (t) ≤ 1) which acts as a multiplication factor on the body force in the momentum equation ( 9) as well as in the wall pressure equation 25, to obtain a gradual introduction of the gravity force.

The mitigation factor is only activated during the time T D (damping time), and is dened as

ξ D (t) = sin t T D -0.5 π + 1 t T D 1 t > T D (37) 
Note that other expressions are possible instead of 37, as for example, the Hill equation [START_REF] Gesztelyi | The hill equation and the origin of quantitative pharmacology[END_REF].

Unfortunately, these damping techniques [START_REF] Adami | A generalized wall boundary condition for smoothed particle hydrodynamics[END_REF][START_REF] Monaghan | Sph particle boundary forces for arbitrary boundaries[END_REF] are not applicable in the case of the simulation involving gravitational multiphase ows. This is due to the dierence in density between the uid phases (buoyancy force), which generates a considerable motion of the particles during the damping period.

To extend the application of this technique to gravitational multiphase uid ow simulations, a new strategy must be dened. In this work, all the physical properties of all uid phases (reference density, viscosity, mass ...) are set to be equal to those of the heavier phase during the damping procedure, in order to avoid any motion due to the dierent properties between the phases. This technique allows the particles to be slightly redistributed and accelerated in order to reach a good estimation of the initial hydrostatic pressure and velocity. After the damping time, the real physical properties must be assigned again to each phase, and the calculation procedure continues as usual. The reader is referred to Appendix C for more details about the use of this technique in the case of interfacial multiphase uid ow simulations.

Numerical applications and validation

In this section we present several numerical examples to test the accuracy, stability and applicability of the proposed SPH model for multiphase ow problems. Three categories of tests are investigated:

The rst category of tests is dedicated to investigate the consistency and the convergence of the non-conservative formulation for the surface tension force proposed in this work, for the case of two and three phase ows with presence of triple junction points. This is done through the comparison with available analytical solutions. The examples addressed in this category are the square droplet deformation [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF] ,the spreading lens between two stratied uid layers [START_REF] Boyer | Cahn hilliard/navierstokes model for the simulation of three-phase ows[END_REF] [25], and the capillary-viscous wave test [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF][START_REF] Hu | A multi-phase sph method for macroscopic and mesoscopic ows[END_REF][START_REF] Hu | An incompressible multi-phase sph method[END_REF][START_REF] Hu | A constant-density approach for incompressible multi-phase sph[END_REF][START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF] .

The second category of tests is devoted to demonstrate the ability of the presented SPH model for the simulation of multiphase ows under gravity eects neglecting the surface tension. The examples addressed here are the evolution of the two-phase stratied uid layers and the Rayleigh-Taylor instability (RTI). The rst example is not only performed to examine the stabilization eect of the damping technique but also to validate the proposed modications on generalized wall boundary conditions when the two uid phases meet the solid boundaries. The second example, is dawn to compare the results of the presented SPH multiphase model with the ones using Level-Set [START_REF] Grenier | An hamiltonian interface sph formulation for multi-uid and free surface ows[END_REF] and other SPH [START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF] models, and also with the analytical approach presented in [START_REF] Layzer | On the instability of superposed uids in a gravitational eld[END_REF].

In the third category of tests we introduce high density and viscosity ratio eects. The rising of an air bubble trough a water column and through two stratied uid layers are investigated. The results obtained with the new method are compared to those obtained with other numerical methods (Volume-Of-Fluid [START_REF] Hysing | Quantitative benchmark computations of twodimensional bubble dynamics[END_REF], Level-Set [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase ow[END_REF]) and also with experimental results [START_REF] Bonhomme | Inertial dynamics of air bubbles crossing a horizontal uiduid interface[END_REF].

Finally, we present the example of two rising bubbles through a water column using a higher particle resolution than in the previous examples. In all the numerical examples of this paper, the measurement of the physical properties obtained at any desired point r m has been performed using a zeroth order consistency SPH approximation (Shepard lter [START_REF] Shepard | A two-dimensional interpolation function for irregularlyspaced data[END_REF])

p(r m ) = n i V i p i W (r m -r i ) n i V i W (r m -r i ) (38) 
Where n refers to the number of neighboring particles of the measuring point r m .

First category of tests: Validation of the formulation for the surface tension

We present here the rst category of numerical tests devoted to the validation of the formulation for the surface tension.

Square droplet deformation

In this rst test case, the SPH method with CSS model of the surface tension force is applied to the simulation of the deformation of a square droplet under the action of the surface tension force. This example has already been investigated by Adami et al [START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF] using a SPH method with CSF model. The A non-slip boundary condition is applied on all sides of the square box.

The evolution of the kinetic energy of the particles inside the droplet (E k = At the stabilized state (equilibrium state) the particles are in rest, and the square droplet is totally transformed in a circular droplet. Under the uid incompressibility hypothesis, both phases must conserve their volumes (areas in 2D) during all the evolution process. Thus, the equality πR 2 = l 2 d holds for for the square droplet, and therefore the equilibrium radius is R =

1 2 i d m i d v id
l d √ π ≈ 0.338 [m]
. From Laplace's law, the pressure of the uid particles inside the droplet (phase 1) must be higher than that of the surrounding particles (phase 2), and the jump of pressure between the two phases must satisfy the

condition ∆p = σ 1-2 R ≈ 2.954 [P a] (39) 
The surface tension forces orientation and the magnitude of the velocity are shown in gure 5. We observe that the surface tension force has a radial direction, oriented towards the center of droplet. This orientation corresponds to the direction of normal vectors to the interface between the uid phases (see the left side of the gure 5 ). On the right side of the gure 5 the magnitude velocity of every particle is represented. The velocity magnitude is in the order of O(10 -3 ). When forces due to this spurious eect are comparable to other physical forces such as viscous, gravitational, and surface tension forces, errors will be greater.

