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Embedded video applications are now involved in sophisticated transportation systems like autonomous vehicles and driver
assistance systems. As silicon capacity increases, the design productivity gap grows up for the current available design tools.
Hence, high-level synthesis (HLS) tools emerged in order to reduce that gap by shifting the design efforts to higher abstraction
levels. In this paper, we present ViPar as a tool for exploring different video processing architectures at higher design level. First,
we proposed a parametrizable parallel architectural model dedicated for video applications. Second, targeting this architectural
model, we developed ViPar tool with two main features: (1) An empirical model was introduced to estimate the power con-
sumption based on hardware utilization and operating frequency. In addition to that, we derived the equations for estimating the
hardware utilization and execution time for each design point during the space exploration process. (2) By defining the main
characteristics of the parallel video architecture like parallelism level, the number of input/output ports, the pixel distribution
pattern, and so on, ViPar tool can automatically generate the dedicated architecture for hardware implementation. In the
experimental validation, we used ViPar tool to generate automatically an efficient hardware implementation for a Multiwindow
Sum of Absolute Difference stereo matching algorithm on Xilinx Zynq ZC706 board. We succeeded to increase the design
productivity by converging rapidly to the appropriate designs that fit with our system constraints in terms of power consumption,
hardware utilization, and frame execution time.

1. Introduction

Nowadays, embedded video processing applications are
widely spread in our daily life. Among these applications, we
can mention public area video surveillance [1], crowd be-
haviour analysis for detecting abnormal activities [2, 3], ve-
hicle tracking [4], intelligent transportation systems [5, 6],
assisted living for elder people [7, 8], simultaneous locali-
zation and mapping (SLAM) problem [9, 10], counting
passengers in vehicles [11], real-time autonomous localization
[12], yawning detection [13], monitoring systems for kids
safety, analyzing customer behaviour in markets, and so on.

Latest semiconductor technologies offer powerful low-
cost computing hardware solutions which motivate industry
and academia towards developing intelligent sensors. For
video processing, smart camera systems are becoming more
attractive due to several advantages. In such sensor, images
are captured and processed locally to avoid remote com-
puting or specific communication infrastructure. In addition
to that, complex algorithms for data analysis and decision
making could be performed to bring autonomy capability to
systems like in drones and autonomous vehicles.

In this context, field-programmable gate array (FPGA)
technology is a competitive solution for building embedded
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video processing applications when compared to other
available solutions in the market like CPU, GPU, or ASIC
circuits for different reasons [14]: (i) FPGA devices are
reprogrammable platforms where the hardware architecture
can be redesigned to adapt with the rapid changes in the
image sensor technologies or in video processing algorithms
without changing the chip itself. (ii) By exploiting the in-
herent parallelism in video processing applications, FPGA
technology enables to implement massively parallel archi-
tectures due to the huge number of programmable logics
available on a single chip. (iii) FPGA-based system is
considered as a solution between ASIC and processor-based
system where FPGAs are characterized by their high per-
formance per watt; thus, they are good candidate for em-
bedded video processing applications.

Several challenges arose while designing embedded
video processing applications using reconfigurable tech-
nology. First, we need to develop a flexible parallel recon-
figurable architecture where huge amount of pixels is
transferred from/to the computing nodes. Today, the in-
creasing demand for more frame rate or increasing the
image resolution are additional challenges for video pro-
cessing applications especially when real-time constraints
are considered. )is challenge is augmented in the auton-
omous vehicle industry where several image sensors are
installed in the vehicle for obstacle detection, tracking, and
classification. )e combination of reconfigurability and
parallelism is a key solution for the above-described prob-
lem. )us, we need to know how to abstract the hardware
architecture to build a flexible parallel architecture where we
can fix the parallelism level according to the desired per-
formance or the available hardware resources. Today, a
tremendous number of logic cells exist on a single FPGA
chip. Using conventional ways to design, simulate, imple-
ment, and validate such large FPGA designs are a time-
consuming process. For that reason, designers always aim to
move the design efforts to the higher abstraction levels by
using high-level synthesis (HLS) tools to increase the design
productivity and to shorten the time-to-market conditions.
In FPGA design, there is no unique solution for the design
problem, but it is common to have a space of solutions where
the design points are different from each other in terms of
hardware utilization, performance, operating frequency, and
power consumption. Indeed, it is not practical to explore
manually a design space consisting of hundreds or thou-
sands of design points. Accordingly, automating the ex-
ploration process is necessary to search rapidly for the
solution which better fits with the given system constraints.

To address the aforementioned challenges, our contri-
butions in this work can be summarized as follows:

(1) We proposed a generic model for parallel hardware
video processing architecture. For that model, we
defined the required parameters to describe the ar-
chitecture at the system and processing element level.
)e architectural parameters are then considered as
an input to automate the high-level code generation.

(2) Translating C/C++ code to RTL design with the help
of HLS tools does not mean an efficient hardware

design. However, a set of high-level optimization
steps should be applied in order to obtain an efficient
design. In this work, we classified the HLS optimi-
zations either for improving the hardware imple-
mentation or for exploiting the inherent parallelism
in the application. In addition to that, we showed the
impact of applying each optimization step on the
overall design efficiency in terms of hardware uti-
lization, power, and performance.

(3) We developed ViPar tool to automate the design
space exploration through the following steps: (i) Both
resource utilization and performance were estimated
for each point in the design space. (ii) An empirical
power model was introduced to estimate the power
consumption for each design based on the utilized
resources and operating frequency. (iii))e high-level
code of the parallel video processing architecture was
automatically generated for experimental validation.
In the frame of our industrial collaboration, during
our experiments, stereo matching algorithm was
chosen as a video processing application.

)e rest of this paper is organized as follows: related
works are overviewed in Section 2. Section 3 explains the
stereo matching algorithm used in this work. Section 4
details our parameterizable parallel architectural model.
Section 5 lists the applied HLS optimizations to obtain ef-
ficient hardware implementation, while Section 6 describes
how ViPar tool works. )e experimental results are pre-
sented in Section 7. Finally, Section 8 summarizes our
presented work.

2. Related Works

In the literature, hundreds of research works present the
implementation of various video processing applications
over different hardware architectures ranging from CPU,
GPU, FPGA, DSP, and ASIC. For FPGA, the property of
being reconfigurable inspires designers to build architec-
tures of soft-core processors like vector, VLIW, and GPGPU
over FPGA. VectorBlox MXP [15] is an FPGA-based soft
vector processor for performing high parallel data tasks. )e
architecture is parameterized by allowing the user specifying
the number of parallel ALU ranging from 1 to 128 parallel
ALU. For video processing applications, MXP offers two
modules: FrameWriter to write image frames to the external
memory or StreamWriter to write few scanlines to the MXP
scratchpad. In the experimental results, authors imple-
mented H.264 deblocking filter by defining custom in-
structions. In addition to that, they showed the
implementation of several video applications like median
filter, motion estimation, and saliency computation [15, 16].
Authors in [17] proposed a customizable VLIW processor
with a variable instruction set for exploiting parallelism. For
experimental validation, three basic image applications were
tested on the Virtex-6 FPGA board; then, authors extended
their experiments by realizing a contactless palmprint ex-
traction algorithm for biometric applications. )eir VLIW
implementation over FPGA showed an average speedup of
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2.7x when compared to DSP-based implementation for the
same application. FlexGrip [18] is a soft GPGPU processor
where compiled CUDA binaries are directly executed on the
FPGA-based GPGPU without hardware resynthesis. Flex-
Grip follows the single-instruction multiple-thread (SIMT)
model where one instruction is fetched and executed si-
multaneously by multiple SP cores. In the experiments,
FlexGrip was implemented for a single SM and 8-SM over
Virtex-6 VLX240T board to evaluate five different highly
parallel CUDA applications. FGPU [19] is another soft
GPGPU processor with single level-cache optimized for
FPGA.)e authors developed a compiler in order to support
applications written in OpenCL [20]. FGPU has an extended
MIPS assembly instruction set with additional instructions
to support the OpenCL execution model. In the experi-
mental results, the authors compared 11 applications in-
cluding three image filters implemented on FGPU to other
platforms.

