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ABSTRACT

Markov chain Monte Carlo (MCMC) methods are an important class
of computation techniques to solve Bayesian inference problems.
Much research has been dedicated to scale these algorithms in high-
dimensional settings by relying on powerful optimization tools such
as gradient information or proximity operators. In a similar vein,
this paper proposes a new Bayesian hierarchical model to solve large
scale inference problems by taking inspiration from variable splitting
methods. Similarly to the latter, the derived Gibbs sampler permits
to divide the initial sampling task into simpler ones. As a result, the
proposed Bayesian framework can lead to a faster sampling scheme
than state-of-the-art methods by embedding them. The strength of
the proposed methodology is illustrated on two often-studied image
processing problems.

Index Terms— Bayesian inference, Gibbs sampler, high dimen-
sion, variable splitting.

1. INTRODUCTION

Solving signal/image processing and machine learning problems
highly relies on efficient computational methods [1]. Among them,
techniques based on variational optimization have received a lot of
interest over the past decade leading to fast, efficient and distributed
algorithms. For instance, stochastic optimization or Robbins-Monro
algorithms [2] and distributed optimization algorithms such as the
alternating direction method of multipliers (ADMM), dating back to
[3, 4], were successfully resorted to deal with large datasets [5] and
high-dimensional problems [6, 7]. As pointed out in [8], Bayesian
approaches have not benefited from the same advances as in opti-
mization. Nevertheless, by giving the opportunity to explore the
posterior distribution of the variable of interest, those methods are
of great interest in areas where models must be compared, e.g. for
the analysis of gravitational waves [9], or where uncertainties have
to be quantified [10]. This complete description of the variable to
infer comes at a cost, that can be sometimes prohibitive compared to
fast optimization-based techniques. This leads a lot of work to scale
Bayesian methods, such as Markov chain Monte Carlo (MCMC)
algorithms, enabling them to deal with more and more complex
datasets and problems [11]. Among numerous improvements of
MCMC methods, optimization-driven approaches attracted the in-
terest of a lot of researchers. For instance, gradient information has
been successfully used in MCMC methods based on diffusions, e.g.
Hamiltonian Monte Carlo methods [12]. In addition, linear pro-
gramming has been used to sample efficiently determinantal point
processes [13] and convex optimization has been used to explore ef-
ficiently possibly non-smooth log-concave probability distributions
[14, 15].

In this spirit, this paper proposes a set of methods to solve
Bayesian inference problems by taking inspiration from variable
splitting techniques. Variable splitting is classically resorted in
methods (e.g. the ADMM) to solve large-scale optimization prob-
lems by dividing the difficulty over simpler sub-problems. To this
purpose, Section 2 presents how variable splitting can be used within
a Bayesian framework and derives an efficient Gibbs sampler where
existing state-of-the-art approaches can be embedded. Section 3
shows the results of the proposed approach and of state-of-the-art
optimization and MCMC methods applied to image processing prob-
lems. Finally, concluding remarks and considered further prospects
are reported in Section 4.

2. VARIABLE SPLITTING-INSPIRED BAYESIAN
INFERENCE

This section introduces the proposed Bayesian model built from an
initial target distribution π and a variable splitting step. The main
properties of the derived Bayesian hierarchical model are presented.

2.1. Problem statement

Let consider Bayesian inference problems where we are interested in
estimating an unknown object x ∈ Rd (e.g. a signal or parameters of
a model) from observations y related to the variable to infer through
a statistical model with likelihood p(y|x). Within this Bayesian set-
ting, the uncertainty on x is modeled via a prior distribution p(x)
[16] leading to the posterior distribution

p(x|y) ∝ p(y|x)p(x).