In gure 6 we show the cut of pressure eld at Y = 0 (X-axis) obtained in the simulations and also the analytical pressure predicted by Laplace's law. It is observed a good agreement between the numerical results and the theoretical pressure. These results show that the SPH method with the CSS non-conservative surface tension model is able to represent correctly the equilibrium state of this two phase ow problem.

When a low viscosity of µ 1 = µ 2 = 0.001[P a.s] is used (small viscous forces) to simulate the square droplet deformation test case, the pressure prole at the equilibrium state is less accurate. This is because in this case viscosity forces are comparable with the forces due to the parasitic currents (see gures 7 and 8). Note however that the circular shape of droplet is well approximated. Parasitic currents are a numerical artifact suered for numerical approaches of the surface tension based on the use of CSF or CSS formulations. The elimination of this eect is not addressed here. For more details about parasitic currents artifact and their elimination, please refer to [START_REF] Popinet | A front-tracking algorithm for accurate representation of surface tension[END_REF][START_REF] Torres | The point-set method: front-tracking without connectivity[END_REF][START_REF] Jamet | On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[END_REF].

Three density ratios ρ 2 ). The square box contains two dierent uid phases in an stratied arrangement. These uid phases are respectively referred as uid phases 1 (the phase at the top of the stratication) and 2 (the phase at the lower part of the stratication arrangement) whereas the lens is referred as phase 3.

Due to the eect of the surface tension, the lens evolves until an equilibrium state (see gure 10). The contact angles at the triple junction point follows the Young's relation The dynamic viscosities are identical for the three uid phases (µ 1 = µ 2 = µ 3 = 0.5 [P as.s]). The interfacial surface tension applied on all uids interfaces is (σ

sinθ 1 σ 2-3 = sinθ 2 σ 1-3 = sinθ 3 σ 1-2 (40) fluid 1 fluid 2 fluid 3 θ 2 θ 3 R 3 2 θ 1 h d X Y
1-2 = σ 2-3 = σ 1-3 = 5 [N/m]
), in order to obtain a symmetric lens. The analytic solution is obtained from Laplace's law and Young's relation. The theoretical value of the pressure jump between phases (∆p) is obtained in 2D case from equation [START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF]. The shape of the half lens ( symmetric with respect to the X axis) at equilibrium state is assumed to be a circular segment with following parameters (see gure 10): The distance between the two triple junction points ( d), the contact angles of the i th phase (θ i ), the sagitta (the distance from the center of the arc to the center of its base) of the segment ( h), the radius of the curvature of the interface between the phases i and j (R ij ) (in gure 10, we represent the curvature between the upper uid of the stratication (1) and the uid of the lens (3) ).

∆p = p i -p j = σ i-j R ij (41) 
At the equilibrium state the lens area A, the distance between triple junction points d, and the contact angles θ i can be expressed follows the relation [START_REF] Kim | A diuse-interface model for axisymmetric immiscible twophase ow[END_REF] 

d = 1 8A 2(π -θ 1 ) -sin((π -θ 1 )) sin 2 (π -θ 1 ) + 2(π -θ 2 ) -sin((π -θ 2 )) sin 2 (π -θ 2 ) -1 2 ≈ 0.4617 [m] (42) 
Note that in this test case, the surface tension coecients are taken identical.

Then, the Young's relation (equation ( 40)) reads as

θ 1 = θ 2 = θ 3 = 2π 3 .
Geometrical consideration leads to the following results pressure instability is appeared near to the triple junctions points (following the X axis) for both resolutions (see gure 13). This instability tend to disappear with increasing of resolution ( The instability in low resolution is more marked than in higher one). Note that for a higher particle resolution, the three uid interfaces. The degree of wettability can be determined by the spreading parameter S p [START_REF] Rowlinson | Molecular theory of capillarity[END_REF]. If the spreading parameter is positive the uid of this phase will spread completely on the interface between the other phases (total spreading). Here, in order to check if the proposed method reproduces accurately this phenomenon, we consider two dierent congurations following the work presented in [START_REF] Boyer | Cahn hilliard/navierstokes model for the simulation of three-phase ows[END_REF].

R 31 = R 32 = d 2 sin θ 3 2 ≈ 0.2665 [m] (43) h = R 32 1 -cos θ 3 2 ≈ 0.1333 [m] (44) 
We dene the spreading parameter for the lens (S p 3 ) and the upper uid (S p 1 ) phases as follows

S p 3 = σ 1-2 -(σ 1-3 + σ 2-3 ) (45) 
S p 1 = σ 2-3 -(σ 1-2 + σ 1-3 ) (46) 
The rst conguration of the problem is dened by choosing the values of interfacial surface tensions as {σ

1-2 , σ 1-3 , σ 2-3 } = {3, 1, 1} [N/m] (S p 3 = 1 [N/m] > 0)
. This choice leads to the total spreading of the lens phase 3 on the interface phases 1-2

For the second conguration, the values of interfacial surface tensions are

chosen as {σ 1-2 , σ 1-3 , σ 2-3 } = {1, 1, 3} [N/m] (S p 1 = 1 [N/m] > 0)
. This choice leads to the total spreading of the upper uid phase 1 on the interface phases 2-3.

In Figure 14 we show the evolution of the spreading until the equilibrium state is reached for the two congurations considered. In both cases, the triple points disappear and the equilibrium interfaces are plane in the rst case and sphericalsecond in the second simulation case. The results obtained are in agreement with those obtained in [START_REF] Boyer | Cahn hilliard/navierstokes model for the simulation of three-phase ows[END_REF].

