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 9 

The author of the discussed paper (Vatankhah and Kouchakzadeh 2008; 2009, Vatankhah 2014) has made 10 

significant contributions related to the Colebrook equation for flow friction (Colebrook 1939; Colebrook 11 

and White 1937); Eq. (1): 12 

1

√𝑓
= −2 ∙ log10 (

2.51

𝑅
∙
1

√𝑓
+

𝜀

3.71∙𝐷
)   (1) 13 

Where f is Darcy flow friction factor, R is the Reynolds number, and ε/D is the relative roughness of 14 

inner pipe surface (all three quantities are dimensionless). 15 

 16 

Approximations based on genetic programming  17 

It is underlined that it is important to develop not only accurate (Gregory and Fogarasi 1985, Brkić 2011a; 18 

2012, Winning and Coole 2013) but also computational efficient approximations to the Colebrook 19 

equation (Clamond 2009, Giustolisi et al. 2011, Ćojbašić and Brkić 2013, Winning and Coole 2013, Brkić 20 

and Ćojbašić 2017). To be computational efficient the approximations need to contain the least possible 21 

number of logarithmic and non-integer power expressions (Brkić and Praks 2019). Knowing that 22 

appropriately trained artificial neural networks (Özger and Yıldırım 2009, Brkić and Ćojbašić 2016) can 23 

simulate the Colebrook equation accurately not knowing the structure of the equation but only knowing 24 

the input parameters which are the Reynolds number, R and the relative roughness, ε/D and the 25 
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corresponding output parameter which is the flow friction factor, f; {R, ε/D}→f, we tried to use that fact 26 

to extract the accurate and computational accurate explicit approximations using artificial intelligent 27 

techniques (Smidt and Lipson 2009, Dubčáková 2011), Eq. (2). We used Eureqa, artificial intelligence 28 

software tool based on genetic programming (Praks and Brkić 2018a). The symbolic regression approach 29 

adopted herein is based upon genetic programming wherein a population of functions is allowed to breed 30 

and mutate with the genetic propagation into subsequent generations based upon a survival-of-the-fittest 31 

criteria. 32 

1

√𝑓0
≈ 1.15 ∙ 𝛼 + 0.569 ∙ 𝛽 + 0.292 ∙ 𝛼 ∙ 𝛽 + 0.478 ∙ sin(0.939 ∙ 𝛼 − 𝛽) + 0.122 ∙ sin2(0.939 ∙ 𝛼 − 𝛽) −33 

1.284 − 0.12 ∙ 𝛼2 − 0.162 ∙ 𝛽2   (2) 34 

Where 𝛼 =log10(R); 𝛽 =-log10(ε/D). 35 

 36 

It is revealed that the input parameters the Reynolds number, R and the relative roughness ε/D need to be 37 

normalized because their raw form where R>1000 and ε/D<<1 can cause a problem for the genetic 38 

programming tool to recognize the pattern and to estimate flow friction f accurately and we use 39 

α=log10(R) and β=-log10(ε/D). The practical domain of the Reynolds number, R is between around 4000 to 40 

108 which means it is expressed in relatively large numbers, while the relative roughness, ε/D is up to 41 

0.05 which means that it is expressed in relatively small numbers. As explained, the different scale is a 42 

problem for the artificial intelligence to recognize pattern (Özger and Yıldırım 2009, Brkić and Ćojbašić 43 

2016) where we discovered that the normalization in the form α=log10(R) and β=-log10(ε/D) can 44 

overwhelm the problem. This means that Eq. (2) practically contain only two logarithmic expressions 45 

used only for normalization {α=log10(R); β=-log10(ε/D)}→f, and not a single non-integer power 46 

expression. In that way the estimated relative error of f0 calculated through Eq. (2) compared with the 47 

accurate friction factor f; (|f-f0|/f)·100% is less than 2%. On the other hand the approximation presented 48 

with Eq. (2) contains sinus trigonometric function which can introduce higher computational cost. 49 
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Introducing one additional logarithmic form, i.e. one more fixed-point iterative step; Eq. (3); Brkić 50 

(2017a), the error in this case can be reduced ten times, and it is up to 0.2%. The strategy with 51 

acceleration using one additional internal iterative step; two in total including initial starting iteration 52 

(Chen 1979, Shorle et al. 1980, Brkić 2011b), is widely used. 53 

1

√𝑓𝑖+1
≈ −2 ∙ log10 (

2.51

𝑅
∙
1

√𝑓𝑖
+

𝜀

3.71∙𝐷
)   (3) 54 

 55 

On the other hand, using the raw parameters without normalization; {R, ε/D}→f and with acceleration 56 

through Eq. (3) the maximal error of no more than 1.55% is introduced using only one logarithmic form; 57 