In the sequel, the latter is assumed to have the usual form

π(x) ≜ p(x|y) ∝ exp
(
−f1(x)− f2(x)

)
,

where f1 and f2 are two arbitrary functions such that π is well de-
fined. Sampling directly from (1) can be difficult for different rea-
sons. For instance, if f1 and f2 are not conjugate, one could rely on
more sophisticated sampling schemes, such as Metropolis-Hastings
(MH) algorithms [17]. The cost of the latter can be prohibitive in
large-scale problems, especially when the likelihood function is a
product of terms over a “big” dataset [18]. Additionally, in some
cases, some efficient MCMC algorithms cannot be directly applied
to sample from π [19]. In these challenging problems, variable split-
ting can provide an efficient surrogate method to simplify and/or im-
prove the sampling from the target distribution (1). This technique is
popular in optimization to tackle the initial difficulty by dividing the
cost function f1 + f2 in a set of simpler ones. This is achieved by
introducing auxiliary variables z to split the objective function. For
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Fig. 1. DAG associated to the initial Bayesian model (left) and to
the proposed model (right). Fixed parameters are represented with
dashed circles. θx and θz stand for possible hyperparameters which
are not discussed in this paper.

instance, maximum a posteriori (MAP) estimation under (1) leads to
the optimization problem

argmin
x∈Rd

f1(x) + f2(x), (1)

which can be rewritten using variable splitting as

argmin
x∈Rd,z∈Rd

f1(x) + f2(z) s.t. x = z. (2)

This new formulation of MAP estimation yields several (two in this
case) optimization sub-problems, one for each variable where f1 and
f2 are dissociated [5].

2.2. Bayesian hierarchical model

Following this variable splitting trick, an auxiliary variable z ∈ Rd is
introduced to simplify the sampling from π. Thus sampling from the
latter will be replaced by sampling from two simpler distributions (6)
and (7). To this aim, let us consider a Bayesian hierarchical model
through a joint distribution πρ(x, z) defined by

πρ(x, z) ∝ exp
(
−f1(x)− f2(z)− ϕρ(x, z)

)
, (3)

where ρ > 0 and ϕρ stands for a divergence where the discrepancy
between x and z is controlled by ρ. Of course, ϕρ has to be chosen
such that πρ and its related probability distributions are Lebesgue-
integrable. Possible choices for ϕρ, that can be viewed as a coupling
function, are discussed in Section 2.3. In cases where f1 and f2 stand
for potential functions associated to the likelihood and to the prior
respectively, fig.1 shows the directed acyclic graph (DAG) related to
the proposed split model.

In general, the split distribution πρ in (3) does not correspond
to an augmentation of the initial target distribution π. Thereby, the
marginal distribution of x under πρ stands for an approximation of
π. The corresponding approximation error, controlled by ρ, can be
made arbitrarily small as depicted by Theorem 1 proven in [20].

Theorem 1 [20, Theorem 1] Let pρ =
∫
Rd πρ(x, z)dz be the

marginal of x under πρ. Assume that in the limiting case ρ→ 0, ϕρ

is such that

exp
(
−ϕρ(x, z)

)∫
Rd exp

(
−ϕρ(x, z)

)
dx
−−−→
ρ→0

δx(z) (4)

Then, under (4) and by assuming that f1 and f2 are lower-bounded,
pρ coincides with π when ρ→ 0, that is

∥pρ − π∥TV −−−→ρ→0
0. (5)

Algorithm 1: Split Gibbs sampler (SGS)
Input: Functions f1, f2, hyperparam. ρ, total nb of iterations

TMC, nb of burn-in iterations Tbi, initialization z(0)

1 for t← 1 to TMC do
2 % Drawing the variable of interest

3 Sample x(t) according to πρ

(
x|z(t−1)

)
(6) ;

4 % Drawing the auxiliary variable

5 Sample z(t) according to πρ

(
z|x(t)

)
(7) ;

6 end

Output: Collection of samples
{
x(t), z(t)

}TMC

t=Tbi+1

asymptotically distributed according to (3).

Generalizations of the proposed split scheme and more details
can be found in [20, 21].