High-level synthesis design space exploration (HLS
DSE) can be classified in different ways. One classification
divides the DSE into two classes: (i) DSE inside the HLS tool.
(ii) DSE with the HLS tool.)e first class focuses on applying
DSE to the internal tasks of the HLS tools (allocation,
binding, and scheduling). Each task is controlled by a set of
different factors which have a significant impact on the
performance metrics of the resulted hardware. Some re-
search works under this class are [21, 22]. )e second class
considers the HLS tool as a black box and explores the design
space of the optimization parameters offered by the tool.
)is class can be further subdivided into (i) HLS synthesis
directives and (ii) resource sharing. For the first subclass, the
HLS directives are inserted into the behavioural code as
comments to affect the final synthesized microarchitecture.
For example, loops can be pipelined or not with complete or
partial unrolling. Arrays can also be completely or partially
partitioned with the possibility to be mapped to registers or
BRAMs.)ese optimization varieties generate a design space
of different combinations that can be explored for the same
application. For resource sharing, a single functional unit
can be shared among different operations in the source code.
)is is achieved by inserting multiplexers at the inputs and
outputs of the functional unit. Using resource sharing
produces a design space of different implementations which
vary from an architecture that has one single-shared FU to a
fully-parallelized one.

Authors in [23] applied HLS directives then resource
sharing to reduce the design space to be explored. )ey
proposed a probabilistic method to accelerate the DSE
process by calculating the probability of each generated
architecture, and then continued exploring only the designs
of the highest probabilities. )eir experimental results
showed an acceleration of 12x in the DSE process. Resource
sharing acts differently for both ASIC and FPGA. In ASIC,
resource sharing reduces the total area of the design while for
FPGA, it could act oppositely because of the size of the
inserted multiplexers consume a lot of logic resources. For
that reason, authors in [24] proposed a method to force the
cost of resource sharing to be larger than that of the used
multiplexers by fixing the bitwidth of the internal variables.

)is approach came at the expense of introducing overflow
errors in the design. )e experimental results showed that
the percentage error differed from one application to an-
other. )us, the designer should estimate if the error per-
centage is acceptable or not in his application. A framework
for HLS DSE was presented in [25] which exploited loop
array-dependency to reduce the DSE time. )e results
showed that the framework gave the same quality of result as
the exhaustive DSE approach while lowering the exploration
time with an average of speed-up of 14x. Another framework
used sequential model-based optimization (SMBO) to select
the HLS directives automatically. During optimization, a
model of the function was constructed using machine-
learning methods. From the experimental results, the con-
vergence to the optimal HLS directive settings was improved
by using transfer-learning mechanism in the SMBO model
[26]. Lin-Analyzer [27] did rapid design space exploration
for various HLS pragmas like loop pipelining, loop
unrolling, and array partitioning without the need for doing
RTL implementations. Programs were represented in
dataflow graphs by using dynamic data dependence graphs
(DDDG). DDDG are acyclic directed graphs where nodes
represent operations, while edges represent data dependence
between the nodes. Lin-Analyzer scheduled the graph nodes
according to the resource constraints to obtain early per-
formance estimation. For validation, 10 different applica-
tions were tested on Xilinx ZC702 FPGA board. Another
classification for HLS DSE is based on the algorithm used
during the design space exploration like using genetic al-
gorithm [28], simulated annealing [29], ant colony [23], or
machine-learning techniques [30].

In this paper, we proposed a parameterizable generic
architecture for video processing where the processing el-
ements are dedicated for a certain video application to have
area and power customized. )e processing element was
optimized by applying HLS optimizations; then, the archi-
tecture was explored at higher design level by tuning dif-
ferent parameters like parallelism level, operating frequency,
and so on. Comparing to the existed tools, ViPar tackles the
exploration challenge at more abstracted level making profit
from the application properties (image size, sliding window
size, parallelism level, etc.) and the system requirements
(frame rate, power consumption, etc.). Our tool compares
between different design points by estimating power con-
sumption, hardware utilization, and performance, and then
it generates automatically the parallel architecture for the
best candidate designs.

3. Sum of Absolute Difference Stereo
Matching Algorithm

Stereo matching is the problem of finding the depth of
objects using two or more images. )ese images are taken
from different positions by different cameras at the same
time. Stereo matching is a correspondence problem where
for every pixel (XR) in the right image, we try to find its best
matching pixel (XL) in the left image at the same scanline.
)e difference between the two points on the image plane is
defined as disparity, as depicted in Figures 1(a) and 1(b).
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Several algorithms were proposed in the literature to find the
best matching [31]. One of these algorithms is multiwindow
sum of absolute difference algorithm (multiwindow SAD)
[32], where the absolute difference between pixels of the
right and left images are aggregated within a window, such
that the window of minimum aggregation is considered as
the best matching among its candidates. In order to over-
come the error that appears at the regions of depth dis-
continuity, the correlation window can be divided into
smaller windows, and only nonerror parts are considered in
the calculations. Figure 1(c) shows 5-window SAD config-
uration, where pixel (P) lies in the middle of window (E) of
height � 2∗ cwinV + 1 and width � 2∗ cwinH + 1 and
surrounded by another four windows named A, B, C, and D
of height � winV + 1 and width � winH + 1. We defined
window score as the aggregation of the absolute difference of
the pixels within that window.

)e algorithm is described in Listing 1, where it scans all
the image pixels at every disparity value ranging from zero to

the maximum value (DISP_MAX). )e calculation of
window (E) is usually performed independently from the
others because its size is different from others. )e for-loop
described between Lines 2–27 is repeated a number of times
equal to the maximum disparity value (DISP_MAX). )e
addition operation is considered as the core computation
operation since we sum up the absolute difference of pixels.
If we assume an image of size N×N with an aggregation
window of size M×M, then N2(M2 − 1) addition opera-
tions are needed for window aggregation at every single
pixel. However, by applying box-filtering [33] in both
horizontal and vertical directions, the number of additions
will be reduced to 4N2. Box-filtering is applied in both
horizontal and vertical directions (Lines 5–12) to obtain the
score of windows (A, B, C, D, and E) at each pixel. )e
minimum scoremin_score is equal to the sum of the score at
window (E) in addition to the best minimum two scores of
the other four windows (Lines 15–21).)e new score value is
compared to the previously calculated value at the same pixel
such that if it is smaller, then both the score array bestscoreR[ ]
and the disparity map array DISP_IMG_R[ ] are updated;
otherwise, they are kept unchanged (Lines 22–24). Occluded
objects are common to happen in the stereo matching
problem; therefore, Left/Right consistency check is applied
to get rid of occluded pixels from the final disparity map.
Left/Right consistency check needs to calculate the dis-
parity map twice; in the first calculation, the right image is
considered as the reference, while vice versa happens in the
second one (Lines 22–27). Hence, the disparity maps are
stored in DISP_IMG_R[] and DISP_IMG_L []; then, for
each pixel, we check if the value of the left disparity map is
the same as its matching pixel in the right disparity map. If
it is the case, then we validate the pixel matching; other-
wise, the disparity value at that pixel is uncertain and is
replaced by zero (Lines 28–31).