(a) (b)

Figure 14: Total spreading evolution of the uid lens for the congurations : a)

σ 1-2 , σ 1-3 , σ 2-3 = {3, 1, 1} [N/m] and b) σ 1-2 , σ 1-3 , σ 2-3 = {1, 1, 3} [N/m].

Capillary-viscous wave

In this example, the dynamic test case involving a liquid-droplet oscillation in a liquid phase under the action of capillary forces is investigated. This test was already simulated in the SPH framework in several works such as [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF][START_REF] Hu | A multi-phase sph method for macroscopic and mesoscopic ows[END_REF][START_REF] Hu | An incompressible multi-phase sph method[END_REF][START_REF] Hu | A constant-density approach for incompressible multi-phase sph[END_REF][START_REF] Adami | A new surface-tension formulation for multi-phase sph using a reproducing divergence approximation[END_REF]. The liquid-droplet (referenced with a d subscript) has a radius of R = 0.1875[m] and is surrounded with another liquid phase (referenced with a l subscript). Both uids are placed at the center of a square box of size L x = L y = 1[m]. The densities and dynamic viscosities of the droplet and its surrounding uid are considered the same and equal to ρ d = ρ l = 1[Kg/m 3 ], µ d = µ l = 0.05[P a.s], respectively. The surface tension coecient between the two phases is set as unity (σ

d-l = 1[N/m]).
A divergence-free initial velocity eld is assigned to all uid particles and it reads as

v x = v 0 x r 0 1 - y 2 r 0 r e -r r 0 (47) v y = -v 0 y r 0 1 - x 2 r 0 r e -r r 0 (48) 
Where r denotes the distance between the particle position (x, y) and the droplet center. Terms v 0 and r 0 are the characteristic velocity and distance, and are taken as v 0 = 10[m/s] and r 0 = 0.05 [m]. We study the convergence properties using three dierent number of particles 900, 3600, 14400 particles. The reference speed of sound is chosen equal to c 0 = 10 [m/s] for both uid phases under all resolutions. A positive background pressure is set as (p b = 5 [P a]). A no-slip boundary condition is applied on the square box sides.

Figure 15 shows droplet particles positions at t = {0.0, 0.08, 0.16, 0.26}[s],

under the resolution of 14400 particles ( about the same resolution used by Morris et al [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF] ). A good agreement is observed comparing with Morris et al [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF] and also with Adami et al results (their gure 6 ). R1: As it is shown in the gure 16, the present SPH model provides more regular particle distribution and more smooth interface comparing with the results obtained by [START_REF] Morris | Simulating surface tension with smoothed particle hydrodynamics[END_REF] with the consideration that initial distribution of the particles are dierent.

Figure 17 shows the time evolution of the center of mass position of the upper right-quarter section of the droplet with dierent resolutions. It is observed that with increasing resolution the dierence in results becomes less signicant (the results with resolutions 3600 and 14400 particles are very close comparing with the lowest resolution of 900 particles). 

Second category of tests: Validation of the formulation for simulation of multiphase ows under gravity eects neglecting the surface tension

ρ 1 = 1, ρ 2 ρ 1 = 2 and ρ 2 ρ 1 = 4 [51]
. Each test case is investigated using three dierent particle resolutions {24×49, 49×99, 99×199}. The subscripts 1 and 2 denote the upper and the lower uids, respectively.

The half-length of the column is chosen as L = 1 [m], the interface between two uids is located at the middle of the column (at height equals to L). The Figure 19 shows the eect of the damping technique on the simulation results

for the pressure for the three congurations. We can see clearly that using the damping technique leads to lower amplitude of the pressure oscillations and to a faster convergence to the stabilized hydrostatic value. It is also observed that for the highest density ratio, the pressure has an important amplitude of oscillation.In this case, using the damping technique reduces the amplitude of the oscillations, but they are still important. This is principally due to A remedy to further reduce the oscillations is to increase the damping time (T D ). In the case of unit density ratio the oscillations of the pressure are very limited and reachs the stabilized value of the hydrostatic pressure very quickly. After the stabilization of the pressure eld using the damping technique, we compare the obtained pressure proles using the present SPH model with the analytical ones for dierent density ratios and dierent particle resolutions (see gure 20). The numerical results agree well with the analytical ones.

In gure 21, we show the particle distribution and hydrostatic pressure at equilibrium for the three particle resolutions for the ρ 2 From the results presented in gures 20 and 21 we can also conclude that the proposed modications to the generalized wall boundary conditions method [START_REF] Adami | A generalized wall boundary condition for smoothed particle hydrodynamics[END_REF] (see section 2.3) give good results. In order to perform an additional analysis of the eciency of this method, the same example was investigated under high density and viscosity ratios. The density ratio was chosen to be equal ρ 2 results obtained with the present approach and analytical results. Figure 24 shows the vertical uid column particles distribution at stabilized state. The uid particles are colored with phases (gray for the uid 2 and black for the uid 1) in order to show that the interface between the two uid phases that meet the vertical wall boundaries is stable. As it is shown in the center of the gure 24, there are spurious currents which present a maximum velocity magnitude of order O(10 -3 ). A smooth hydrostatic pressure eld is observed via the right side of gure 24.

RayleighTaylor instability

The Rayleigh-Taylor instability (RTI) is a widely used benchmark [START_REF] Cummins | An sph projection method[END_REF][START_REF] Hu | An incompressible multi-phase sph method[END_REF][START_REF] Grenier | An hamiltonian interface sph formulation for multi-uid and free surface ows[END_REF][START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF] to test the accuracy of numerical methods for multiphase gravity ows. The RayleighTaylor instability, occurs at an interface between two uids of dierent densities when the lighter uid pushes the heavier uid. This phenomenon occurs in a multitude of physical (salt domes, weather inversions, etc) and industrial applications.