2.3. Gibbs sampler

The conditional distributions under the split distribution πρ write

πρ(x|z) ∝ exp
(
−f1(x)− ϕρ(x, z)

)
(6)

πρ(z|x) ∝ exp
(
−f2(z)− ϕρ(x, z)

)
. (7)

Thus, the variable of interest x can be estimated through Gibbs sam-
pling where each sampling step does not involve f1 + f2 but only
a part of this initial potential function f1 or f2. Strong similarities
with distributed optimization algorithms, e.g. the ADMM, are dis-
cussed in [20]. The Gibbs sampler derived to sample from the split
distribution πρ is depicted in algo. 1 and called split Gibbs sam-
pler (SGS). Our motivation to introduce variable splitting was the
simplification of the inference and the derivation of a more efficient
sampling scheme. To this purpose, the conditional distributions (6)
and (7) must be simple to sample from compared to the sampling
from π. Depending on the form and properties (e.g. convexity,
differentiability) of the potential functions f1 and f2, the coupling
function can be adaptively chosen. For instance, [20, 22] consider
ϕρ(x) = (2ρ2)−1 ∥x− z∥22 for its gradient Lipschitz, differentia-
bility and convexity properties while [21] invokes conjugacy argu-
ments to choose ϕρ. For a detailed discussion on the Gibbs sampling
procedure, we refer the reader to [20, Section III.A].

3. EXPERIMENTS

This section illustrates the application of the proposed Bayesian
framework on two linear Gaussian inverse problems encountered
in image processing, namely image deblurring using either a total
variation (TV) prior or a frame-based approach.

3.1. Linear Gaussian inverse problems

By considering either an analysis or a synthesis approach [23], linear
Gaussian inverse problems involve the estimation of an unknown
object x through the forward model

y = Px+ n, (8)

where P is a direct operator and n ∼ N
(
0d, σ

2Id
)

stands for
noise. If f1 denotes the potential associated to the likelihood, then
for all x ∈ Rd,

f1(x) =
1

2σ2
∥y −Px∥22 . (9)



Fig. 2. Image deblurring with TV prior. (left) Original image, (mid-
dle) noisy and blurred image and (right) MMSE estimate computed
with SGS.

By taking, as in [20], ϕρ(x) =
1

2ρ2
∥x− z∥22 and by assuming that

for all x ∈ Rd, the potential f2 associated to the prior writes

f2(x) = τψ(x), τ > 0, (10)

the conditional distributions (6) and (7) have the form

πρ(x|z) = N
(
µx,Qx

−1
)

(11)

πρ(z|x) ∝ exp

(
−τψ(z)− 1

2ρ2
∥z− x∥22

)
, where (12)


Qx =

1

σ2
PTP+

1

ρ2
Id (13)

µx = Qx
−1

(
1

σ2
PTy +

1

ρ2
z

)
. (14)

If the matrix P can be diagonalizable in a certain domain (e.g.
Fourier domain), then sampling from (11) can be performed effi-
ciently in this domain through the exact perturbation-optimization
(E-PO) algorithm [24]. Additionally, if ψ corresponds to a con-
vex and possibly non-smooth regularization function (e.g. TV),
sampling from (12) can be conducted using the proximal MCMC
algorithm P-MYULA which has well-understood theoretical prop-
erties.

3.2. Image deblurring with total variation prior

Problem formulation – In this first experiment, we consider an
image deconvolution problem where an original image x of size
256 × 256 (d = 65536) is blurred via a 5×5 Gaussian blur kernel
with standard deviation equal to 2, see fig. 2. Thereby, the cor-
responding operator P = B is a circulant matrix, diagonalizable
in the Fourier domain. The regularization potential ψ is the total
variation (TV) function.