4. ParallelVideoProcessingArchitectureModel

Our proposed parameterizable architectural model is
depicted in Figure 2. It is an array-based video processing
architecture, where N processing elements are running in
parallel. Each processing element has i input ports (X0, X1,
. . ., Xi) and j output ports (Y0, Y1, . . ., Yj). )e input pixel
streams (I0, I1, . . ., Im) are copied and distributed to in-
dividual array structures through Pixel Distributor. After
processing, Pixel Collector stores the pixels in arrays before
streaming them out in order through system output ports
(O0, O1, . . ., On). In our previous work, we implemented a
generic architecture for pixel distributor/collector that de-
pends on the properties of the image processing algorithm
(like macroblock size, sliding window stride, etc.) [34].

In this model, we defined a set of parameters to describe
the properties of the parallel video architecture at the
processing element, the system level, and for the top-level
function. At the processing element level, we defined the
port properties for the input ports (X0, X1, . . ., Xi) and
output ports (Y0, Y1, . . ., Yj). )ese port properties include
name, data type, the source of the input pixel stream (src),
and the range of image scanlines which are mapped to that
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Figure 1: (a) Calculating the depth of an object in stereo matching
problem. (b) Disparity is defined as the distance in pixels between
(XR) and (XL). (c) 5-window SAD configuration.
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port during execution (store_scanlines_from, store_-
scanlines_to). For example, for the 5-window SAD algo-
rithm, we defined six input ports for AB, CD, and E
windows, where each window has two inputs for the left and
right images. If the window size for AB and CD is 23 x 8, then
(store_scanlines_from and store_scanlines_to) will be 0 and 8
for window AB, while it will be 8 and 15 for window CD.

At the top-level function level, we defined the properties
of the input/output stream ports. )ese port properties
include their name, data type, how many scanlines are
transferred from/to the system during execution
(num_of_scanlines), and either if pixels are grouped during
transfer to optimize bus communication or not
(num_of_merging_elements). For example, if an 8-bit pixel is
transferred over 64-bit bus width, then 8 pixels can be
merged and sent at once. While the system properties define
the general system properties such as the size of the input/
output images and what level of parallelism is realized. For
example, in autonomous vehicles, our input image size was
640 x 480 for the multiwindow SAD stereo matching algo-
rithm with a global constraint of minimum 15 frames/s.
With such high-level system description, hardware imple-
mentation details are hidden; hence, it facilitates the system
design for video processing developers.

When the depicted architecture is described at high-level
language, we have to code how the pixels will be distributed
over the parallel processing elements and how they will be
collected back to stream the output.)e same image scanline
could bemapped to several processing elements to guarantee

data-level parallelism execution. Indeed, it could be feasible
to write the distribution/collection subroutines manually for
architectures of few processing elements, but it will be a real
challenge to do so for an architecture of large number of
processing cores. )is challenge is duplicated when a large
number of parallel architectures need to be examined in
order to find an efficient implementation that fulfils the
design requirements. Consequently, coding these architec-
tures manually is a time-consuming process and an error-
prone process. In order to address the above challenge, we
developed ViPar tool which explores the design space, and
then automatically generates the high-level codes for the best
candidate parallel architectures. )e generated code is then
compiled by the HLS tool to obtain the corresponding RTL
design. In the next section, we will expose the high-level
optimizations introduced in order to obtain an efficient
processing element before exploring the possible parallel
architectures by using ViPar tool.

5. High-Level Synthesis Optimizations

Using high-level synthesis (HLS) tools in electronic design
automation (EDA) aims at moving the design efforts to
higher abstraction levels. Today, it becomes more easier to
design, implement, and verify complex video processing
algorithms on reconfigurable technology by using high-level
synthesis tools. In this section, we will classify HLS opti-
mizations either for improving the hardware implementa-
tion or for exploiting the inherent parallelism in the video

Algorithm: Multi_Window_SAD
for every disparity(d) where d� 0⟶DISP_MAX:

for every element(x, y) where x� 0⟶ imgW, y� 0⟶ imgH:
Abs[y][x]� abs(IMG_R[y][x] − IMG_L[y][x+ d]);

for every element(x, y) where x�winH⟶ imgW‒winH, y� 0⟶ imgH:
row[y][x]� row[y][x − 1] +Abs[y][x] − Abs[y][x − winH];

rowE[y][x]� rowE[y][x − 1] +Abs[y][x] − Abs[y][x − 2∗ cwinH];
for every element(x, y) where x� 0⟶ imgW, y�winV⟶ imgH‒winV:

scr[y][x]� scr[y − 1][x] + row[y][x] − row[y − winV][x];
scrE[y][x]� scrE[y − 1][x] + rowE[y][x] − rowE[y − 2∗ cwinV][x];

for every element(x, y) where x�winH⟶ imgW‒winH, y�winV⟶ imgH‒winV:
scoreA� scr[y][x];
scoreB� scr[y][x+winH];
scoreC� scr[y+winV][x+winH];
scoreD� scr[y+winV][x];
scoreE� scrE[y+winV − cwinV][x+winH − cwinH];
min_score� scoreE +MIN_2_values{scoreA, scoreB, scoreC, scoreD};
if min_score< bestscoreR[y+winV][x+winH]:
bestscoreR[y+winV][x+winH]�min_score;
DISP_IMG_R[y+winV][x+winH]� d;

if min_score< bestscoreL[y+winV][x+winH+ d]:
bestscoreL[y+winV][x+winH+ d]�min_score;
DISP_IMG_L[y+winV][x+winH+ d]� d;

for every element(x, y) where x� 0⟶ imgW, y� 0⟶ imgH:
dispVal�DISP_IMG_R[y][x];
if abs(DISP_IMG_L[y][x+dispVal] ‒>dispVal)> 1:
DISP_IMG_R[y][x]� 0;

ALGORITHM 1: Pseudocode for multiwindow SAD algorithm.
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processing application. In order to obtain an efficient
hardware implementation, the high-level code is subjected
to a set of HLS optimization steps [35]. We will show the
impact of these optimizations in terms of hardware utili-
zation and performance on the multiwindow SAD
algorithm.

5.1. Optimizations for Better Hardware Implementation.
)is type of optimizationmodifies the software code to fit for
hardware implementation.

5.1.1. Dividing the Image into Strips. For window-based
image processing algorithm, dividing an image into strips is
an inevitable step due to the limited number of on-chip
memories (BRAMs). Design #1 showed an overuse for
BRAM, where the FPGA platform has maximum
BRAM_18K� 1090, as listed in Table 1. In strip processing,
loop boundaries and array dimensions are updated to reflect
a strip size processing area instead of full image size, and the
code will be repetitively executed until all the strips are
processed. For example, the image height is updated from
imgH to stripH. In the multiwindow SAD algorithm, the
pixels can be summed in three different ways: (i) Design #2
aggregates the pixels in the horizontal direction then the
result is aggregated in the vertical one. (ii) While in Design
#3, the aggregation is done vertically along the column
length then horizontally along the scanline. (iii) However, in
Design #4, the pixels are aggregated within the window
boundary in both directions. Table 1 reports the estimated
hardware utilization for the three designs. By comparing, we
can observe that Design #4 is more efficient in terms of
BRAM usage as well as for execution time.

5.1.2. Using Arbitrary Precision Data Types. HLS tools
support arbitrary precision data types by defining variables

with smaller bitwidth. Instead of using the native C-based
data types of width 8, 16, 32, and 64 bit, we can define our
variables with adjustable bitwidth to produce systems of the
same accuracy but with less area utilization. By doing bit-
width analysis, we can know the lower and upper limits for
each variable, and then the required number of bits can be
exactly assigned. In Table 1, Design #5 showed around 31%
reduction for LUT and 40% reduction for FF.