In this work a Rayleigh-Taylor with sinusoidal asymmetric interface perturba-

tion is studied. The computational domain is [0, L] × [0, 2L] with L = 1 [m].
The computational domain is divided in two sub-domains by a sinusoidal interface y(x) = 1 -0.15 sin (2πx) (see gure 18). The lower sub-domain is occupied by the lighter uid (referred as phase 1) which has a density ρ 1 = 1 [kg/m 3 ], while the upper sub-domain is occupied by the heavier uid (referred as phase 2) with density ρ 2 = 1.8 [kg/m 3 ]. The Reynolds number is dened here as R e = √ g L 3 ν

, and a value of R e = 420 is chosen. In the previous denition, g = 1[m/s 2 ] is the modulus of the gravity acceleration vector, and ν = ν 1 = ν 2 = 0.0024 [m 2 /s] is the kinematic viscosity which is chosen to be equal and constant for both uids phases.

The particles have an initial regular lattice distribution. The RTI test is solved with three dierent particles resolutions {49 × 99, 99 × 199, 133 × 267} . The reference speeds of sound are taken as {c 01 , c 02 } = {13.41, 10} [m/s],

for the lighter and heavier uids, respectively. The reference pressure is chosen equal to 9 [P a]. The no-slip boundary condition is applied on all solid boundaries.

In gure 25 we compare three dierent particle resolutions at three dierent times t = 1 [s], t = 3 [s], t = 5 [s] . Quantitatively, it's shown that the three particle resolutions are able to simulate substantially the same phenomena of RTI. Nevertheless, at the low resolution 49 × 99 the roll-up of the small structures at the mushroom-shaped head are not well reproduced. For the ner resolutions, all the small structure phenomena due to the development and roll-up of the mushroom-shaped heads are captured. The two ner resolutions (99 × 199 and 150 × 300 ) are very similar to each other in terms of the shape of the instability.

We also performed a comparison between the RTI interfaces reproduced with the proposed SPH model and two dierent numerical methods. In gure 26, we compare the results at time t = 5 [s] with the resolution of 150 × 300 particles with those of a Level-set method [START_REF] Grenier | An hamiltonian interface sph formulation for multi-uid and free surface ows[END_REF] and another SPH model [START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF].

There are some dierences between the SPH method [START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF] and the method presented here. For instance in [START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF] a Wendland kernel function [START_REF] Wendland | Piecewise polynomial, positive denite and compactly supported radial functions of minimal degree[END_REF] and time-integration of continuity equation for the density are used instead of the quintic spline kernel 7 and summation-based density 8 used in the presented SPH method, respectively. The present SPH model can reproduce the RTI interface in good agreement with the other numerical models which have more resolution (Level-Set: a grid of 312 × 624 cells, and SPH model [START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF]:150 × 300 particles). Globally, the RTI interface reproduced with the proposed SPH approach is closer to that reproduced with the SPH model of [START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF]. This is probably due to the same nature of both models. We note, however that in some places the interface with the proposed SPH method is closer to that obtained by the Level-set one [START_REF] Grenier | An hamiltonian interface sph formulation for multi-uid and free surface ows[END_REF]. These results are only of a qualitative nature. Monaghan et al [START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF] prefer to examine the convergence by comparing the time evolution of the position of the Y -coordinate of the highest particle of the lighter uid (phase 1) with that obtained from the Layzer's theory [START_REF] Layzer | On the instability of superposed uids in a gravitational eld[END_REF][START_REF] Dalziel | Toy models for rayleigh taylor instability[END_REF]. Thus, the highest point of the phase 1 uid for the three particle resolutions {49 × 99, 99 × 199, 150 × 300} is plotted in gure 27 together with the curve obtained using the Layzer's theory. The results are in good agreement with the Layzer theory. Note that the the Layzer theory is for a periodic domain, while the results are obtained from the simulation in a rectangular rigid domain with no-slip boundaries. This fact may explain some of the deviations of the numerical results from the theoretical line.

Third category of tests: high density and viscosity ratio eects

The simulations of the bubble rising behaviour can be characterized by the Reynolds and the Eötvös dimensionless numbers [START_REF] Hysing | Quantitative benchmark computations of twodimensional bubble dynamics[END_REF] and also the density and viscosity ratio ( ρ 1 ρ 2 , µ 1 µ 2 ). The Reynolds number R e gives the ratio of inertial to viscous eects and is expressed as

R e = ρ 1 v c L c µ 1 . (49) 
While the Eötvös number E o compares buoyancy eects to capillary ones :

E o = ρ 1 v 2 c L c σ . (50) 
In this section, the subscripts 1 and 2 refer to the heavier and lighter uid, respectively. The characteristic velocity is dened as v c = 2R g and L c = 2R refers to the characteristic length. R is initial radius of the bubble and g is the magnitude of the gravity acceleration vector.

Single bubble rising through a vertical column of water

The purpose of this test is to show the eciency of the present SPH model to simulate a two phase interfacial uid ow with low and high density ratios.

These tests are taken from the work of Hysing et al [START_REF] Hysing | Quantitative benchmark computations of twodimensional bubble dynamics[END_REF]. A single bubble rising in a vertical column due to gravity eect. The initial bubble position and dimensions of the vertical column are described related to the bubble radius R R1: (see gure 28). The physical variables and parameters are summarized at Table 1 as Case 1.

