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Split-and-augmented Gibbs sampler –

Application to large-scale inference problems

Maxime Vono, Nicolas Dobigeon and Pierre Chainais

Abstract

This paper derives two new optimization-driven Monte Carlo algorithms inspired from variable

splitting and data augmentation. In particular, the formulation of one of the proposed approaches is

closely related to the alternating direction method of multipliers (ADMM) main steps. The proposed

framework enables to derive faster and more efficient sampling schemes than the current state-of-the-

art methods and can embed the latter. By sampling efficiently the parameter to infer as well as the

hyperparameters of the problem, the generated samples can be used to approximate Bayesian estimators

of the parameters to infer. Additionally, the proposed approach brings confidence intervals at a low

cost contrary to optimization methods. Simulations on two often-studied signal processing problems

illustrate the performance of the two proposed samplers. All results are compared to those obtained by

recent state-of-the-art optimization and MCMC algorithms used to solve these problems.

Index Terms

Bayesian inference, data augmentation, high-dimensional problems, Markov chain Monte Carlo,

variable splitting.

I. INTRODUCTION

Numerous machine learning, signal and image processing problems involve the estimation

of a hidden object of interest x ∈ RN based on (noisy) observations y ∈ RM . This unknown

object of interest can stand for parameters of a given model in machine learning [1] or may

represent a signal or image to be recovered within an inverse problem. With the increasing
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amount and variety of available data, solving such inference problems in high dimension be-

comes challenging and generally relies on sophisticated computational inference methods. Those

methods are mainly based on stochastic simulation and variational optimization which are two

powerful tools to perform inference in complex models [2]. An important class of stochastic

simulation techniques is the family of the Markov chain Monte Carlo (MCMC) methods [3].

Within a Bayesian inference framework, MCMC algorithms have the great advantage of providing

a comprehensive description of the posterior distribution of the parameter x to be inferred.

Contrary to optimization techniques which generally provide a point estimate, this description

permits the subsequent derivation of credibility intervals on the parameter x. Nonetheless, note

that optimization algorithms can also bring confidence information when the log-likelihood is

supposed differentiable by relying on the theory of large samples [4]. These confidence measures

are particulary important for inference problems where very few observations are available (e.g.

in biology [5], physics [6] or astrophysics [7]) or when one is interested in extreme events (e.g.

in hydrology [8] or cosmology [9]). For instance, MCMC methods have been recently used

to conduct Bayesian inference on gravitational waves [10]. However, contrary to optimization

techniques, MCMC methods may suffer from their high computational cost which can be

prohibitive for high-dimensional problems. To overcome this limitation, a few attempts have been

made to derive optimization-driven Monte Carlo methods. The Hamiltonian Monte Carlo method

[11], also referred to as hybrid Monte Carlo, is an archetypal example of the successful use of

variational analysis concepts (i.e., gradients) to facilitate the exploration of the target distribution.

More recently, Pereyra [12] proposed an innovative combination of convex optimization and

MCMC algorithms. Capitalizing on the advantages of proximal splitting recently popularized

to solve large-scale inference problems [13]–[18], the proximal Monte Carlo method allows

high-dimensional log-concave distributions to be sampled. For instance, this algorithm has been

successfully used to conduct antisparse coding [19] and has been significantly improved in [20].

Concurrently, variable splitting methods, developed at least 70 years ago [21], have been

recently and extensively used to solve large-scale inference problems of the form

argmin
x

f(x) + g(x), (1)

where f commonly refers to a data fitting term and g stands for some regularization function

which is often nonsmooth and/or even nonconvex. The main idea of those methods consists in
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splitting the variable of interest x into a pair of variables x and z and then solving the counterpart

minimization problem

argmin
x,z

f(x) + g(z),

subject to x = z.

(2)

The equality constraint ensures that solving (2) is equivalent to solve the initial problem (1).