5.1.3. Choosing I/O Interface Protocols. )e generated
hardware block is connected to other blocks in the design
through various types of I/O protocols. Different com-
munication protocols are available where the designer is
free to choose the one which fits better with his design
requirements. During the synthesis process, the top-level
function arguments are synthesized as RTL ports where
three classes of ports can be defined as follows: (1) Clock
and Reset ports. (2) Block-level interface protocol is used
to control and check the current state of the HLS block
(start, ready, busy, or done state). (3) Port-level interface
protocol is created for each argument in the top-level
function with various configurations like memory in-
terface, two-way handshaking with valid and acknowledge
signals, or as AXI4 interfaces (AXI4-Stream, AXI4-Lite,
and AXI4 master). In our design, AXI-Stream was chosen
for the port-level interface. While AXI-Lite was selected
for the block-level interface protocol to control the op-
eration of the hardware block. In Table 1, Design #6
listed the hardware cost after adding the I/O interface
protocol.

5.1.4. Grouping Input/Output Pixels. If the I/O pixels are of
size less than the bitwidth of the communication bus, then
the designer can benefit from the available bus to reduce the
required communication time by merging pixels during data
transfer. )is operation requires an additional attention
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Figure 2: Array-based video processing architecture.
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from the designer while separating the pixels at the input
ports or merging them at the output ports. In our design, the
communication bus is 64-bit, the input pixel is 32-bit, while
the output disparity is only 8-bit. )us, we can merge up to 2
pixels at the input port and up to 8 pixels at the output port.
Design #7 showed 7% improvement in the execution time as
listed in Table 1.

5.2. Optimizations for Exploiting the Inherent Parallelism.
)is type of optimization modifies the software code to
exploit the parallelism in the application at different levels
(pipeline-level, task-level, or data-level parallelism). We will
exploit the inherent parallelism in the multiwindow SAD
algorithm to improve the execution time.

5.2.1. Task-Level Parallelism. In task-level parallelism, in-
dependent data tasks can be executed concurrently. For 5-
window SAD algorithm, as shown in Figure 1, the score of
window (B) is used after (winH+ 1) pixel shift as a score for a
new window (A) along the same scanline. )e same case is
applied for windows (C) and (D). )us, only three score
calculation loops are needed for windows (A/B, C/D, and E).
In order to execute data-independent loops in parallel, we
have (i) to duplicate the common input pixels between the
three loops if exist and (ii) to rewrite them in separated
functions to allow the HLS tool to schedule them in parallel.
)e common image lines between windows are duplicated to
allow data-independent window calculations. For example,
the common image lines between windows A/B and E are
duplicated to the local arrays of both. In Table 1, Design #8
reports the effect of applying task-level parallelism where the
execution time is improved by around 50%.

5.2.2. Pipeline-Level Parallelism. In pipeline-level parallelism,
the computation is divided into stages where it is possible to
execute the pipelined stages in parallel.We applied pipeline-level
parallelism in two different ways: (i) by restructuring the code

manually. (ii) By applyingHLSdirectives like LOOP_PIPELINE.
Figure 3 depicts that there is only one image line difference
between two adjacent strips. For calculating one disparity line, a
strip of height� 2∗win_V+1 is needed, while for four adjacent
disparity lines, a strip of height� 2∗win_V+4 is required.)us,
we can increase the height of the strip to benefit from the sent
pixels to calculate several disparity lines. We tried to calculate 4,
8, and 12 disparity lines while using the same pipeline for
Designs #9, #10, and #11, respectively, as listed in Table 1. )e
other way of performing pipeline-level parallelism is by adding
HLS directives like LOOP_PIPELINE directive to the for-loops
in the algorithm.)is loop transformation is done automatically
by the help of the tool without the need to modify the code.
Design #12 in Table 1 reported the hardware cost and the ex-
ecution time after applying the pipeline directive on Design #8.
)e HLS tool tries to schedule all the loop iterations just one
clock cycle far from each other (i.e., iteration interval (II)� 1),
but sometimes due to interloop-dependency, II� 1 cannot be
achieved. It is the role of the designer to check the posi-
tions where II>1 are reported then to direct the tool to
remove the false loop-dependency if exists by introducing
LOOP_DEPENDENCE directive. In Table 1, Design #13
showed 15% gain in execution time than Design #12 when false
interloop-dependency is removed.

5.2.3. Data-Level Parallelism. When the computation process
is repeated without true loop-carried dependency between the
iterations, then, it can be duplicated to operate on different sets
of data in parallel. Data-level parallelism is applied in two
different ways: (i) by applying ARRAY_PARTITION and
LOOP_UNROLL directives and (ii) by increasing the number
of parallel processing elements.)e goal of array partitioning is
to boost the system throughput at the expense of increasing the
used hardware resources. LOOP_UNROLL directive dupli-
cates the computation process to operate on a different set of
data by creating multiple copies of the loop body. Loops can be
partially unrolled by creatingN copies of the loop body if factor
N is defined; otherwise, the loop is fully unrolled by default.

Table 1: Synthesis results for each optimization step.

Optimization Slice FF LUT BRAM (18K) Time (ms)
SW version running at 380ms on core i7@ 2.7GHz and 16GB of RAM

#1 First synthesizable design X 2637 5918 7392 X
#2 Hor. then ver. aggregation 898 1743 2735 155 30080
#3 Ver. then hor. aggregation 859 1758 2659 113 22410
#4 In both directions 1400 2552 3738 75 8163
#5 Arbit. prec. data types 983 1525 2567 47 5786
#6 I/O interface protocols 996 1575 2619 49 6307
#7 Grouping pixels 1135 1820 3080 49 5865
#8 Task-level parallelism 1110 2002 3339 67 2658
#9 Calculating 4 disp. lines 2790 4578 7796 102 815
#10 Calculating 8 disp. lines 5012 8502 14027 204 432
#11 Calculating 12 disp. lines 6594 12563 18476 252 339
#12 Loop pipelining 1161 2004 3546 67 1174
#13 False dependency 1115 2030 3433 67 1002
#14 Data-level parallelism 2771 6365 8155 59 313
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Design #14 reported 70% improvement in the execution time
with 2.3x and 3.1x increase in LUTand FF, respectively, as listed
in Table 1. )e other way of exploiting data-level parallelism is
by increasing the number of parallel processing elements. )is
can be achieved by defining a new top-level function that in-
cludes multiple instances of Design #14 operating in parallel. In
the next section, we will use the model described in Section 4 to
define the required parameters to implement a parallel hardware
architecture consisted of N processing elements by the help of
ViPar tool.

6. ViPar Tool

In this section, we will describe the design flow of ViPar tool
and how the performance metrics like area, power, and
execution time are estimated by our tool at a higher design
level. In addition to that, we will show how the high-level
code is generated by ViPar after defining the main properties
of the parallel architecture.

6.1. ViPar Tool Design Flow. Figure 4 depicts the design flow
for ViPar tool where the initial input is the performance
metrics of the design at parallelism level� 1. )ese metrics
include area utilization, power consumption, and execution
time. During the area estimation phase, we keep increasing the
level of parallelism till one of the resources (slice or BRAM) is
completely utilized. )e upper bound for resource utilization
depends on which FPGA chip is selected during the explo-
ration process. After that, the produced set of design alter-
natives is estimated for power consumption and execution time
as well. According to the system constraints, the design space is
pruned to the set of the candidate designs. )en, high-level
code generation is done to generate automatically the C++ files
for each design candidate. )e generated code constrained by
HLS optimizations/user constraints are considered as the input
to the high-level synthesis tool to obtain the RTL design. Later,
the RTL design is implemented to generate the design bit
stream. Experimentally, we can measure the design metrics to
verify how far are the estimations from the real values and to
make sure that the system constraints are fulfilled.