This test is done with two dierent particle resolutions 66×133 and 133×267. The position of the gravity center GC y of the bubble and its vertical velocity v GC are computed as follows

GC y = i N b y i N b . ( 51 
) v GC = i N b v yi N b . ( 52 
)
N b denotes the number of particles in the bubble, and y i is the Y coordinate of the particle i which belongs to the particle set of the bubble. The term v yi denotes the vertical component of the velocity of the particle i.

In gure 29 we compare our results for the time evolution of the vertical position of the gravity center of the rising bubble and its vertical velocity with the ones obtained in [START_REF] Hysing | Quantitative benchmark computations of twodimensional bubble dynamics[END_REF] using the VOF method. Basically, a good agreement is found between our SPH numerical results and those of reference [START_REF] Hysing | Quantitative benchmark computations of twodimensional bubble dynamics[END_REF], even tough a slight dierence for the position of the gravity center is detected, and some oscillations are observed around the VOF velocity curve. However, the overall SPH results are in good agreement with the reference ones.

In gure 30, we also compare the shape and position of the bubble interfaces at time t = 3 [s]. We observe a perfect agreement in this case.

Figure 31 shows the pressure and the magnitude velocity of the water column for two dierent particle resolutions at two dierent times t = 1 [s] and t = 2 [s]. Moreover, in gure 32 we show the direction of the velocity vector of the particles inside the bubble for the previous two resolutions at time t = 1 [s]. The results obtained for both particle resolutions are very similar, indicating the convergence of the numerical model. Now we address the same case with a higher density ratio [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase ow[END_REF][START_REF] Colagrossi | Numerical simulation of interfacial ows by smoothed particle hydrodynamics[END_REF][START_REF] Grenier | An hamiltonian interface sph formulation for multi-uid and free surface ows[END_REF]. In this case, during the rising motion, the bubble undergoes a large deformation that subsequently splits it into three parts. The initial setup is presented in gure 18 and the physical variables and parameters for this test case are summarized at Table 1 as Figure 33 shows the velocity and relative pressure ( ∆p = pp min ) of the column of water at the dimensionless time t g /R = 3.6. The bubble is strongly deformed and it is split in three parts during its evolution. The evolution of the bubble is presented in gure34 during nine dierent instants.

The particles inside the bubble are colored with the magnitude of the velocity.

In gure 35 we compare the results obtained with the SPH method with those obtained using a Level-Set method [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase ow[END_REF]. The results of the SPH and Level-Set methods are in good agreement. During the rising process, the bubble deforms and takes a horseshoe shape. After that, the extremities roll-up until they undergo a big deformation which subsequently splits the bubble to form other small ones. The main dierence between the results is that near to the symmetric axis the bubble obtained using the present SPH method is thicker than the one obtained by the level-Set method. The results for the width of the bubble remains in very good agreement during all the simulation period for both methods. We observe that in the Level-set solution the bubble splits in several very small bubbles that are not predicted by the present SPH method. Thereafter, these smaller bubbles disappear gradually from the Level-Set simulation.

Case 

ρ 1 [kg/m 3 ] ρ 2 [kg/m 3 ] µ 1 [P a.s] µ 2 [P a.s] σ [N/m] g [m/s 2 ]

Gas bubble rising through two stratied uid layers

This test example describes the behavior of a rising gas bubble through two stratied uid layers (see gure 36 ). The gas bubble can cross the interface between layers with or without entrainment of the heavier uid into the lighter, or it could even remain trapped in it. Greene et al [START_REF] Greene | Onset of entrainment between immiscible liquid layers due to rising gas bubbles[END_REF][START_REF] Greene | Bubble induced entrainment between stratied liquid layers[END_REF] suggest a criterion on the bubble volume to predict this behavior based on a macroscopic balance between surface tension forces and buoyancy forces.

Thus, if the bubble volume is greater than a critical volume V c (V b > V c ), the bubble will penetrate the interface layer and it will eventually entrain into the heavier uid, otherwise the bubble will be trapped between the interface layers. The critical volume is calculated as follows

V c = 2π( 3 4π ) 1/3 σ 2-3 (ρ 3 -ρ 1 ) g 3 2 (53) 
In equation [START_REF] Wendland | Piecewise polynomial, positive denite and compactly supported radial functions of minimal degree[END_REF] the subscript(or superscript for surface tension) 1 correspond to the lower uid, 2 refers to the bubble, and 3 refers to the upper uid. This problem is very challenging from the numerical point of view since it involves high denisites and viscosities ratios and the presence of triple point junctions. The setup of the problem presented here is taken from [START_REF] Bonhomme | Inertial dynamics of air bubbles crossing a horizontal uiduid interface[END_REF]. The density and dynamic viscosity of uid 1 (95% glycerin + water) are ρ 1 = 1244 [kg/m 3 ] , µ 1 = 550.1 × 10 -3 [P a.s] , in the case of the buble (uid 2) the chosen values are those of the air: ρ 2 = 1.205 [kg/m 3 ] and µ 2 = 5 × 10 -3 [P a.s].Note that the value of air bubble viscosity is chosen greater than the real one and equal µ 2 = 5 × 10 -3 [P a.s] instead the use of the real gas viscosity with an articial one to guarantee the stability of the algorithm [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF] . Finally, for the uid 3 (47V500 oil), the values are The critical volume is computed using equation ( 53) which gives V c ≈ 3.92 × 10 -8 [m 3 ]. This implies a critical radius of R c ≈ 0.021 [m]. In this example, the initial radius of air bubble R = 0.0035 [m] is greater than the critical one which logically involves that the V c < V Bubble . With this values, the air bubble penetrates the interface uid layers [START_REF] Bonhomme | Inertial dynamics of air bubbles crossing a horizontal uiduid interface[END_REF].