Experimental design – The proposed method is compared with
the state-of-the-art proximal MCMC algorithm, namely proximal
Moreau-Yoshida unadjusted Langevin algorithm (P-MYULA) [15].
Additionally, SGS and P-MYULA will be compared with their
counterpart optimization algorithms namely the split augmented
Lagrangian shrinkage algorithm (SALSA) [6] and the fast iterative
shrinkage thresholding algorithm (FISTA) [25], respectively. The
variance σ2 of the Gaussian noise is set such that the signal-to-noise
ratio (SNR) is equal to 40dB. The Lipschitz constant Lf1 associated
to ∇f1, needed to launch FISTA and P-MYULA, is defined by
Lf1 = σ−2λmax(P

TP) where λmax(P
TP) stands for the largest

eigenvalue of PTP.
Since SGS and P-MYULA do not target the same stationary dis-

tribution, comparing explicitly these two algorithms is not straight-
forward and highly depends on the reconstruction criteria used by
the practitioner. Nethertheless, this experiment aims to demonstrate
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Fig. 3. Image deblurring with TV prior. Convergence of the Markov
chains associated to SGS w.r.t ρ (from guppie green to blue) and
P-MYULA (red) toward the typical set of π.

that SGS, by embedding P-MYULA, can lead to reliable approxi-
mate estimates with a lower computational cost.

The number of MCMC iterations has been set to TMC = 1.1 ×
104 with Tbi = 103 burn-in iterations for SGS. For P-MYULA, due
to slower mixing properties (see fig. 4), the number of MCMC it-
erations has been set to TMC = 105 with Tbi = 9 × 104 burn-in
iterations. Thereby, 104 samples for each Markov chain are consid-
ered. The regularization parameter has been set to τ = 0.2. Sim-
ilarly to [6], the penalty parameter µ used in SALSA has been set
to µ = 0.1τ . Sampling from (12) has been done with P-MYULA
(λMYULA = ρ2 and γMYULA = ρ2/4 as prescribed in [15]) using
Chambolle’s algorithm [26] to compute the proximal operator asso-
ciated to the total variation regularization function.
Choice of the hyperparameter ρ – Fig. 3 shows the convergence
of the Markov chains associated to SGS and P-MYULA toward the
typical set [27, Lemma 3.1.] of π. This convergence is directly re-
lated to the value of the hyperparameter ρ: small values lead to a
slow convergence whereas high values lead to a fast convergence but
with high asymptotic bias. Thus, the choice of ρ is a trade-off be-
tween good reconstruction properties and an efficient exploration of
the parameters’ space. According to our experiments, an intermedi-
ate value of ρ ∈ [1, 3] seems to be a good trade-off. In the sequel,
we set ρ = 3 for this experiment.

Results – Table 1 shows the performance results associated to
both optimization and MCMC approaches averaged over 10 differ-
ent runs. SGS and P-MYULA share roughly similar reconstruction
results by comparing their minimum mean square error (MMSE) es-
timates although there are many other reconstruction metrics and
summary statistics available. Interestingly, variable splitting-based
approaches (SALSA and SGS) lead to a faster convergence com-
pared to forward-backward splitting-based approaches (FISTA and
P-MYULA). This behavior is related to two main consequences of
the variable splitting step. First, as pointed out in [6], variable split-
ting leads to an algorithm that exploits second order information of
the potential f1 associated to the likelihood. In addition, the con-
vergence rates of FISTA and P-MYULA are strongly related to the
Lipschitz constant Lf1 of ∇f1 which depends on P. Thus, [15]
shows that the dependence of the convergence rate of P-MYULA is
of order O(L2

f1
) where Lf1 = 5.72 in this experiment. By taking

a variable splitting approach, SGS can embed P-MYULA which is
now driven by a data-free Lipschitz constant ρ−2 = 0.11 that can be
chosen carefully by the practitioner. Finally, fig. 4 shows the auto-
correlation function (ACF) of the Markov chains associated to SGS



Table 1. Image deblurring with TV prior. Performance results for
both optimization and simulation-based algorithms averaged over 10
runs. For MCMC algorithms, the SNR has been calculated with
MMSE estimates.