6.2. Area Estimation. Two factors affect the resource utili-
zation of the implemented design: (i) Synthesis/Imple-
mentation strategy. )e synthesis tool offers a set of

predefined strategies to obtain the hardware implementa-
tion. It is a multiobjective problem where each strategy has a
certain objective to optimize like power, area, performance,
and so on. (ii)Operating frequency.)e synthesis tool tries to
achieve timing closure alongside satisfying the objective of
the applied strategy. At higher operating frequencies, the
tool allocates more hardware resources to satisfy the timing
constraints.

Figure 5 shows the relation between LUT and FF utili-
zation at different parallelism levels. In this figure, Default
synthesis strategies were used at two different operating
frequencies 100 and 200MHz, while Performance_Explore
synthesis strategy was used at 100MHz. We can deduce the
following observations from the figure: (i) Utilization for
LUT and FF increases linearly with the increase of the
parallelism level. (ii) At the same parallelism level, the ob-
served utilization varies either because of using different
synthesis strategies or because of using different operating
frequencies. (iii) )e difference in LUT/FF utilization for the
same design implemented by two different synthesis strat-
egies is small at lower parallelism level, while it becomes
more significant for high levels of parallelism.

In highlight of the previous observations and based on
the depicted parallel video processing architecture in Fig-
ure 2, the hardware cost in terms of slice, FF, LUT, and
BRAM can be divided into (i) Base cost which represents the
required resources for implementing the basic blocks
existing in every single design. )ese basic blocks include
AXI-DMA blocks for pixel transfer, AXI-interconnect
blocks, AXI-VDMA blocks for video target peripherals, and
so on. (ii) Parallel cost which represents the required
hardware resources for implementing the processing ele-
ments of the parallel architecture. We can deduce a linear
relation for estimating slice, LUT, FF, and BRAM as follows:

estimated utilization|parallelism level�N

� base cost +N∗ utilization|parallelism level�1
(1)

where Base_cost is the hardware cost for the basic blocks in
the design and N is the level of parallelism. For slice esti-
mation, we have another equation based on the fact that the
slice is composed of FFs and LUTs (for example, in Zynq
ZC706, one slice consists of 8 FFs and 4 LUTs). )erefore,
the estimated slice utilization can be formulated as follows:

estimated slice utilization|parallelism level�N

� max
estimate d LUT|parallelism�N

num LUT per Slice
,
estimate d FF|parallelism�N

num FF per Slice
 ,

(2)

where N is the level of parallelism, estimated_LUT is the esti-
mated LUTutilization, and estimated_FF is the estimated register
utilization at parallelism level�N. num_LUT_per_Slice and
num_FF_per_Slice is the number of LUT and FF in one Slice.

6.3. Power Estimation Model. )ere are three types con-
tributing to the power consumption in FPGA: static power,
short-circuit power, and dynamic power. Dynamic power
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Figure 3: Enlarging the strip height to calculate 4 disparity lines.
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could be further broken down into power consumed by
clocks, interconnect wires, and hardware resources. Equa-
tion (3) [36] is used to formulate the dynamic power
consumption, where n is the total number of nodes, f is the
clock frequency, Vd d is the supply voltage, Ci is the load
capacitance for node ni, and Si is the switching activity for
node ni.

Powerdynamic �
1
2

fVd d
2



n

i�1
CiSi. (3)

For correct power estimation, a detailed placement and
routing design is required to estimate the power con-
sumption at each single node ni in the design. In fact,
obtaining a detailed placement and routing design takes a
considerable time which could range between 30 and –
90min or even more for larger designs. During exploration,
it is not practical to run a detailed implementation to es-
timate the power consumption for every single point. In-
stead of that, quick power estimations are accepted at that

early design stage to compare the power consumption of
different design points. In this work, we will present an
empirical power model based on hardware resources and
operating frequency characterization.

6.4. PowerMeasurement. )e power was measured through
an UCD90120A power controller mounted on the Zynq-
ZC706 board using TI Fusion Digital Power Designer
software. )e power consumed by the FPGA chip was
measured by monitoring rail 1 (VCCINT) of the power
controller with a sample rate of 5 samples/s. For correct
average power values, the power was sampled for at least 10
minutes on average.)e total power consumption is affected
by how much hardware resources are used and at which
frequency the design is operating. In order to formulate this
relation, two basic hardware blocks were designed where one
uses only slices, while the other uses only BRAMs. Each
hardware block was implemented in a separate design at
different parallelism level while operating at frequencies of
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values 50, 100, 150, and 200MHz. We kept increasing the
level of parallelism till full hardware utilization. For each
design, the power was measured practically, and then it was
plotted versus hardware utilization, as depicted in Figure 6.

We can observe from the plots that there is a correlation
between the measured power and hardware utilization (slice
and BRAM). )e plotted lines are not parallel to each other
which reflect the interaction of frequency in the power
equation. )is correlation between the measured power,
BRAM, slice, and frequency can be formulated by using
regression analysis to obtain the power estimation model.

6.5.PowerRegressionModel. )epower estimationmodel was
built by varying the independent variables (slice, BRAM, and
frequency) as follows: slice at 9K, 15K, 25K, 35K, 45K, 50K, and
54K, BRAM at 96, 156, 246, 366, 486, 606, 846, and 1026, and
frequency at 50, 100, 150, and 200MHz. For each experiment,
we measured between 2700 and –3000 samples where all the
measured samples are then arranged in one spreadsheet as an
input for regression analysis to estimate the relationship be-
tween power, frequency, slice, and BRAM. )ere are various
kinds of regression models for power prediction. In our study,
we will compare three models (linear, pure-quadratic, and full-
quadratic) to choose the one which better fits.

Before going into the details, it is preferable to explain
some statistical definitions that will be used in the analysis
for comparing the models.

(i) Residual Value. It is the vertical distance between a
data point and the regression line. )ey are positive
if they are above the regression line and negative if
they are below it, but if the regression line passes
through the points, then the residual will be zero.

(ii) Residual Sum of Squares (Residual SS). It tells if the
statistical model is a good fit for the data or not by
calculating the overall difference between the data
and their predicted values, where  error2 �

 (poweractual − powerpredicted)2.

(iii) =e Coefficient of Determination (R-squared). R2

tells how many points fall on the regression line.
R-squared is explained by a value ranging between 0
and 1.

R
2

� 1 −
Residual sumof squares
Total sumof squares

. (4)

(iv) Adjusted R-Squared. It is adjusted for the number of
coefficients in the model. )is value is often used to
compare models of different numbers of
coefficients.

(v) Significance Level (Alpha Level (α)). It is the
probability of making the wrong decision when the
null hypothesis is true, while the confidence level is
defined as (1 − α).

(vi) P-Value. It is used in the hypothesis test for either
supports or rejects the null hypothesis. P-value is an

evidence against the null hypothesis where the
smaller the P-value, the stronger evidence to reject
the null hypothesis.

(vii) Significance-F. It is the probability that the re-
gression equation does not explain the variation in
the dependent variable (power).