Eq. (4):  58 

1

√𝑓1
≈ −2 ∙ log10(

2.51

𝑅
∙ (5.05 − 30.73 ·

ε

D
+

3.4·𝑅+
𝑅2

469647.7

46137.9+R+
R2

3250657.6
+

ε
D
·R2

515.25

)+
𝜀

3.71∙𝐷
)   (4) 59 

 60 

The accelerative procedure through Eq. (3) is very fast where for Eq. (4) the relative error decreases as 61 

follow: f0→42.7%, f1→1.55%, f2→0.22%, f3→0.036%, etc. The expression for f0 is polynomial and 62 

hence very simple, but with the relative error that can reach up to 42.7% not sufficiently accurate. On the 63 

other hand, with two logarithmic expressions, the relative error f2 introduced with Eq. (4) is about 0.22% 64 

which is almost the same as for f1 introduced with Eq. (2) that requires three logarithmic expressions in 65 

total (two for normalization and one for acceleration).  66 

 67 

Three-point methods 68 

Approximations with virtually three iterative steps are also available (Zigrang and Sylvester 1982, 69 

Serghides 1984). Using only function evaluations and one evaluation of the first derivative (Sharma and 70 

Arora 2016), the Colebrook equation can be solved practically with the neglected error within one 71 

iteration step; Eq. (5), (Džunić et al. 2011). Through the three-point iterative procedure the friction factor 72 

is evaluated in points x0, y0 and z0 where the optimal starting point x0 for the whole domain of the 73 
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Colebrook equation is x0=7.273124147 which is chosen after numerous tests where x0 =
1

√𝑓0
. The final 74 

solution is at the point x1; Eq. (5) where f1 =
1

√𝑥1
; (Praks and Brkić 2018bc): 75 

1

√𝑓0
= x0 = 7.273124147

𝐹(𝑥0) = 𝑥0 + 2 ∙ log10 (
2.51∙𝑥0

𝑅
+

𝜀

3.71∙𝐷
)

𝐹′(𝑥0) =
186242

ln(10)∙(93121∙𝑥0+10000∙
𝜀

𝐷
∙𝑅)
+ 1 =

251

50·R∙ln(10)∙(
100

371
∙
ε

D
+
2.51∙x0

R
)
+ 1

𝑦0 = 𝑥0 −
𝐹(𝑥0)

𝐹′(𝑥0)

𝐹(𝑦0) = 𝑦0 + 2 ∙ log10 (
2.51∙𝑦0

𝑅
+

𝜀

3.71∙𝐷
)

𝑧0 = 𝑦0 −
𝐹(𝑥0)

𝐹(𝑥0)−2·𝐹(𝑦0)
·
𝐹(𝑦0)

𝐹′(𝑥0)

𝐹(𝑧0) = 𝑧0 + 2 ∙ log10 (
2.51∙𝑧0

𝑅
+

𝜀

3.71∙𝐷
)

𝑥1 = 𝑧0 −
𝐹(𝑧0)

𝐹′(𝑥0)·[1−2·
𝐹(𝑦0)

𝐹(𝑥0)
−(

𝐹(𝑦0)

𝐹(𝑥0)
)
2
]·[1−

𝐹(𝑧0)

𝐹(𝑦0)
]·[1−2·

𝐹(𝑧0)

𝐹(𝑥0)
]

𝑥1 =
1

√𝑓1
→ 𝑓

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

    (5) 76 

 77 

In Eq. (5) is used the first derivative F’(x0) of the Colebrook function in point x0 in respect to parameter x, 78 

where the Colebrook equation is expressed in the suitable form to start the Newton-Raphson iterative 79 

procedure; Eq. (6): 80 

𝐹 =
1

√𝑓
+ 2 ∙ log10 (

2.51

𝑅
·
1

√𝑓
+

𝜀

3.71∙𝐷
) = 0   (6) 81 

 82 

The corresponding VPA (Variable precision arithmetic) approximations of the first derivative F’(x) with 83 

16 digits precision expression is =2.180158299154324/(R∙(0.2695417789757412∙ε/D+(2.51∙x)/R))+1.0= 84 

80883.87289862543/(93121.0∙x+10000.0∙R·ε/D)+1.0 where x =
1

√𝑓
 85 

 86 

Optimization problem 87 

As noted in the discussed paper, the first derivative of the Colebrook equation expressed in the form 88 

suitable for the Newton-Raphson procedure in respect to the Reynolds number, R is used for the 89 
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optimization problem in pipe network simulations (Brkić 2016). For the purpose of this discussion we 90 

generated in MATLAB the appropriate first derivative F’(R); Eq. (7): 91 

𝐹′(𝑅) = −
251·

1

√𝑓

50·𝑅2·𝑙𝑛(10)·(
100

371
·
𝜀

𝐷
+
2.51

𝑅
·
1

√𝑓
)
= −

186242·
1

√𝑓

𝑅·𝑙𝑛(10)·(93121·
1

√𝑓
+10000·𝑅·

𝜀

𝐷
)
   (7) 92 

 93 

The corresponding VPA (Variable precision arithmetic) approximations of the first derivative F’(R) with 94 