SALSA FISTA SGS P-MYULA
time (s) 1 10 470 3600

time (× var. split.) 1 10 1 7.7

nb. iterations 22 214 ∼ 104 105

SNR (dB) 17.87 17.86 18.36 17.97
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Fig. 4. Image deblurring with TV prior. Autocorrelation function
of the Markov chains associated to SGS (blue) and P-MYULA (red)
after the burn-in period. The shaded area corresponds to the standard
deviation computed over 10 different runs.

and P-MYULA after the burn-in regime and by using f1 + f2 as a
scalar summary. SGS appears to be more efficient than P-MYULA
with again a well-chosen hyperparameter ρ.

3.3. Image deblurring in the wavelet domain

Problem formulation – In this second experiment, we consider the
image deconvolution problem detailed in Section 3.2 and solve it by
taking a synthesis approach. Thus, the direct operator P is now de-
fined by P = BW, where the columns of W stand for the elements
of a Haar wavelet frame with four levels. This poor man’s wavelet
has been chosen to illustrate the use of a frame-based approach (al-
though more sophisticated frames can be considered). Since piece-
wise constant images (e.g. cartoon images) are sparse in the Haar
wavelet domain; using this representation is similar to the TV regu-
larization [28]. The objects of interest x are the coefficients of this
image and the considered regularization potential is the ℓ1 norm to
promote sparsity inducing properties [29].
Experimental design – The proposed method is compared with P-
MYULA. The total number of MCMC iterations and the number of
burn-in iterations are set as in Section 3.2. The regularization pa-
rameter has been set to τ = 1 and sampling from (12) has been per-
formed by embedding P-MYULA and by using the soft-thresholding
operator to compute the proximal operator of the ℓ1 norm.
Choice of the hyperparameter ρ – The hyperparameter ρ has been
set to ρ = 1 following the same type of arguments as in Section 3.2.
Its influence on the convergence of the proposed sampler is depicted
on fig. 5. Thus, similarly to the convergence behaviors shown in fig.
3, fig. 5 shows that the proposed sampler, by embedding P-MYULA,
can accelerate its convergence toward the typical set of π.
Results – Fig. 6 shows the blurred and noisy observation, the MMSE
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Fig. 5. Image deblurring with wavelets. Convergence of the Markov
chains associated to SGS w.r.t. ρ (from guppie green to blue) and
P-MYULA (red) toward the typical set of π.
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Fig. 6. Image deblurring with wavelets. Noisy and blurred obser-
vation (left), MMSE estimate Wx̂ (middle, SNR = 21.52 dB) and
90% credibility intervals computed with SGS (right).

estimate of Wx and the 90% credibility intervals computed with
SGS. Note that the latter cannot be obtained with an optimization-
based method, e.g. SALSA or FISTA. Again, the proposed approach
manages to deliver reliable results with a well-chosen hyperparame-
ter ρ. Similarly to the performance results shown in Table 1 for the
first experiment, SGS presents similar reconstruction performances
as ADMM or P-MYULA and leads to an improvement in compu-
tational time. Some additional illustrations of the proposed ap-
proach can be found in [20, 22, 21] where it is shown that the de-
rived Gibbs sampler is more efficient than state-of-the-art MCMC
algorithms. Moreover, it can be distributed over multiple nodes with
a well-chosen variable splitting strategy.

4. CONCLUSION

We have presented a new Bayesian framework inspired from vari-
able splitting in optimization. Starting from an initial target distri-
bution, a joint split distribution is defined leading to an approximate
Bayesian hierarchical model in order to make the inference tractable
and faster. In practice, the initial potential is split in a set of sim-
pler ones that can be tackled in parallel and/or in distributed settings
[21]. This comes at the cost of an approximation that is controlled
and reliable. Thus, the proposed approach yields a very good com-
promise between performances and computational cost. Strong sim-
ilarities between the associated Gibbs sampler and the ADMM can
be pointed out, namely efficient and fast inference related to care-
fully chosen learning rates. The cost of the proposed approach com-
pared to optimization-based algorithms is moderate and corresponds
to the price to pay to get precious credibility intervals on the inferred
parameters. A theoretical analysis of the proposed model is under
consideration.
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