Table 2 lists the regression analysis for the three models
(linear, pure-quadratic, and full-quadratic). For the three
models, Table 2 showed zero value for the significance-F;
therefore, the three models are valid (i.e., our results are
statistically significant, and they likely did not happen by
chance). Adjusted R-squared can be checked to tell us how
many points fall on the regression line. It was 0.912166 for
the linear model, 0.994009 for pure-quadratic, and 0.99413
for full-quadratic. Apparently, the difference in Adjusted R2

between pure-quadratic and full-quadratic was not that big
difference. For that reason, we can either choose pure-
quadratic to have fewer model parameters or to choose full-
quadratic to have the highest R2. In our case, we chose the
full-quadratic model. Finally, by applying a confidence level
of 99% (i.e., α� 0.01), we checked the corresponding
P-values for the coefficients β of the full-quadratic model
(β0⟶ β9); we could conclude that the null hypothesis is
rejected for all coefficients (β0⟶ β9), where P< 0.01. )e
full-quadratic power estimation model is described in the
following equation:

power|estimated � β0 + β1 ∗ S + β2 ∗B + β3 ∗F + β4 ∗ S∗B + β5
∗ S∗F + β6 ∗B∗F + β7 ∗ S

2
+ β8 ∗B

2
+ β9 ∗F

2
,

(5)

where S is slice, B is BRAM, F is Frequency, β0 � 0.2228,
β1 � 1.29 × 10− 6, β2 � 9.39 × 10− 5, β3 � 11.6 × 10− 5, β4 �

2.38 × 10− 9, β5 � 7.03 × 10− 8, β6 � 5.51 × 10− 7, β7 � 4.6×

10− 11, β8 � 9.5 × 10− 8, and β9 � 4.91 × 10− 7.
We need to analyse the residual values to prove that the

hypothesis behind the full-quadratic regressionmodel holds.
In the residual plot, the residuals are plotted on the vertical
axis, while the independent variable (power) is on the
horizontal axis. If the points in the plot are randomly dis-
persed around the horizontal axis, then the regression model
is appropriate for that data. In addition to that, both the sum
and the mean average of the residual values should equal to
zero. Figure 7 shows the residual plot for the full-quadratic
regressionmodel. It is obvious from the plot that the residual
points are normally distributed around the horizontal axis.
In addition to that, the sum of residuals and their mean
average were almost equal to zero (2.76245 e-09 and 2.75826
e-14, respectively). From this analysis, we can conclude that
our full-quadratic model described in equation (5) is valid.

6.6.EstimatingExecutionTime. )e execution time for video
processing application is affected by the number of parallel
processing channels and the applied operating frequency. It
is common to divide one image into strips during frame
processing. )e execution time for strip processing is for-
mulated in equation (8) which is equal to the summation of
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clock cycles required to transfer the pixels from/to the
processing element plus the clock cycles required for al-
gorithm processing.

Strip processing (in cycles)

� cycles|writing input pixels + cycles|PE processing
+cycles|reading output pixels.

(6)

where Cycles|writing input pixels is the number of clock cycles
required to transfer the pixels from the memory to the
processing element through DMA communication,
Cycles|PE Processing is the number of clock cycles required by
the processing element for executing the application, and
Cycles|reading output pixels is the number of clock cycles required
to transfer the processed pixels back to thememory. By using
the following equation, we could know how many strips are
there in one image frame:

Num of strips

�
Num image lines

Num output lines|parallelism level�1∗ parallelism level
.

(7)

where Num_image_lines is the number of scanlines in one
image and Num output lines|parallelism level�1 is the number
of image lines produced by a single processing channel from

one image strip processing. From the previous equations, the
frame execution time can be calculated as follows:

frame execution time (in seconds)

�
Num of strips ∗ strip processing (in clk cycles)

frequency (inMHz)
.

(8)

6.7. Automatic High-Level Code Generation. Figure 8 shows
that the high-level code generation tool has two input files
which are (1) Processing Element C++ File which
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Table 2: Regression analysis for linear, pure-quadratic, and full-quadratic power estimation model.

Linear mode Pure-quadratic model Full-quadratic model
Regression SS 6384.396 6957.231 6958.076
Residual SS 614.766 41.93071 41.0856
Total SS 6999.162 6999.162 6999.162
Significance-F 0 0 0
Multiple R 0.955074 0.997 0.997061
R-square (R2) 0.912166 0.994009 0.99413
Adjusted R2 0.912163 0.994009 0.994129
Observations 100152 100152 100152
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implements the functionality of the video processing al-
gorithm and (2) System Specification File which represents
the properties of the system architecture constructed in
Figure 2. )e Specification File has four main sections: (1)
header section, (2) system property section, (3) top-level
function section, and (4) processing element section. In the
Processing Element section, we define only the parameters
for the first processing element, and then subsequently the
tool can automatically generate the port parameters for the
other processing elements by using the shift_step property.
For example, if the first image scanline is mapped to the
first processing element while the fifth one is mapped to the
second processing core, then the value of the shift_step
property for that port is 4.

Figure 8 illustrates the three main phases to generate the
high-level code for parallel video processing architecture.

(i) Property Extraction Phase. From the System Speci-
fication File, the tool can extract level_of_parallelism
and other input/output port properties for both top-
level and processing element blocks.

(ii) PE Property Generation. Based on the extracted
properties, the tool can derive the properties of the
other processing cores in the architecture (from
PE� 1 to N-1) automatically. For both pixel dis-
tributor and pixel collector, arrays are created such
that each input/output port (X(i,PE) or Y(j,PE)) is
mapped to a single array structure.

(iii) Building the Parallel Architecture. Finally, the tool
builds the parallel architecture by generating the
C++ code for: (1) pixel distributor subroutine to
store image scanlines in arrays according to the
distribution pattern, (2) instantiating a number of
parallel processing instances equal to the level of
parallelism, and (3) pixel collector subroutine to

stream out the processed image scanlines. In ad-
dition to that, the tool manages how the pixels are
separated before distribution or merged at the
output ports in order to reduce bus communication
time. After applying HLS optimizations/User con-
straints, the generated C++ design files are compiled
by the high-level synthesis tool to give the corre-
sponding RTL design.

Listing 2 shows an example of the specification file for
video downscaler (4:1) for an input VGA image size
(640 × 480). As described before, the specification file is
subdivided into four main sections: Header section in-
cludes all header files and definitions (lines 1–12), System
Property section (lines 14–20) defines the size of the input/
output image in addition to the level of parallelism
implemented by the generated architecture (line 19), Top-
level section (lines 22–35) defines the name of the top-level
function VideoDownScaler_parallel32 (line 23) and the
port properties for the system input/output ports. In this
application, there is one single input port data_img (lines
24–28) and one single output port img_result (lines 29–
33), and Processing Element section is the last section in the
file (lines 37–53) where the number and the properties of
the input/output ports for the processing element are
defined.

Table 3 lists the number of lines of code (LOC) generated
by the tool for different applications at different levels of
parallelism. LOC are calculated after excluding both blank
lines and comments. To move from one parallelism level to
another, we need to change only the value of leve-
l_of_parallelism parameter in #System_Properties# section.
Consequently, a significant design time is saved by auto-
mating that step. For example, the size of the system
specification file for the 5-window SAD algorithm is 98 lines
where LOC ratio between the generated code to specification
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file is 3.2 (314:98) for one processing element architecture,
and it reaches to 74 (7244:98) for an architecture containing
64 processing elements, while for the convolution filter, this
ratio is 1.3 (69:52) for one processing element and increases
to 39 (2026:52) for 64 element architecture.

