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Abstract: The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly
considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative
computations, should be accurate but also computationally efficient. We present a rational approximate
procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer
power, which require execution of the additional number of floating-point operations in computer
processor units. Instead of these, we use only rational expressions that are executed directly in the
processor unit. The rational approximation was found using a combination of a Padé approximant
and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million
quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not
exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation
is approximately two times faster than the exact solution given by the Wright omega function.

Keywords: hydraulic resistance; pipe flow friction; Colebrook equation; Colebrook–White experiment;
floating-point computations; approximations; Padé polynomials; symbolic regression

1. Introduction

The Colebrook equation [1] for turbulent flow friction is implicitly given with respect to the
unknown Darcy flow friction λ, as shown in Equation (1):

1
√
λ
= −2· log10

(
2.51
Re
·

1
√
λ
+

ε
3.71

)
(1)

where:

λ—Darcy flow friction factor (dimensionless)
Re—Reynolds number, 4000 < Re < 108 (dimensionless)
ε—relative roughness of inner pipe surface, 0 < ε < 0.05 (dimensionless)

As a PhD student at the Imperial College in London, Colebrook developed his empirical equation
based on the data from his joint experiment with his supervisor, Prof. White [2]. They experimented
with flow of air through pipes with different roughness of the inner pipe surface. The experiment by
Colebrook and White was described in a scientific journal and published in 1937 [2], while the related
empirical equation by Colebrook was published in 1939 [1].

Compared with some other experimental findings [3], the Colebrook equation fits the friction
factor within a few dozen percent of error [4]. The Colebrook equation over the last 80 years has
been seen by the industry as an informal standard for flow friction calculation and has been very
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well accepted in everyday engineering practice. Based on the Colebrook equation, Moody developed
a diagram that was used before the era of computers for graphical determination of turbulent flow
friction [5]. Today, such nomograms have been replaced by explicit approximations, which introduce
some value of error [6,7], or by iterative methods [8–10].

In a central computer processor (CPU), transcendental functions such as logarithmic, exponential,
or functions with non-integer terms require execution of numerous floating-point operations,
and therefore they should be avoided whenever possible [11–18]. Praks and Brkić [19] recently
developed a one-log call iterative method, which uses only one computationally demanding function,
and even then only in the first iteration (for all succeeding iterations, cheap Padé approximants are
used [20,21]). Based on that approach, few very accurate and efficient explicit approximations suitable
for coding and for engineering practice have been constructed [22]. In addition, the same authors
developed few approximations of the Colebrook equation based on the Wrightω-function, which are
among the most accurate to date [23–25]. On the other hand, they contain one or two logarithmic
functions, depending on the chosen version [23,24] (these procedures are based on the previous efforts
by Praks and Brkić for symbolic regression [26] and by Brkić with Lambert W-function [27–29]).

In this communication, we make a step forward and we offer for the first time a procedure for the
approximate solution of the Colebrook equation based only on rational functions. The presented novel
rational approximation procedure introduces a relative error of no more than 0.866% for 0 < ε < 0.05
and 4000 < Re < 108 (as used in engineering practice). The rational approximation procedure is suitable
for computer codes (open-source code in commercial Matlab 2019a is given in this communication,
and in addition, it is compatible with freeware GNU Octave, version 5.1.0).

After introductory Section 1, Section 2 of this communication gives a short overview of
mathematical methods used for the proposed rational approximation procedure. Section 3 describes
the rational approximation procedure in detail (including error analysis), Section 4 provides software
code along with the algorithm to be followed for the rational approximation approach, while Section 5
contains concluding remarks.

2. Mathematics Behind the Proposed Approximation

Our rational approximation approach is based on Padé approximants [20,21], symbolic
regression [30,31] and although not used directly, it is inspired by the Wrightω-function, a cognate of
the Lambert W-function [32]. To avoid detailed explanations about the Lambert W-function [33], here it
should be noted that in this context it is used to transform the Colebrook equation from the shape
implicitly given in respect to the unknown flow friction factor to the explicit form [23,24,27–29,34,35].