Exploiting the variable splitting idea, the alternating direction method of multipliers (ADMM)

[22], firstly introduced in [23], [24], has proven to be considerably faster than fast iterative

thresholding-shrinkage algorithms (FISTA) [25] for solving high-dimensional inverse problems in

signal/image processing [26], [27]. This increase in speed comes from the fact that ADMM uses a

second-order information of the data fidelity term whereas ISTA or FISTA essentially only takes

into account gradient information. The efficiency of ADMM makes it stand as a reference method

in high-dimensional signal processing problems such as those encountered in hyperspectral

imaging [28], [29]. This paper, in the same spirit as [12], attempts to reconcile optimization

and Bayesian inference by proposing two new optimization-driven MCMC algorithms that do

not sample directly from the usual target distribution

π(x) ∝ exp
[
−f(x)− g(x)

]
, (3)

which is assumed to be proper in the sequel. The first one is only based on the idea of variable

splitting and considers a joint probability distribution p(x, z) which tends towards (3) in a

limiting case. The main purpose is to work with two simpler distributions ∝ exp
[
−f(x)

]
and exp

[
−g(z)

]
separately. A similar scheme was recently and independently proposed by

[30] in order to distribute Monte Carlo methods on possibly multiple machines. The second

proposed approach goes one step further by introducing an auxiliary variable u ∈ RN within a

data augmentation scheme. The main rationales behind the proposed approaches are threefold.

Firstly, fully Bayesian approaches allow other parameters (e.g. nuisance or regularization hyper-

parameters) to be jointly estimated with the parameter of interest x, avoiding their empirical and

painful hand-tuning. Secondly, as emphasized above, samples generated by MCMC algorithms

can be used to build confidence intervals on the estimated parameters contrary to optimization

techniques that only provide a point estimate. Finally, variable splitting and data augmentation

within the proposed approach pave the way towards faster and more efficient samplers.

To this purpose, Section II introduces the hierarchical Bayesian models associated to the

proposed approaches. In particular, the main ingredients, namely variable splitting and data
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augmentation, are presented. Section III derives the two resulting optimization-driven MCMC

algorithms called SP (splitting) and SPA (splitting & augmentation). In particular, a parallel

between ADMM and the proposed SPA algorithm is drawn. Section IV considers two often-

studied inference problems encountered in signal processing that require to sample respectively

from high-dimensional Gaussian and log-concave probability distributions. Section V illustrates

the performance of the proposed algorithms on these inference problems. Finally, Section VI

draws concluding remarks.

II. MODEL

This section introduces the proposed approach which aims at using variable splitting and data

augmentation to accelerate and simplify the solving of large scale Bayesian inference problems.

The main properties of the resulting joint distributions are introduced and its convergence

properties towards the usual target distribution (3) are proven. Table I summarizes the main

symbols used to define the proposed models.

TABLE I

LIST OF SYMBOLS.

Symbol Description

x, z,u, N parameter of interest, auxiliary variables

and their dimension

y,M observation vector and its dimension

f, g data fitting term and regularization function

π usual target distribution

ϕ1, ϕ2 functions associated to the split/augmented scheme

ρ, α parameters of the proposed approaches

N normal distribution

A. Variable splitting

Within an optimization framework, variable splitting aims at individually using each term f

and g of the objective function in an optimization sub-problem. This divide-to-conquer strategy

generally yields simpler proximal operators and therefore an easier algorithm to implement [31].
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Following the same intuition, in a Bayesian setting, variable splitting is expected to lead to

simpler sampling steps and thereby to a more efficient sampler. Starting from the usual target

distribution (3), the introduction of a splitting variable z ∈ RN leads to so-called split distribution

defined by

πρ ≜ p(x, z; ρ2) ∝ exp
[
−f(x)− g(z)− ϕ1(x, z; ρ

2)
]

(4)

where ϕ1 : RN × RN → R+ is a divergence such that πρ defines a proper joint distribution

and ρ is a positive parameter that controls the dissimilarity between x and z. Interestingly, the

associated conditional distributions that would be considered in a Gibbs algorithm scheme to

sample according to (4) are

p(x|z; ρ2) ∝ exp
[
−f(x)− ϕ1(x, z; ρ

2)
]

(5)

p(z|x; ρ2) ∝ exp
[
−g(z)− ϕ1(x, z; ρ

2)
]
. (6)

Thus, this variable splitting allows f and g to be dissociated with the hope that these conditional

distributions be easy to sample from. Indeed experiments in Section V will show that considering

the split distribution πρ in (4) instead of π in (3) leads to a faster and more efficient algorithm.