7. Experimental Results

In this section, our industrial case study 5-window SAD
algorithm will be explored by means of our developed ViPar
tool. As a first step for exploring the design space, the
processing element was implemented efficiently in terms of
hardware utilization and frame rate by adding high-level
synthesis optimizations. As discussed in Section 5, we ob-
tained three different implementations by exploiting pipe-
line-level parallelism. )ese designs are named pipe4, pipe8,
and pipe12, where 4, 8, and 12 disparity lines are processed
by the same processing channel. In this section, these initial
three designs will be explored at different operating fre-
quencies (100, 150, and 200MHz) by varying the level of
parallelism till full hardware utilization. Our experiments
were based on Zynq XC7Z045-FFG900 Xilinx evaluation
board and 5-window SAD configured for winH� 23,
winV� 7, cwinH� 7, cwinV� 3, and maximum dis-
parity� 64. It is worth to mention that changing the 5-
window SAD configuration or the hardware platform will
result in a new design space that needs to be explored.

By the help of ViPar tool, we will estimate the hardware
utilization, power consumption, and execution time for each
alternative in the design space. According to the system
constraints, only the candidate designs will be selected for
synthesis. We highlight that the high-level codes of the can-
didate designs will be generated automatically, and then
synthesized to give the corresponding RTL design. )e RTL
design is then implemented and experimented to verify the
estimated design metrics. Resource utilization, power, and
frame execution time were estimated by means of the derived
equations detailed in the previous section. Tables 4 and 5 list the
points in the design space. )e number of disparity lines
processed by the same processing channel classifies the points
into three groups (pipe4, pipe8, and pipe12). For each group, the
same design was implemented at three different operating
frequencies (100, 150, and 200MHz); then, we can exploit data-
level parallelism by increasing the parallelism level till full
hardware utilization.

7.1. Area and Execution Time Estimations. )e designs for
pipe4, pipe8, and pipe12 at parallelism level� 1 running at
100, 150, and 200MHz are considered as the initial points
for our estimation process (designs #1, #9, #17,#25, #29, #33,
#37, #40, and #43). For area estimation, we keep increasing
the level of parallelism till one of the resources either slice or
BRAM is completely utilized. )e upper boundary for re-
sources could differ from one case to another according to
the used FPGA chip during the exploration process. For
example, in this exploration, Zynq ZC706 was used with
maximum hardware resources of slice� 54650, FF� 437200,
LUT� 218600, and BRAM_18K� 1090.

)e experimental measurements for power and perfor-
mance were conducted in order to evaluate how far the es-
timations are correct from the real values. By default, Default
synthesis/implementation strategies are used, but if they failed
to satisfy the timing constraints, then they are replaced by
Performance Explore strategies (Performance Explorewas used
for designs #22, #35, and #44). However, some designs could
not be synthesized even after changing the strategy due to the
unsatisfied timing constraints or due to the lack of the
hardware resources required to apply that new strategy
(nonsynthesized designs are #23, #24, #36, and #45).

Figure 9 depicts the percentage of estimation error for
slice, LUT, and FF such that positive values mean over-
estimated values and negative values mean underestimated
ones, while the points of discontinuity in the plot are for
the nonsynthesized designs (#23, #24, #36, and #45). )e
percentage estimation error ranges between − 21% and
0.4%, − 3.7% and 0.3%, and − 14.6% and 8% for LUT, FF,
and slice, respectively. )e maximum estimation error for
LUT occurred for design #22 by − 21% and for design #44
by − 15% due to the change of the implementation strategy
(Performance Explore was used for synthesis while esti-
mations were based on the default strategies). For BRAM,
the estimation error was not plotted since both the esti-
mated and measured values were identical. Figure 10
shows the percentage error in the estimated frame exe-
cution time where it ranges between − 10.4% and 4.3% for
different designs. )is error arose due to the additional
time consumed to set the DMA communication between
the processing system (PS) and the programmable logic
(PL).

7.2. Power Estimation. For fast power estimations at high-
level design, only information about frequency and resource
utilization are available. Figure 11 shows that the power
consumption was underestimated by values ranging between
34% and 62.3% of the real measured values. It is reasonable
to see that difference because some factors which contribute
to the power consumption like switching activity, clock tree,
and the interconnect wires are not considered in the model
equation. For further analysis, the estimated and measured
power were plotted in Figure 12. From the figure, we can
deduce that the two curves behave in the same manner. In
conclusion, the derived power model can be used for relative
power comparison between alternative designs during the
design space exploration process. However, it cannot be used
to estimate a value near from the real measurements for a
single design due to the lack of full design implementation
details.

7.3. Design Space Exploration. All design variations listed in
Tables 4 and 5 could be accepted as a solution but the applied
system constraints will direct our final decision to choose
one design among the others. Figure 13 depicts some of the
candidate designs (#7, #31, #42, and #43) along with the
system constraints to guide the designer towards an efficient
solution. )e orange shaded area represents the system
constraints defined by the designer which are frame
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execution time ≤ 15ms, LUT ≤ 150000, FF ≤ 120000,
BRAM ≤ 700, and frequency ≤ 150MHz. From Figure 13,
we could deduce that design #31 succeeded to satisfy all the
system constraints (for design #31, LUT�132475,
FF� 115727, BRAM� 571, frequency� 150MHz, and frame
execution time� 12ms). Design #43 had relatively less

hardware utilization (LUT� 68978, FF� 67339, and
BRAM� 275) and acceptable execution time (15.6ms)
compared with design #31; however, it failed to meet the
frequency constraint. In such case, the designer can think
either to change the system constraints to profit from the less
hardware utilization of design #43 or to stuck to them.

(1) ## Header ##
(2) #include “ap_int.h”
(3) #define IMG_WIDTH 640
(4) #define IMG_HEIGHT 480
(5) #define IMG_SIZE 307200
(6) #define IMG_WIDTH_2 320
(7) #define IMG_HEIGHT_2 240
(8) #define IMG_SIZE_4 76800
(9) #define WIN_HEIGHT 2
(10) #define STRIP_SIZE_PARA32_8 5120
(11) #define IMG_WIDTH_2_PARA32_8 1280
(12) ## ENDOF_Header ##
(13)
(14) ## System_Properties ##
(15) input_image.width� 640
(16) input_image.height� 480
(17) output_image.width� 320
(18) output_image.height� 240
(19) Parallelism_Level� 32
(20) ## ENDOF_System_Properties ##
(21)
(22) ## Top_Level_Function ##
(23) Name�VideoDownScaler_parallel32
(24) Num_of_inputs� 1
(25) Input_0.name� data_img[STRIP_SIZE_PARA32_8]
(26) Input_0.type� unsigned long long int
(27) Input_0.num_of_scanlines� 64
(28) Input_0.num_of_merging_elements� 8
(29) Num_of_outputs� 1
(30) Output_0.name� img_result[IMG_WIDTH_2_PARA32_8]
(31) Output_0.type� unsigned long long int
(32) Output_0.num_of_scanlines� 32
(33) Output_0.num_of_merging_elements� 8
(34) Interface�AXI‒Stream
(35) ## ENDOF_Top_Level_Function ##
(36)
(37) ## Processing_Element ##
(38) Name�VideoDownScaler
(39) Num_of_inputs� 1
(40) Input_0.name� image[IMG_WIDTH][WIN_HEIGHT]
(41) Input_0.type� unsigned char
(42) Input_0.src� data_img[STRIP_SIZE_PARA32_8]
(43) Input_0.store_scanlines_from� 0
(44) Input_0.store_scanlines_to� 1
(45) Input_0.shift_step� 2
(46) Num_of_outputs� 1
(47) Output_0.name� image_result[IMG_WIDTH_2]
(48) Output_0.type� unsigned char
(49) Output_0.sink� img_result[IMG_WIDTH_2_PARA32_8]
(50) Output_0.store_scanlines_from� 0
(51) Output_0.store_scanlines_to� 0
(52) Output_0.shift_step� 1
(53) ## ENDOF_Processing_Element ##

ALGORITHM 2: Specification file for video downscaler (4:1) for input VGA image.
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Table 3: Number of code lines generated for different applications at different parallelism levels.

