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Where f is Darcy flow friction factor, R is the Reynolds number, and ε/D is the relative roughness of inner pipe surface (all three quantities are dimensionless).

Approximations based on genetic programming

It is underlined that it is important to develop not only accurate [START_REF] Gregory | Alternate to standard friction factor equation[END_REF]Fogarasi 1985, Brkić 2011a;2012, Winning and[START_REF] Winning | Explicit friction factor accuracy and computational efficiency for turbulent flow in pipes[END_REF] but also computational efficient approximations to the Colebrook equation [START_REF] Clamond | Efficient resolution of the Colebrook equation[END_REF][START_REF] Giustolisi | Some explicit formulations of Colebrook-White friction factor considering accuracy vs. computational speed[END_REF][START_REF] Ćojbašić | Very accurate explicit approximations for calculation of the Colebrook friction factor[END_REF][START_REF] Winning | Explicit friction factor accuracy and computational efficiency for turbulent flow in pipes[END_REF][START_REF] Brkić | Evolutionary optimization of Colebrook's turbulent flow friction approximations[END_REF]. To be computational efficient the approximations need to contain the least possible number of logarithmic and non-integer power expressions [START_REF] Brkić | Accurate and efficient explicit approximations of the Colebrook flow friction equation based on the Wright ω-function[END_REF]. Knowing that appropriately trained artificial neural networks [START_REF] Özger | Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique[END_REF]Yıldırım 2009, Brkić and[START_REF] Brkić | Intelligent flow friction estimation[END_REF]) can simulate the Colebrook equation accurately not knowing the structure of the equation but only knowing the input parameters which are the Reynolds number, R and the relative roughness, ε/D and the corresponding output parameter which is the flow friction factor, f; {R, ε/D}→f, we tried to use that fact to extract the accurate and computational accurate explicit approximations using artificial intelligent techniques (Smidt andLipson 2009, Dubčáková 2011), Eq. ( 2). We used Eureqa, artificial intelligence software tool based on genetic programming (Praks and Brkić 2018a). The symbolic regression approach adopted herein is based upon genetic programming wherein a population of functions is allowed to breed and mutate with the genetic propagation into subsequent generations based upon a survival-of-the-fittest criteria. 

Where 𝛼 =log10(R); 𝛽 =-log10(ε/D).

It is revealed that the input parameters the Reynolds number, R and the relative roughness ε/D need to be normalized because their raw form where R>1000 and ε/D<<1 can cause a problem for the genetic programming tool to recognize the pattern and to estimate flow friction f accurately and we use α=log10(R) and β=-log10(ε/D). The practical domain of the Reynolds number, R is between around 4000 to 10 8 which means it is expressed in relatively large numbers, while the relative roughness, ε/D is up to 0.05 which means that it is expressed in relatively small numbers. As explained, the different scale is a problem for the artificial intelligence to recognize pattern [START_REF] Özger | Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique[END_REF]Yıldırım 2009, Brkić and[START_REF] Brkić | Intelligent flow friction estimation[END_REF] where we discovered that the normalization in the form α=log10(R) and β=-log10(ε/D) can overwhelm the problem. This means that Eq. ( 2) practically contain only two logarithmic expressions used only for normalization {α=log10(R); β=-log10(ε/D)}→f, and not a single non-integer power expression. In that way the estimated relative error of f0 calculated through Eq. ( 2) compared with the accurate friction factor f; (|f-f0|/f)•100% is less than 2%. On the other hand the approximation presented with Eq. ( 2) contains sinus trigonometric function which can introduce higher computational cost.

Introducing one additional logarithmic form, i.e. one more fixed-point iterative step; Eq. (3); Brkić (2017a), the error in this case can be reduced ten times, and it is up to 0.2%. The strategy with acceleration using one additional internal iterative step; two in total including initial starting iteration [START_REF] Chen | An explicit equation for friction factor in pipe[END_REF], Shorle et al. 1980[START_REF] Brkić | New explicit correlations for turbulent flow friction factor[END_REF], is widely used.
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√𝑓 𝑖+1 ≈ -2 • log 10 ( 2.51 𝑅 • 1 √𝑓 𝑖 + 𝜀 3.71•𝐷 ) (3) 
On the other hand, using the raw parameters without normalization; {R, ε/D}→f and with acceleration through Eq. ( 3) the maximal error of no more than 1.55% is introduced using only one logarithmic form;