In gure 37 we show the numerical results for the relative hydrostatic pressure eld ∆p = pp min , the magnitude of the velocity eld and the distribution of the three dierent phases in dierent instants. The dimensionless interval between two images is taken equal to ∆t g /R = 4.3 [START_REF] Bonhomme | Inertial dynamics of air bubbles crossing a horizontal uiduid interface[END_REF]. In gure 38 we compare the numerical results with the experimental images obtained in [START_REF] Bonhomme | Inertial dynamics of air bubbles crossing a horizontal uiduid interface[END_REF]. The numerical results are in good agreement with the experimental ones. The dierences between the numerical and experimental sequences are maybe due to uncertainties in the initial conditions of the experimental test and possibly to any 3D eect.

Interaction of two rising bubbles through a uid column

In this last test case we solve a case based on the one presented in [START_REF] Grenier | Viscous bubbly ows simulation with an interface sph model[END_REF]. During the evolution process of the two rising bubbles, the upper bubble covers the lower one. This generates more eorts over the lower bubble. Due to this forces, the lower bubble deforms. This deformation generates two uid ejections that go thinner as the rising process continues. Finally, the two bubbles merge but this state is not stable and they split in two parts.

1 [kg/m 3 ] ρ 2 [kg/m 3 ] µ 1 [P a.s] µ 2 [P a.s] σ [N/m] g [m/s 2 ]

Conclusion

In this work, a consistent smoothed particle hydrodynamics model is proposed. This model includes a surface tension formulation which ensures the tangential R1: properties of the tensor surface stress and the stability of the numerical method. The numerical stability is obtained through the use of a divergence operator with rst order consistency and also with a damping technique that avoids the numerical issues due to the jump initial conditions. In this work it is also presented a modication of the generalized wall boundary conditions to be able to simulate multiphase uid ows.

The accuracy, stability and applicability of the proposed SPH model to deal with interfacial multiphase problems were shown. The proposed SPH scheme is able to obtain very accurate results when dealing with problems including high density and viscosity ratios and triple junction points. [START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF].The right gure compares the uid interface of the present SPH method with that of Level-Set method [START_REF] Grenier | An hamiltonian interface sph formulation for multi-uid and free surface ows[END_REF]. 
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Figure 1 :

 1 Figure 1: Geometrical description of the principal parameter of surface tension formulation in the case of two immiscible uids 1 and 2: interface, transition region, normal vector n. The thickness of the transition region is equivalent to the diameter of the kernel function (6h for the quintic kernel function) .

Figure 2 :

 2 Figure 2: Geometrical description of dierent parameters used in the generalized wall Boundary condition. Figure based on that presented in[START_REF] Adami | A generalized wall boundary condition for smoothed particle hydrodynamics[END_REF] 

Figure 3 :

 3 Figure 3: The evolution of square droplet under the surface tension eort : The left gure describes the geometrical details. The middle gure shows the initial uid particles at (t = 0 [s]) for the particle resolution ls 40 . The right gure describes droplet in equilibrium state after its evolution for the particle resolution ls 40 . We investigate the evolution of the square droplet deformation using three dierent number of particles: ls 40 , ls 80 and ls 160 . The smoothing length is chosen equal to h = 1.33δx 0 . The reference speed of sound is set to (c 0 = 10 [m/s]) for all resolutions. A positive background pressure is taken as (p b = 5 [P a]).

2 Figure 4 :

 24 Figure 4: Time evolution of droplet kinetic energy for particle resolutions ls 40 , ls 80 and ls 160 .

Figure 5 :

 5 Figure 5: Surface tension forces orientation (on the left) and magnitude of the velocity (on the right) of droplet at equilibrium state for the particle resolution ls 40 .

ρ 1 =Figure 6 :

 16 Figure 6: Square droplet test case.The left gure plots the normalized pressure ( p-p2 p1-p2 ) at the nal stabilized state. The gure on the right plots a cut of the pressure eld at Y = 0 obtained by the numerical method and the theoretical solution for dierent particle resolutions ls 160 , ls 80 and ls 40 .

Figure 7 :

 7 Figure 7: Square droplet test case using low viscosity (µ 1 = µ 2 = 0.001[P a.s]) for the particle resolution of ls 80 . Particles colored with uid phases (left). Magnitude velocity eld (right).
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 21121312891 Figure8: A cut of the pressure eld at Y = 0 obtained by the theoretical solution and the numerical method and numerical method with viscosity µ 1 = µ 2 = 0.2[P a.s] (dotted line with small circles) and µ 1 = µ 2 = 0.001[P a.s] (dotted line with small triangles) for the particle resolution of ls 80 .

Figure 10 :

 10 Figure 10: Schematical representation of contact angles at a triple junction point. Fluid densities are set as (ρ 1 = ρ 2 = ρ 3 = 1 [Kg/m 3 ]) for the three uid phases.The dynamic viscosities are identical for the three uid phases

Figure 11 :

 11 Figure 11: Spreading lens between two stratied layers: Time-evolution of kinetic energy for three dierent particle resolutions.

  the SPH numerical solution closes to the analytical one in terms of pressure and geometrical details of lens which guarantees thereafter the convergence of the proposed SPH interfacial multiphase model to deal with a triple junction points problems.

Figure 12 : 40 Figure 13 :

 124013 Figure 12: Spreading lens between two stratied layers: pressure eld (left), particle distribution of three-phases stratication arrangement (middle) and magnitude velocity led (right).