Level of parallelism Spec. file 1 4 8 16 32 64
5-win SAD 98 314 644 1084 1964 3724 7244
1-win SAD 74 249 552 904 1608 3016 5832
Video scaler 54 87 195 339 627 1203 2355
Conv. filter 52 69 195 363 634 1098 2026

Table 4: Estimations for utilization, power, and frame execution time for pipe4 designs.

# Freq. in MHz Level of parall-
elism

Slice
(54650)

FF
(437200)

LUT
(218600)

BRAM
(1090) Power in mW Frame exec. time in ms

1

100

1 10534 28903 31163 131 342.91 84.875
2 2 18444 49161 55683 243 418.29 44.85
3 3 26354 69419 80203 355 489.81 30.965
4 4 34264 89677 104723 467 557.46 24.838
5 5 42174 109935 129243 579 621.25 20.656
6 6 50084 130193 153763 691 681.17 17.854
7 7 44571 150451 178283 803 662.85 15.7
8 8 50701 170709 202803 915 710.87 14.32
9

150

1 10111 27410 31140 131 390.71 56.733
10 2 17754 46175 55636 243 494.28 29.975
11 3 25397 64940 80132 355 594.22 20.693
12 4 33040 83705 104623 467 690.54 16.596
13 5 40683 102470 129124 579 783.22 13.8
14 6 48326 121235 153620 691 872.28 11.927
15 7 44529 140000 178116 803 853.05 10.488
16 8 50653 158765 202612 915 925.64 9.565
17

200

1 9642 29895 31184 131 437.3 42.736
18 2 16893 51145 55723 243 565.37 22.574
19 3 24144 72395 80262 355 690.15 15.581
20 4 31395 93645 104801 467 811.62 12.494
21 5 38646 114895 129340 579 929.78 10.387
22 6 45897 136145 153879 691 1044.64 8.976
23 7 53148 157395 178418 803 1156.2 7.891
24 8 50740 178645 202957 915 1144.27 7.196

Table 5: Estimations for utilization, power, and frame execution time for pipe8 and pipe12 designs.

# Freq.in
MHz

Level of para-
llelism

Slice
(54650)

FF
(437200)

LUT
(218600)

BRAM
(1090)

Power in
mW

Frame exec. time in
ms

25

Pipe8

100

1 15608 47992 48170 203 391.73 44.85
26 2 28745 87339 89700 387 510.4 24.838
27 3 41882 126686 131230 571 618.42 17.854
28 4 43190 166033 172760 755 649.25 14.32
29

150

1 16625 44339 48591 203 729.75 12.167
30 2 30357 80033 90533 387 650.15 16.596
31 3 44089 115727 132475 571 813.63 11.927
32 4 43605 151421 174417 755 837.69 9.565
33

200

1 16278 48644 53711 203 548.49 22.574
34 2 30001 88643 100770 387 777.02 12.494
35 3 43724 128642 147829 571 993.97 8.976
36 4 48722 168641 194888 755 1092.14 7.196
37

Pipe12

100
1 26073 67071 66804 275 475.8 30.965

38 2 49292 125497 126967 531 652.76 17.854
39 3 46783 183923 187130 787 674.48 12.774
40

150
1 24133 61240 69833 275 567.12 20.693

41 2 45392 113835 133017 531 818.27 11.927
42 3 49051 166430 196201 787 893.56 8.531
43

200
1 22127 67339 68978 275 646 15.581

44 2 41461 126033 131286 531 957.05 8.976
45 3 48399 184727 193594 787 1093.59 6.418
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7.4. Comparison. Table 6 compares between our tool ViPar
and other tools in the literature that are used for high-level
exploration for video processing applications. In very high-
level synthesis tool (VHLS) [37], algorithms are described in
Matlab or OpenCL. )e synthesis of Matlab-to-RTL is ex-
plored to change the vector-oriented source code into the
scalar-oriented program. While the intermediate code is
represented by using control and data-flow graphs (CDFG).
Finally, the generated code is classically synthesized via
control and data-flow extraction and RTL generation pro-
cesses. Two applications were tested: Kubelka–Munk genetic
algorithm (KMGA) [39] for the multispectral image-based
skin lesion assessments and level set method (LSM) [40] for
very high-resolution satellite image segmentation. )e ex-
perimental results showed that the design complexity for
VHLS version is 50% less than its equivalent in C code.
Algorithms in Lin-Analyzer [27] are written in C/C++. It
explores the design space of the application when different
high-level optimizations are added like loop unrolling, loop
pipelining, array partitioning, and so on. For each design
point, the FPGA performance metrics are estimated. )e

required time for exploration ranges from seconds to
minutes. In [38], algorithms are represented as dataflow
graphs written in RVC-CAL language [41]. )e graph nodes
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Figure 9: )e estimation percentage error for slice, LUT, and FF
when compared to the measured values.
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Figure 10: )e estimation percentage error for frame execution
time when compared to the measured values.
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Figure 11: )e estimation percentage error for power consump-
tion when compared to the measured values.
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are represented by the computational units that commu-
nicate concurrently, while the arcs represent the data flowing
as tokens along unbounded FIFO channels. )e dataflow-
based video processing algorithm is then compiled by Open
RVC-CAL compiler to generate a C-based code, which is
then fed to a high-level synthesis (HLS) tool for generating a
synthesizable hardware implementation. HEVC decoder
was considered as the case study in [38].

Table 7 compares between the HLS implementation
generated by ViPar tool versus handwritten VHDL imple-
mentation for two applications: video downscaler (16:1) and
convolution filter of kernel size� 3× 3. For video down-
scaler, 6 parallel processing elements were implemented,
where 2 PEs were located for each colour channel. While for
the convolution filter, 6 PEs were dedicated for each colour
channel with a total number of 18 PEs. From the synthesis
results, the hardware cost is almost similar for both HLS and
handwritten VHDL implementations with difference range
between 3 and50% for different hardware resources.

8. Conclusion and Future Works

In this paper, we presented ViPar as a tool for high-level
design space exploration dedicated for video applications.
First, we introduced a parameterizable model for describing
parallel video processing architectures. Second, high-level
optimizations were used to obtain an efficient hardware
processing element in terms of hardware utilization and
frame rate. )ird, ViPar tool was used to explore rapidly the
design space at high design level before going into the step of
detailed implementation. In order to compare between
different design points in ViPar tool, we derived the required
equations for estimating the power consumption, hardware
utilization, and frame execution time. At the last step, by
describing the parallel hardware architecture of the candi-
date designs in the specification file, ViPar tool was able to
generate automatically the corresponding parallel archi-
tecture for synthesis and experimental evaluation. In the
experimental results, 5-window SAD stereo matching was
explored as our industrial case study. )e design space
consisted of different points varying in parallelism level,
operating frequency (100, 150, or 200MHz), and the pro-
cessing pipeline (pipe4, pipe8, or pipe12). )roughout this
example, we demonstrated how ViPar tool could explore the
design space for the candidate designs which meet our
system constraints. ViPar tool estimates the performance
parameters at high design level as well as generating

automatically their corresponding parallel architectures for
hardware implementation.

As future works, we will extend ViPar tool to consider
the case of multiapplication design space exploration. In this
situation, we have multiapplication multiobjective design
space exploration problemwhere we will search for a feasible
solution that satisfies the global system constraints in terms
of performance, area utilization, and power consumption.
Self-adaptivity for video applications like in autonomous
vehicles is another case where some image filters could
replace each other to adapt to the environmental changes.
ViPar can be used to explore the possible hardware archi-
tectures to satisfy these scenarios of filter replacements.
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