It is worth noting that this variable splitting-based approach can be related to previous works

[32], [33], revisited and extended in [34], which also introduced auxiliary variables to split

the initial objective function. However, the aforementioned works considered an exact data

augmentation scheme which is not the case here, see Theorem 1 below. In addition, this scheme

was specifically designed for Bayesian models relying on a Gaussian likelihood function, which

is much more restrictive than the target distribution (3) addressed here. Finally, the data aug-

mentation scheme considered in [32], [33] may practically rise some computational difficulty

since it requires closed-form expressions of the augmented prior, which could not be available

in general. Nonetheless, note that both the latter and the proposed approaches can be interpreted

as divide-to-conquer approaches ending up with simpler full conditional distributions.

Within a parallel setting, [30] proposed a similar variable-splitting Bayesian framework mo-

tivated by distributed computations when the likelihood function can be expressed as a sum of

terms over a possibly big dataset. Their approach can be viewed as a particular instance of the

proposed approach when f(x) =
∑b

i=1 fi(x).

The directed acyclic graph (DAG) associated with the proposed splitting model is depicted in

Fig. 1 in black and green. Note that sampling from (4) instead of (3) boils down to considering
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another hierarchical Bayesian model. However, to ensure the relevance of this extended model

and the associated distribution (4) with respect to the inference problem underlied by the target

distribution (3), one can expect that ϕ1 tend to zero when z is close to x. Thus, if ϕ1 is a

divergence measure where the discrepancy between x and z is controlled by ρ2, it has to satisfy

the following assumption that is closely related to the equality constraint x = z in variable

splitting methods.

Assumption 1: Let x and z obeying the distribution (4). Then, ϕ1 is assumed to be such that,

for all x, z ∈ RN ,

lim
ρ2→0

exp
[
−ϕ1(x, z; ρ

2)
]∫

RN exp
[
−ϕ1(x, z; ρ2)

]
dz

= δx(z). (7)

When this assumption is ensured, the usual target distribution (3) is expected to be recovered

from the marginal distribution of x associated to (4) in the limiting case ρ→ 0. This expectation

is met when a general form of the divergence ϕ1 is chosen, as stated by the following theorem.

Theorem 1: Let pρ(x) =
∫
RN πρ(x, z)dz. Then, under Assumption 1, the following result holds∥∥π − pρ∥∥TV

−−−→
ρ2→0

0. (8)

Proof: See Appendix A.

Note that the convergence in total variation implies the convergence in distribution. Thereby, in

the limiting case where ρ2 tends to zero, the marginal distribution of x under πρ coincides with

the usual target distribution π. In Section IV, the divergence ϕ1 will be chosen quadratic. This

choice is not a surprise since it is often used in optimization having the great advantage of being

differentiable and convex.

B. Data augmentation

The first proposed approach introduces the idea of variable splitting only. It leads to a joint

distribution (4) with an additional term ϕ1 that controls the discrepancy between x and z. Since

ϕ1 is governed by ρ2, one might set ρ2 to a small value to ensure that x and z will not be

too far from each other (see Theorem 1). However, when sampling from (4) via its conditional

distributions (5) and (6), the smaller ρ2, the higher the correlation between samples, which may

deteriorate mixing properties. One option to improve these mixing properties is to consider a

data augmentation scheme. Such a strategy consists in introducing auxiliary variables within a

target distribution: it is commonly used to build more efficient sampling algorithms [35] with
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Fig. 1. DAGs associated with the usual and proposed hierarchical Bayesian models. In black: DAG associated to (3); in black

and green: DAG associated to (4); in black, green and blue: DAG associated to (10). θx, θz and θu stand for possible additional

parameters that are not discussed in this paper. (User-defined parameters appear in dashed circles).

less interactions between MCMC draws. This issue was for instance discussed in [36], [37] for

the Ising and Potts models. Along these lines, an additional variable u ∈ RN is introduced in

the previous splitting model such that

πρ,α ≜ p(x, z,u; ρ2, α2) (9)

∝ exp
[
−f(x)− g(z)

]
(10)

× exp
[
−ϕ1(x, z− u; ρ2)− ϕ2(u;α

2)
]

where ϕ2 is a known function defined on RN such that πρ,α defines a proper joint distribution and

α is a positive parameter. The DAG associated with the so-called split-augmented distribution

(10) is depicted in Fig. 1 with additional parameters drawn in blue compared to (4) in black &

green only.