Eq. ( 4):

1 √𝑓 1 ≈ -2 • log 10 ( 2.51 𝑅 • (5.05 -30.73 • ε D + 3.4•𝑅+ 𝑅 2 469647.7 46137.9+R+ R 2 3250657.6 + ε D •R 2 515.25 ) + 𝜀 3.71•𝐷 ) (4)
The accelerative procedure through Eq. ( 3) is very fast where for Eq. ( 4) the relative error decreases as follow: f0→42.7%, f1→1.55%, f2→0.22%, f3→0.036%, etc. The expression for f0 is polynomial and hence very simple, but with the relative error that can reach up to 42.7% not sufficiently accurate. On the other hand, with two logarithmic expressions, the relative error f2 introduced with Eq. ( 4) is about 0.22% which is almost the same as for f1 introduced with Eq. (2) that requires three logarithmic expressions in total (two for normalization and one for acceleration).

Three-point methods

Approximations with virtually three iterative steps are also available [START_REF] Zigrang | Explicit approximations to the solution of Colebrook's friction factor equation[END_REF]Sylvester 1982, Serghides 1984). Using only function evaluations and one evaluation of the first derivative (Sharma and Arora 2016), the Colebrook equation can be solved practically with the neglected error within one iteration step; Eq. ( 5), [START_REF] Džunić | A family of optimal three-point methods for solving nonlinear equations using two parametric functions[END_REF]. Through the three-point iterative procedure the friction factor is evaluated in points x0, y0 and z0 where the optimal starting point x0 for the whole domain of the 

• ε D + 2.51•x 0 R ) + 1 𝑦 0 = 𝑥 0 - 𝐹(𝑥 0 ) 𝐹′(𝑥 0 ) 𝐹(𝑦 0 ) = 𝑦 0 + 2 • log 10 ( 2.51•𝑦 0 𝑅 + 𝜀 3.71•𝐷 ) 𝑧 0 = 𝑦 0 - 𝐹(𝑥 0 ) 𝐹(𝑥 0 )-2•𝐹(𝑦 0 ) • 𝐹(𝑦 0 ) 𝐹′(𝑥 0 ) 𝐹(𝑧 0 ) = 𝑧 0 + 2 • log 10 ( 2.51•𝑧 0 𝑅 + 𝜀 3.71•𝐷 ) 𝑥 1 = 𝑧 0 - 𝐹(𝑧 0 ) 𝐹′(𝑥 0 )•[1-2• 𝐹(𝑦 0 ) 𝐹(𝑥 0 ) -( 𝐹(𝑦 0 ) 𝐹(𝑥 0 ) ) 2 ]•[1- 𝐹(𝑧 0 ) 𝐹(𝑦 0 ) ]•[1-2• 𝐹(𝑧 0 ) 𝐹(𝑥 0 ) ] 𝑥 1 = 1 √𝑓 1 → 𝑓 } (5)
In Eq. ( 5) is used the first derivative F'( x0 

Optimization problem

As noted in the discussed paper, the first derivative of the Colebrook equation expressed in the form suitable for the Newton-Raphson procedure in respect to the Reynolds number, R is used for the optimization problem in pipe network simulations [START_REF] Brkić | Intelligent flow friction estimation[END_REF]. For the purpose of this discussion we generated in MATLAB the appropriate first derivative F'(R); Eq. ( 7):

𝐹 ′ (𝑅) = - 251• 1 √𝑓 50•𝑅 2 •𝑙𝑛(10)•( 100 371 • 𝜀 𝐷 + 2.51 𝑅 • 1 √𝑓 ) = - 186242• 1 √𝑓 𝑅•𝑙𝑛(10)•(93121• 1 √𝑓 +10000•𝑅• 𝜀 𝐷 ) (7) 
The corresponding VPA (Variable precision arithmetic) approximations of the first derivative F'(R) with

16 digits precision is =-(186242.0•x)/(23025.85092994046•R 2 •ε/D +214419.0264446985•x•R)= -(80883.87289862543•x)/(R•(93121.0•x+10000.0•R•ε/D)) where x = 1 √𝑓