16 digits precision is =-(186242.0·x)/(23025.85092994046·R2·ε/D +214419.0264446985·x·R)= 95 

-(80883.87289862543·x)/(R·(93121.0·x+10000.0·R·ε/D)) where x =
1

√𝑓
 96 

  97 

Padé polynomials 98 

In the discussed paper, the improved versions of the approximations proposed by Sonnad and Goudar 99 

(2006), Mikata and Walczak (2016), Brkić (2017b), Vatankhah and Kouchakzadeh (2008, 2009), and 100 

Vatankhah (2014) are shown. In addition, the second logarithmic form in Eq. (12) of the discussed paper 101 

can be simplified using Padé approximation (Baker and Graves-Morris 1996); ln(1-a·δ/d)=ln(1-θ)≈p/q 102 

where p and q are defined by Eq. (8): 103 

𝑝 ≈ 𝜃 · (−0.18333 · 𝜃2 + 𝜃 − 1)

𝑞 ≈ −0.05 · 𝜃3  +  0.6 · 𝜃2  − 1.5 · 𝜃 + 1
}   (8) 104 

 105 

For the domain of applicability of the Colebrook equation that is 0<ε/D<0.1 and 4000<R<108; θ=a·δ/d is 106 

always between 0 and 0.22; 0<θ<0.22, the relative percentage error of the Padé approximation p/q 107 

compared with the accurate ln(1-a·δ/d) is between 3.5·10-8% and 2·10-5%. In this case the Padé 108 

approximation is very accurate, and also computationally cheap compared with logarithmic function: it is 109 

a division of two polynomials of degree of 3; we can call Padé approximation (3/3) because of two 110 

polynomials of degree of 3 used (Praks and Brkić 2018d). 111 

Further to start Newton-Raphson procedure δi+1=δi-ζ(δi)/ζ’(δi) starting from i=0, in order to evaluate δ, Eq. 112 

(12) of the discussed paper need to be rearranged where ζ(δ)=0, and where ζ is functional symbol; Eq. (9):  113 
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𝜁(𝛿) = ln(𝑑) + ln (1 −
𝑎·𝛿

𝑑
) − 𝛿 ≈ ln(𝑑) +

𝜃·(−0.18333·𝜃2+𝜃−1)

−0.05·𝜃3 + 0.6·𝜃2 −1.5·𝜃+1
− 𝛿=0   (9) 114 

δ is the unknown parameter to be solved, a is constant a=2/ln(10)=0.8686 and d is parameter d=c/b-115 

a·ln(b); where b=2.51/R and c=(ε/D)/3.71. 116 

 117 

Also, the Newton-Raphson procedure requires the first derivative ζ’(δ)=-a/(d-a·δ)-1, which is 118 

computationally cheap. Because it is equally cheap but slightly more accurate, we use the first derivative 119 

of ζ(δ)=ln(d)+ln(1-a·δ/d)-δ=0 and not the derivative of its Padé version. Knowing that δ ranges between 120 

1.61and 13.91, the starting point δ0 for the Newton-Raphson procedure should be selected from that 121 

domain; δi+1=δi-ζ(δi)/ζ’(δi) starting from i=0. The Newton-Raphson is faster than the simple fixed-point 122 

iterative procedure (Brkić 2017a), so hopefully Eq. (9) should be evaluated only few times; where the 123 

stopping criteria is δi+1-δi≈0. 124 

 125 

Disclaimer: The views expressed are those of the authors and may not in any circumstances be regarded 126 
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 139 

Notation 140 

The following symbols are used in this discussion: 141 

a = constant, a=2/ln(10)=0.8686; 142 

b = parameter related to Reynolds number (dimensionless); 143 

c = parameter related to ε and D (dimensionless); 144 

D = inner diameter of pipe (length; the same unit as for D); 145 

d = parameter related to a, b and c (dimensionless); 146 

f = Darcy friction factor implicitly related to R, ε and D (dimensionless); 147 

R = Reynolds number (dimensionless); 148 

p and q = Padé polynomials related to θ; 149 

x = parameter related to friction factor f (dimensionless); 150 

y = parameter related to x (dimensionless); 151 

z = parameter related to y (dimensionless); 152 

α= parameter related to the Reynolds number R (dimensionless);  153 

β= parameter related to ε and D (dimensionless); 154 

δ = unknown parameter implicitly related to a and d; 155 

ε = average height of protrusion of inner pipe surface (length; the same unit as for D); 156 

θ = parameter related to a, δ and d 157 

functional symbols: 158 

F – functional symbol related to the Colebrook equation 159 

ln - Napierian natural logarithm 160 

log – Briggsian logarithm 161 

sin – sine trigonometric function 162 

‘ – represents first derivative of function 163 

ζ - functional symbol related to parameter δ 164 
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Indexes: 165 

i – counter 166 

0 – refers to first iteration 167 

1 – refers to second iteration 168 

 169 
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