Figure 15 :for the congurations of ρ 2 ρ 1 = 1 , ρ 2 ρ 1 = 2 and ρ 2 ρ 1 = 4 ,

 15211114 Figure 15: Droplet oscillation : droplet particle positions at t = {0.0, 0.08, 0.16, 0.26}[s].

Figure 16 :

 16 Figure 16: R1: Comparison between the particles distribution of the oscillating droplet at t = 0.08[s] and t = 0.26[s] under the resolution of 14400 particles. The left column presents our results. The right column presents the resukts of Morris [14] .

Figure 17 :Figure 18 :

 1718 Figure 17: Convergence test of droplet oscillation: Center of mass position of the upper right-quarter section of the droplet.

2 ρ 1 = 4 Figure 19 :

 21419 Figure19: Time-evolution of pressure at the point (0.5, 0.5) (upper curves) and (0.5, 1.5) (lower curves) with (Dotted line with small circle) and without (dotted line with small square) the damping technique. The solid lines represent the stabilized pressure, and the dashed line presents the background pressure.

ρ 1 = 4

 14 case. Pressure isolines are plotted in order to check the hydrostatic pressure levels obtained with the tree dierent resolutions. It is observed that the same pressure levels are reached for all the particle resolutions. This indicates the convergence of the presented numerical model for the simulation of gravitational multiphase uid ows. Note that the background pressure p b = 5 [P a] is included in the range of computed pressure variation.

ρ 1 = 2 µ 1 = 10 ,

 12110 100, with ρ 2 = 100[kg/m 3 ] and ρ 1 = 1[kg/m 3 ]. While the viscosity ratio is taken as µ with µ 1 = 0.01[P a.s] and µ 2 = 0.1[P a.s]. The reference R1: speed of sound of the uid phase 2 is set to c 0 2 = 10[m/s] and c 0 1 = 100[m/s] for the phase 1 that give a reference pressure of p r = 10 4 [P a]. The background pressure is taken as p b = 0.05p r = 500[P a]. The simulation was performed using 49 × 99 particles, a damping period of T D = 1[s] and no-slip condition is applied on all wall boundaries. After the damping period (T D = 1[s]) the hydrostatic pressure eld oscillates until it reaches the stabilized values at time t = 18[s] as it is shown in the gure 22. When the pressure eld stabilizes, we perform a comparison between the numerical and analytical hydrostatic pressure proles taken from the centerline of the vertical uid column. The results are shown in gure 23. A very satisfactory agreement is observed between the pressure

  The damping technique is applied here with T D = 1. The reference speeds of sound for the two phases are set to {c 0 1 , c 0 2 } = {5.7, 18} [m/s]. No-slip boundary conditions are applied on the upper and lower solid boundaries, while free-slip boundary conditions are applied on the left and right boundaries.

the Case 2 .

 2 In this test we use a discretization of 240 × 400 particles. The reference speeds of sound are {c 0 1 , c 0 2 } = {7, 221.35} [m/s]. The damping technique is used here with (T D = 0.05 [s]). The boundary conditions are the same than for Case 1 of this section.

ρ 3 =

 3 965. and µ 3 = 530.7 × 10 -3 [P a.s] . The surface tensions are σ 1-2 = 45.1613 × 10 -3 [N/m], σ 1-3 = 21 × 10 -3 [N/m], σ 2-3 = 28 × 10 -3 [N/m] , and the speeds of sound are taken as {c 01 , c 02 , c 03 } = {3.7, 118.88, 4.2} [m/s]. The radius of the air bubble is R = 3.5 × 10 -3 [m]. These data correspond to a Reynolds number R e ≈ 4.15 and Eötvös number E o ≈ 13.24. For the simulation, a regular lattice with 50 × 166 particles is employed. No-slip boundary conditions are applied on the top and bottom boundaries, and periodic boundary conditions are applied on the left and right edges of the domain. The dimensions of computational domain are detailed in gure36. The damping technique is used with T D = 0.05 [s].

  Two bubbles are initially set close to each other and rise through a uid column. The upper bubble is larger than the lower one The smaller bubble has a radius R = 0.1 [m]. The geometrical setup of the problem is based on the radius of the smaller bubble and is detailed in gure 39. The physical parameters for the setup of this problem are given in Table2 , respectively.

  ρ

  We use here a discretization of 500 × 750 particles. The reference speeds of sound {c 01 , c 02 } = {9.32, 29, 47} [m/s] are chosen for uid water column and the uid of the two bubbles, respectively. The simulation is damped for a period of T D = 0.25 [s]. Left and right boundaries are set as free-Slip boundaries, whereas no-slip boundary conditions are set at top and bottom boundaries. The results for pressure variation ∆p = pp min , velocity magnitude of the uid column and of the bubble are presented in gures 40 and 41.

Figure 20 :

 20 Figure 20: Hydrostatic pressure variation ∆p = pp min for the three dierent density ratios ρ2 ρ1 . Below, we plot a zoom of the selected zones (a) (b) (c) (d).

Figure 21 :Figure 22 :

 2122 Figure 21: The uid column particles colored with normalized hydrostatic pressure for the density ratio ρ2 ρ1 = 4 with the three particle resolutions 24 × 49 (left), 49 × 99 (center), 99 × 199 (right). It is also shown the pressure isolines in the range 3.5 to 8 [P a].

Figure 23 :

 23 Figure 23: Hydrostatic pressure variation ∆p = pp min for the density and viscosity ratios of ρ2 ρ1 = 100 and µ2 µ1 = 10. On the right we plot a zoom of the selected zone.

Figure 24 :

 24 Figure 24: The uid column particles for the density and viscosity ratios of ρ2 ρ1 = 100 and µ2 µ1 = 10. The left gure represents the uid particles colored with phase color (gray color for uid 2, black color for uid 1). The gure of the center show the velocity magnitude holds on every uid particle. The right gure represents the uid and wall particles colored with hydrostatic pressure led.