Padé polynomials

In the discussed paper, the improved versions of the approximations proposed by [START_REF] Sonnad | Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation[END_REF], [START_REF] Mikata | Exact analytical solutions of the Colebrook-White equation[END_REF], [START_REF] Brkić | Discussion of 'Exact analytical solutions of the Colebrook-White equation' by Yozo Mikata and Walter[END_REF], [START_REF] Vatankhah | Discussion of 'Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation' by Jagadeesh R. Sonnad and Chetan T. Goudar[END_REF][START_REF] Clamond | Efficient resolution of the Colebrook equation[END_REF][START_REF] Vatankhah | Comment on 'Gene expression programming analysis of implicit Colebrook-White equation in turbulent flow friction factor calculation[END_REF] are shown. In addition, the second logarithmic form in Eq. ( 12) of the discussed paper can be simplified using Padé approximation [START_REF] Baker | Padé approximants. Encyclopedia of Mathematics and its Applications[END_REF]; ln(1-a•δ/d)=ln(1-θ)≈p/q where p and q are defined by Eq. ( 8):

𝑝 ≈ 𝜃 • (-0.18333 • 𝜃 2 + 𝜃 -1) 𝑞 ≈ -0.05 • 𝜃 3 + 0.6 • 𝜃 2 -1.5 • 𝜃 + 1 } (8)
For the domain of applicability of the Colebrook equation that is 0<ε/D<0.1 and 4000<R<10 8 ; θ=a•δ/d is always between 0 and 0.22; 0<θ<0.22, the relative percentage error of the Padé approximation p/q compared with the accurate ln(1-a•δ/d) is between 3.5•10 -8 % and 2•10 -5 %. In this case the Padé approximation is very accurate, and also computationally cheap compared with logarithmic function: it is a division of two polynomials of degree of 3; we can call Padé approximation (3/3) because of two polynomials of degree of 3 used (Praks and Brkić 2018d).

Further to start Newton-Raphson procedure δi+1=δi-ζ(δi)/ζ'(δi) starting from i=0, in order to evaluate δ, Eq.

(12) of the discussed paper need to be rearranged where ζ(δ)=0, and where ζ is functional symbol; Eq. ( 9):

𝜁(𝛿) = ln(𝑑) + ln (1 - 𝑎•𝛿 𝑑 ) -𝛿 ≈ ln(𝑑) + 𝜃•(-0.18333•𝜃 2 +𝜃-1) -0.05•𝜃 3 + 0.6•𝜃 2 -1.5•𝜃+1 -𝛿=0 (9) 
δ is the unknown parameter to be solved, a is constant a=2/ln( 10 iterative procedure (Brkić 2017a), so hopefully Eq. ( 9) should be evaluated only few times; where the stopping criteria is δi+1-δi≈0.
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  Colebrook equation is x0=7.273124147 which is chosen after numerous tests where x 0

  ) of the Colebrook function in point x0 in respect to parameter x, where the Colebrook equation is expressed in the suitable form to start the Newton-(Variable precision arithmetic) approximations of the first derivative F'(x) with 16 digits precision expression is =2.180158299154324/(R•(0.2695417789757412•ε/D+(2.51•x)/R))+1.0= 80883.87289862543/(93121.0•x+10000.0•R•ε/D)+1.0 where x = 1 √𝑓

  )=0.8686 and d is parameter d=c/ba•ln(b); where b=2.51/R and c=(ε/D)/3.71. Also, the Newton-Raphson procedure requires the first derivative ζ'(δ)=-a/(d-a•δ)-1, which is computationally cheap. Because it is equally cheap but slightly more accurate, we use the first derivative of ζ(δ)=ln(d)+ln(1-a•δ/d)-δ=0 and not the derivative of its Padé version. Knowing that δ ranges between 1.61and 13.91, the starting point δ0 for the Newton-Raphson procedure should be selected from that domain; δi+1=δi-ζ(δi)/ζ'(δi) starting from i=0. The Newton-Raphson is faster than the simple fixed-point
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Notation

The following symbols are used in this discussion: a = constant, a=2/ln( 10