The conditional distributions associated with the joint split-augmented distribution (10) are

p(x|z,u; ρ2) ∝ exp
[
−f(x)− ϕ1(x, z− u; ρ2)

]
(11)

p(z|x,u; ρ2) ∝ exp
[
−g(z)− ϕ1(x, z− u; ρ2)

]
(12)

p(u|x, z; ρ2, α2) ∝ exp
[
−ϕ2(u;α

2)
]

× exp
[
−ϕ1(x, z− u; ρ2)

]
. (13)
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The differences induced by data augmentation are clearly visible when comparing (5) and (6)

with (11) and (12). Within a Gibbs sampler scheme, the auxiliary variable u could allow to

decrease the correlation between x and z by giving an additional degree of freedom to each

of the former variables. Indeed experiments in Section V will show that this data augmentation

scheme leads to a sampler with better mixing properties compared to the sampler associated to

πρ.

However, to assess the relevance of sampling from the split-augmented (SPA) distribution πρ,α

in (10) instead of the split (SP) distribution πρ in (4), the introduction of u should not alter the

joint distribution (4). Therefore ϕ1 and ϕ2 should obey the following assumption.

Assumption 2: Let x, z and u obeying the distribution (10). Then, ϕ2 and ϕ1 are assumed to

be such that for all x ∈ RN and z ∈ RN ,∫
RN

exp
[
−ϕ1(x, z− u; ρ2)− ϕ2(u;α

2)
]
du

∝ exp
[
−ϕ1(x, z; η

2(ρ, α))
]
. (14)

where η(ρ, α) plays the role of a parameter. In other words, this assumption ensures that a split

distribution πη of the form (4) can be obtained by marginalizing the split-augmented distribution

πρ,α in (10) with respect to u. For usual choices of ϕ1 and ϕ2, this assumption is satisfied, as

stated in the following theorem.

Theorem 2: Let x, z and u obeying the distribution (10). In the particular case where ϕ1 is

quadratic that is

ϕ1(x, z− u; ρ2) =
1

2ρ2
∥∥x− (z− u)

∥∥2
2

(15)

and ϕ2 has the form

ϕ2(u) =
1

2α2
∥u∥22 , (16)

Assumption 2 is verified with η2(ρ, α) = ρ2 + α2 so that

ϕ1(x, z; η(ρ, α)) =
1

2 (ρ2 + α2)
∥x− z∥22 . (17)

Proof: The proof consists in a straightforward marginalization within a Gaussian model,

which can be easily derived, e.g., from computations similar to those in [38, Chap. 10].

In this particular case, it appears that a unique positive parameter η2(ρ, α) = ρ2+α2 drives the

convergence of the marginal distribution of x w.r.t. the split distribution πη, that is of the same

form as (4), towards the target distribution π in (3). These quadratic forms of ϕ1 and ϕ2 play a
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special role. They are closely related to the ADMM (see Section III-B) and will be considered

in Section IV.

Eventually, we emphasize that the proposed splitting and data augmentation methods can be

easily generalized to cases where there are more than two functions f and g, and when these

functions involve distinct linear operators Ki (subsampling, blur, transform...). In this case, the

target distribution can be written as π(x) ∝ exp
[
−
∑

i hi(Kix)
]

where hi can stand for data

fitting, regularization or other types of functions and Ki ∈ Rki×N are arbitrary matrices, see

Appendix B. For this general case, Theorem 1 holds and the proof can be easily derived with

the same type of arguments as in Appendix A. Additionally, Assumption 2 is naturally extended

by considering the marginalization of each auxiliary variable ui.

III. INFERENCE

This section presents two MCMC algorithms to infer the parameter of interest x either from

the split distribution πρ in (4) or from the split-augmented distribution πρ,α in (10). In particular,

the proposed sampling strategies are discussed for two particular kinds of distributions frequently

encountered in signal/image processing or machine learning problems. Additionally, a parallel

between the proposed approach and the ADMM is drawn.

A. Gibbs samplers

Two MCMC algorithms, denoted SP (see Algo. 1) and SPA (see Algo. 2), respectively associ-

ated with the split and split-augmented distributions (4) and (10) are presented. These algorithms

are special instances of Gibbs samplers where samples are alternatively drawn according to the

conditional distributions of each variable. Precisely, SP consists in sampling according to (5)

and (6), while SPA is defined by the conditional distributions (11)–(13).