Figure 25 :

 25 Figure 25: RayleighTaylor instability at three dierent times t = 1 [s] (left column), t = 3 [s] (center column), t = 5 [s] (right column) after the damping period, and three dierent resolutions: 49 × 99 particles (top), 99 × 199 particles (middle) and 150 × 300 particles (bottom).

Figure 26 :

 26 Figure 26: Comparison between the uid interfaces of the present work and the references. The left gure compares the uid interface of present SPH model with that of SPH model developed by Monaghan et al[START_REF] Monaghan | A simple sph algorithm for multi-uid ow with high density ratios[END_REF].The right gure compares the uid interface of the present SPH method with that of Level-Set method[START_REF] Grenier | An hamiltonian interface sph formulation for multi-uid and free surface ows[END_REF].
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 2728 Figure 27: Time-evolution for the highest point (Y max ) of the lighter uid. Dotted line with small open triangles shows the results for the simulation with 99 × 199 particles, the small open square for 49 × 99 particles and the small open circles for 150 × 300 particles. Layzer's theory curve is represented by the continuous solid line.

Figure 29 :Figure 30 :

 2930 Figure 29: Single bubble rising through a vertical column of water. Case 1: Time evolution of the position of the gravity center (left) and vertical velocity (right) of the rising bubble for dierent number of particles. The solid line represents the results obtained by VOF method [43].

Figure 32 :

 32 Figure 32: Single bubble rising through a vertical column of water. Case 1: Direction of the velocity vector of the particles inside the bubble at t = 1 colored with magnitude velocity. On the left, results for 66 × 133 particles, and on the right we plot the results for the 133 × 267 particles case.

Figure 33 : 5 tt

 335 Figure 33: Single bubble rising through a vertical column of water. Case 2: Relative pressure ( ∆p = pp min ) and magnitude of the velocity of the column of water at the dimensionless time t g /R = 3.6

Figure 35 :Figure 36 :

 3536 Figure35: Single bubble rising through a vertical column of water. Case 2: Evolution of the bubble at nine dierent instants. Results obtained with the present SPH method (blue circles) and with a Level-Set approach[START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase ow[END_REF] (black diamonds).

Figure 37 :

 37 Figure 37: Gas bubble rising through two stratied uid layers. Starting from the left, rst and second columns show the relative hydrostatic pressure eld ∆p = pp min for dierent normalized times t + = t g /R. Third and fourth columns present the magnitude of the velocity eld. The last two columns show the uid phases distribution.

Figure 38 :Figure 39 :

 3839 Figure38: Gas bubble rising through two stratied uid layers. On the top, we show the experimental sequence taken from[START_REF] Bonhomme | Inertial dynamics of air bubbles crossing a horizontal uiduid interface[END_REF]. On the bottom we plot the results obtained using the proposed SPH method. The dimensionless interval between two images is taken equal to ∆t g /R = 4.3

Figure 40 :

 40 Figure 40: Interaction of two rising bubbles through a uid column First and second images columns represent the pressure and magnitude velocity, respectively. The third column presents the magnitude velocity with particle direction vector of isolated bubble. The simulations are presented in order at the times t = {0, 0.25, 0.5} [s].

Figure 41 :

 41 Figure 41: Two rising bubbles through a uid column. First and second images columns represent the pressure and magnitude velocity, respectively. The third column presents the magnitude velocity with particle direction vector of isolated bubble. The simulations are presented in order at the times t = {0.75, 1} [s].

Figure 42 :

 42 Figure 42: Application of stress surface tensor Π on an arbitrary vector f . Where n and t are the normal and tangential vectors on the interface, respectively.

Table 1 :

 1 Setup for Case 1 and Case 2 tests.

	R e	E o	ρ1 ρ2	µ1 µ2

Table 2 :

 2 Setup for the interaction of two rising bubbles through a uid column test case.
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Appendix A

In this Appendix we show the relation between CSS and CSF formulations. The Continuum Surface Stress (CSS) formulation reads F ST = ∇.Π [START_REF] Dalziel | Toy models for rayleigh taylor instability[END_REF] Replacing the stress tensor Π by its formulation in the equation [START_REF] Dalziel | Toy models for rayleigh taylor instability[END_REF] we get:

The divergence of the rst part (I) of the equation ( 55) can be modied as

Whereas the divergence of the second part (II) can be written as

By subtracting the equation ( 57) from equation [START_REF] Greene | Bubble induced entrainment between stratied liquid layers[END_REF], we obtain the Stress Surface Force formulation (CSF) (58):

Where κ describes the interface curvature which is expressed as κ = -∇.n = -∇. ∇C ∇C , with .n is the unit normal vector to the interface.

Appendix B

In this appendix, we show that the stress surface tension is tangential to the uid interface. We can write the surface tension as a volumetric force as follows:

Where Π = σ ∇C Iσ ∇C ∇C ⊗ ∇C is the stress surface tensor.

This formulation allows the interpretation of the tension force as a internal body forces of the continuum medium (as viscous tensor). So, we will investigate if these eorts are carried by the tangent direction to the interface.

For this reason we will applied the stress tensor Π on an arbitrary vector f see gure 42 :

Where Ξ T is the projection operator on the tangent plane to the interface.

Equation (61) indicates that the internal forces associated to the surface stress tensor are tangent to the interface.

Appendix C

In this appendix, we summarize the proposed SPH model via a pseudocode. The physical proprieties of the heavier phase must be assigned to all uid phases; The initial particles velocity and pressure are set to zero; Set c 0 , p b ,δt,