2.1. Padé Approximants

The ratio of two power series with properly chosen coefficients of the numerator and denominator
can approximate very accurately various functions in a narrow zone around the chosen expanding
point. For the expressions in the numerator and denominator, Padé approximants [20,21] use rational
functions of given order instead of serial expansions. So, in other words, the Padé approximants
can estimate functions usually in a narrow zone as the quotient of two polynomials, often has better
approximation properties compared with its truncated Taylor series. Being a quotient, the Padé
approximants are composed of lower-degree polynomials, where the degree of polynomials can be
chosen according to needs. We use Matlab 2019a in order to generate the needed Padé approximants
as replacements of the logarithmic function in our rational approximation approach. We do not
use expressions with non-integer exponents, because according to Clamond [10], in the software
interpretation it is evaluated through one exponential and one logarithmic function (for example
Bκ = eκ· ln (B), where κ is in most cases a non-integer). The computational complexity of an algorithm
describes the amount of resources required to run it, for example the execution time. Winning and
Coole [13] performed 100 million calculations for each mathematical operation using random inputs,
with each repeated five times, and found that the most efficient operation for addition requires 23.4 s.
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According to them, relative effort for computation referred to addition-1 as a reference for the following
values: logarithm to base, 10–3.37; fractional exponential, 3.32, cubed root, 2.71; natural logarithm,
2.69; cubed, 2.38; square root, 2.29; squared, 2.18; multiplication, 1.55, division, 1.35; subtraction, 1.18.

2.2. Symbolic Regression

Symbolic regression is a machine learning approach for finding approximate functions based on
evolutionary or genetic algorithms [36]. To avoid imposing prior assumptions on the model, symbolic
regression has the ability to search through the space of mathematical expressions to look for an
approximate function that best fits a given dataset [31].

We used Eureqa [30], a symbolic regression engine, to obtain our final model. HeuristicLab [37],
a software environment for heuristic and evolutionary algorithms, including symbolic regression,
can be used instead.

3. Routine Based on Polynomial-Form Expressions

3.1. Replacement of Logarithmic Function

The Colebrook equation can be accurately approximated using a rational approximation procedure,
as shown in Equation (2):

1
√
λ
≈ −0.8686·(ζ1 + ζ2) (2)

where:

ζ1 = 0.02087·r− 0.07659·p(r) −
0.5994

p(r) + 3.846
−

0.0007232
r

− 0.00007489·r2 + 0.1391

ζ2 = p(r) − 7.93

p(r) =
r·(r·(11·r + 27) − 27) − 11
r·(r·(3·r + 27) + 27) + 3

r = 2777.77·
(

2.51·p0

Re
+

ε
3.71

)
p0 =

2600·Re
657.7·Re + 214600·Re·ε+ 12970000

− 13.58·ε+
0.0001165·Re

0.00002536·Re + Re·ε+ 105.5
+ 4.227

Consequently, Equation (2) contains only rational functions, where:

ζ1 + ζ2 rational approximation of ln
(

2.51
Re ·

1
√
λ
+ ε

3.71

)
;

ζ1 a rational function that corrects error caused by Padé approximant p(r);
ζ2 shifted Padé approximant p(r), where the shift −7.93 ≈ ln(0.00036) where 0.00036 ≈ 1

2777.77 ;
r argument of p(r);
p(r) Padé approximant of ln(r) of order /2,3/ at the expansion point r = 1;
p0 starting point;

and where: −2
ln(10) ≈

−2
2.302585093 ≈ −0.868, as log10(ς) =

ln(ς)
ln(10) .

Function ζ2 approximates the required logarithmic function ln
(

2.51
Re ·

1
√
λ
+ ε

3.71

)
, while ζ1 corrects

its error, as r is not always close to the expansion point, because of the large variability of input
parameters of the Colebrook equation (Equation (1)). The rational function ζ1 and also the starting
point p0 were found by symbolic regression software Eureqa [31], whereas the shift −7.93 in ζ2 was
found in order to minimize the error of the Padé approximation of p(r) ≈ ln(r) for the Colebrook
equation, as ln(0.00036·r) ≈ ln(r) − 7.93, where 0.00036 ≈ 1

2777.77 . Variable precision arithmetic (VPA)
at 4 decimal digit accuracy is assumed for ζ1 and for p0. The Padé approximant p(r) is given in
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Horner nested polynomial form generated in Matlab 2019a. It is of order /2,3/, which means that the
polynomial in numerator contains a monomial of highest degree 2, while the denominator of degree 3.
Any other suitable Padé polynomial of any other degree in any other form that can substitute the
natural logarithm around the needed expansion point can be used, but in such cases, the rational
approximation procedure should be tested again, because these changes can affect the value of the
final relative error and its distribution.

3.2. Error Analysis

Distribution of the relative error for the proposed rational approximation procedure, Equation (2),
is given in Figure 1. The maximal relative error goes up to 0.866% for 0 < ε < 0.05 and 4000 < Re
< 108 (as used in engineering practice). The highest error using 2 million input pairs found by the
Sobol quasi-Monte Carlo method is for Re = 71987 and ε = 3.1711·10−7 [38]. The Colebrook equation is
empirical and it follows logarithmic law, so for the procedure with only rational functions, this level
of error is acceptable [39]. For example, Pimenta et al. [7] classify the approximation of Sonnad and
Goudar [40] with relative error of up to 3.17%. With two logarithms and one non-integer power,
this method [40] belongs to the group of approximations with higher performance indexes and precision.
Brkić [6] estimates the relative error of Sonnad and Goudar [40] to be up to 0.8%, which is similar
error compared with the rational approximation approach presented here; the same methodology as in
Brkić [6] is used for Figure 1.