As suggested in Section II, the splitting variable z has been introduced to build faster and sim-

pler simulating schemes compared to the direct sampling from (3). If the conditional distributions

of x and z are easy to sample from, one can apply Algo. 1 or Algo. 2 directly. If this is not the

case despite the variable splitting strategy, one might use surrogates (e.g, Metropolis-Hastings

[3] or data augmentation schemes) to sample efficiently from each conditional distribution.

To be more precise, the following paragraphs discuss the efficient sampling of two particular

distributions of interest, namely Gaussian and log-concave distributions. These distributions are
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Algorithm 1: SP
Input: Functions f , g, ϕ1, ϕ2, parameter ρ2, total number of iterations TMC, number of

burn-in iterations Tbi, initialization z(0)

1 for t← 1 to TMC do

2 % Drawing the variable of interest

3 Sample x(t) according to p
(
x|z(t−1); ρ2

)
(5) ;

4 % Drawing the splitting variable

5 Sample z(t) according to according to p
(
z|x(t); ρ2

)
(6) ;

6 end

Output: Collection of samples
{
x(t), z(t)

}TMC

t=Tbi+1
asymptotically distributed according to

(4).

Algorithm 2: SPA
Input: Functions f , g, ϕ1, ϕ2, param. ρ2, α2, total nb of iterations TMC, nb of burn-in

iterations Tbi, initialization z(0) & u(0)

1 for t← 1 to TMC do

2 % Drawing the variable of interest

3 Sample x(t) according to p
(
x|z(t−1),u(t−1); ρ2

)
(11) ;

4 % Drawing the splitting variable

5 Sample z(t) according to p
(
z|x(t),u(t−1); ρ2

)
(12) ;

6 % Drawing the auxiliary variable

7 Sample u(t) according to p
(
u|x(t), z(t); ρ2, α2

)
(13) ;

8 end

Output: Collection of samples
{
x(t), z(t),u(t)

}TMC

t=Tbi+1
asymptotically distributed according

to (10).
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frequently encountered when addressing signal processing and machine learning problems, or

may specifically result from the split and/or augment steps induced by the proposed schemes.

1) Gaussian distributions: When f stands for a data fitting term, it is often assumed to be

quadratic since quadratic loss functions arise in a wide range of applicative contexts. Within a

statistical framework, this choice leads to a likelihood function defined by a Gaussian probability

distribution function. Following the same motivation, when g is associated with a penalization,

it is often supposed to be quadratic, leading to a Tikhonov regularizer and a Gaussian prior

distribution, e.g., used for ridge regression. More precisely, in a general formulation, f and g

are assumed to have the form

f(x) =
1

2
(x− µ1)

TQ1(x− µ1) (18)

g(x) =
1

2
(x− µ2)

TQ2(x− µ2). (19)

where the Qi are precision matrices. Then, the corresponding target posterior distribution π is

also Gaussian

π(x) = N
(
m,Q−1

)
(20)

where Q = Q1 +Q2 (21)

m = Q−1 (Q1µ1 +Q2µ2) . (22)

If the two terms in (21) cannot be diagonalized in the same basis (e.g., the Fourier domain),

then sampling directly from (20) can be computationally intensive since, e.g., it requires to invert

the precision matrix Q. In the very particular case where Q1 = HTΩH, if Q2 and HTH can

be diagonalized in the same basis, then direct sampling from the posterior π can be achieved

thanks to the specific auxiliary variable method proposed in [39], see also Section V-A. If these

requirements are not met, this auxiliary method cannot be implemented. Conversely, the SP and

SPA strategies proposed above can be applied to dissociate the precision matrices Q1 and Q2 in

the sampling procedure. Indeed, when the divergence ϕ1 is also chosen quadratic, as in Theorem

1, the conditional distributions associated to x and z are Gaussian with precision matrices

Qx = Q1 +
1

ρ2
IN (23)

Qz = Q2 +
1

ρ2
IN . (24)
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Again, this demonstrates the main interest of the splitting step which makes the two precision

matrices appear in two separate distributions. Now, depending of the respective form of Q1

and Q2, one can directly sample from these conditional distributions or use surrogate methods

[39]–[42], see Section IV-B and Appendix C-B for more details.