Figure 1. The distribution of the relative error for the proposed rational approximation.

The error in the proposed rational approximation can be possibly reduced by optimizing numerical
values of parameters using a genetic algorithms [41] approach with the methodology described by Brkić
and Ćojbašić [42]. However, the presented rational approximation approach has too many numerical
parameters, meaning such an optimization would be very complex. Further simplifications rather
should go in the direction of simplification of p0, ζ1 and ζ2, but keeping the same or increasing accuracy.

3.3. Computational Costs

The efficiency of the proposed procedure is tested using 2 million input pairs found by the Sobol
quasi-Monte Carlo method [38]. The tests were performed using Matlab R2019a. The tests revealed
that Equation (2) needs 0.56 s to calculate the friction factor λ for 2 million input pairs, or for the
Reynolds number Re and the roughness of the inner pipe surface ε. On the other hand, the exact
solution given by the Wrightω-function [23] implemented by the Matlab library “wrightOmegaq” [43]
took 1.1 s for the same 2 million the tested pairs.
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Our novel rational approximation of the Colebrook equation given with Equation (2) is
approximately two times faster than the exact approach using the Wrightω-function [23], as the speed
ratio is 1.1/0.56–1.96. On the other hand, the approach with the Wright ω-function [23] gives the
exact solution, which requires two logarithms and one Wrightω-function, while this communication
presents a rational approximation.

4. Software Description

The presented rational approximation approach for solving Colebrook’s equation for flow friction
was thoroughly tested at IT4Innovations, National Supercomputing Center, VŠB-Technical University
of Ostrava, Czech Republic.

4.1. Algorithm

The simple algorithm of the rational approximation of the Colebrook equation is presented in
Figure 2. The algorithm contains only one branch and is without loops.

Figure 2. Algorithm of the proposed rational approximation of the Colebrook equation.

4.2. Open-Source Software Code

The code is given in Matlab format, which is compatible with the freeware GNU Octave, but it
can be easily transposed in any programming language (input parameters: R is the Reynolds number
Re, K is the relative roughness of inner pipe surface ε; output parameter; L is the Darcy flow friction
factor λ):

x = (2600*R)/(657.7*R + 214600*R.*K + 1.297e+7)−13.58*K
+ (1.165e-4*R)/(2.536e-5*R + R.*K + 105.5) + 4.227

y0 = 2.51*x./R + K./3.71; r = y0*2777.77

pr = (r.*(r.*(11*r + 27) − 27) − 11)/(r.*(r.*(3*r + 27) + 27) + 3)

k1 = @(r) 0.02087*r− 0.07659*pr− 0.5994/(pr + 3.846) − 7.232e-4./r−7.489e-5*r.ˆ2 + 0.1391

x = −0.8686*(k1(r) + pr − 7.93)

L = 1/x.ˆ2
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5. Conclusions

We provide a novel rational approximation procedure for solving the logarithmic Colebrook
equation for flow friction. Instead of transcendental functions (logarithms, non-integer power) that
are used in the classical approach, in this communication, we replace the logarithm with its Padé
approximant and a simple rational function, which was found using artificial intelligence (symbolic
regression), in order to minimize the error. Although the new rational approximation may seem
unintelligible to human eyes, results of 2 million input pairs found by the quasi-Monte Carlo method [38]
confirm that the relative error of this new approximation does not exceed 0.866%, which is acceptable
for the empirical Colebrook law [44] (trade-off between model complexity and accuracy [45,46]).
Consequently, numerical experiments on 2 million of quasi-Monte Carlo pairs indicates that the rational
approximation presented here provides for Colebrook’s flow friction model a useful combination of
Padé approximants and artificial intelligence (symbolic regression).

Author Contributions: P.P. got the idea for the presented rational approximation approach and developed its first
version. D.B. put the rational approximation approach into a form suitable for everyday engineering use. D.B.
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Notations

The following symbols are used in this Communication:
λ Darcy, Darcy–Weisbach, Moody, or Colebrook flow friction factor (dimensionless)
Re Reynolds number, 4000 < Re < 108 (dimensionless)
ε relative roughness of inner pipe surface, 0 < ε < 0.05 (dimensionless)

ζ1 + ζ2 rational approximation of ln
(

2.51
Re ·

1
√
λ
+ ε

3.71

)
ζ1 a rational function that corrects error caused by Padé approximant p(r)
ζ2 shifted Padé approximant p(r)
r argument of p(r)
p(r) Padé approximant of ln(r) at the expansion point r
p0 polynomial starting point
log10 logarithm with base 10
ln natural logarithm
e exponential function
ω Wrightω-function (Wright omega function)
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