2) Non-smooth log-concave distributions: More generally, if the functions f and g are convex,

then the conditional distributions of x and z involved in SP and SPA are log-concave. Addition-

ally, when f (resp., g) is non-smooth, if the divergence ϕ1 is convex, continuously differentiable

and gradient Lipschitz, sampling from the conditional distribution associated with x (resp., z)

can be achieved thanks to the proximal Metropolis-adjusted Langevin algorithm (P-MALA) [12]

or the proximal Moreau-Yoshida-unadjusted Langevin algorithm (P-MYULA) [20]. For instance,

such cases can be encountered when f results from a loss function robust against outliers, e.g.,

for least absolute deviation regression, or when g stands for a sparsity-inducing regularization. P-

MALA and P-MYULA are based on Langevin diffusion process and resort to proximal operators

to build Markov chains with interesting convergence properties. The former uses an accept/reject

step in order to correct the bias introduced by the considered approximations. On the other hand,

the latter removes this Metropolis-Hasting correction step to accelerate the sampling and gives

bounds on the convergence rate of the Markov chains.

To summarize, instead of sampling from (3) thanks to the direct use of the previously discussed

state-of-the-art MCMC algorithms, the proposed approach aims at preparing and simplifying

their implementations to sample according to the conditional distributions associated with the

split and split-augmented distributions. In other words, adapted efficient methods are applied

to conduct specific and simpler sampling steps where f and g are dissociated. Thereby, the

proposed methodology does not aim at totally replacing efficient existing MCMC algorithms but

can be interpreted as a “divide-and-conquer” approach that simplifies the task of each sampler

to make the whole sampling algorithm faster.

B. When SPA meets ADMM

This “divide-and-conquer” idea is also at the heart of ADMM which allows simpler mini-

mization sub-problems to be considered during the optimization process. This relation with the

proposed approach is strengthened by another similarity between SPA and ADMM. More pre-

cisely, let consider the particular case where ϕ1 and ϕ2 have the forms (15) and (16) respectively
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Algorithm 3: ADMM (scaled version)
Input: Functions f , g, penalty parameter ρ2, initialization t← 0 and z(0),u(0)

1 while stopping criterion not satisfied do

2 % Minimization w.r.t. x

3 x(t) ∈ argminx− log p
(
x|z(t−1),u(t−1); ρ2

)
;

4 % Minimization w.r.t. z

5 z(t) ∈ argminz− log p
(
z|x(t),u(t−1); ρ2

)
;

6 % Dual ascent

7 u(t) = u(t−1) + x(t) − z(t) ;

8 % Updating iterations counter

9 t← t+ 1 ;

10 end

Output: Approximate solution of the optimization problem x̂.

(in agreement with the assumptions required by Theorems 1 and 2), and assume that f and g

are convex. Then, computing the MAP estimates instead of sampling in each step of Algo. 2

boils down to the ADMM [22], see Algo. 3. Within this optimization framework, z corresponds

to the splitting variable, u stands for the scaled Lagrange multiplier and ρ−2 for the penalty

parameter.

The ADMM is known to be an efficient optimization algorithm for high-dimensional problems.

It simplifies the optimization problem by considering several simpler optimization sub-problems

where advanced optimization tools and methods (e.g., proximal operators) can be embedded and

applied efficiently. Additionally, it covers a large panel of optimization problems and can be

generalized to the case where more than two functions f and g are considered. As noticed in the

previous section, this generalization property also applies to the proposed SP and SPA methods,

see Appendix B.

These advantages are retrieved using the proposed approach which draws a general framework

to solve large-scale Bayesian inference problems. Finally, as it will be shown in Section V, the

proposed SP and SPA algorithms need few fast iterations (akin to ADMM) to reach the same

performance as state-of-the-art MCMC methods with good mixing properties.
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IV. APPLICATION TO LINEAR GAUSSIAN INVERSE PROBLEMS

In this section, the proposed splitting-and-augmenting strategy is envisioned to address two

particular instances of linear Gaussian inverse problems formulated within a Bayesian framework.

It first defines the considered class of problems and then derives the proposed approaches on two

often-studied particular cases. Note that only the derivation of the SPA algorithm is discussed

since it naturally embeds SP. However, the conclusions made hereafter stand also for SP. In

Section V, results of experiments associated to these two inverse problems will be reported and

discussed.

A. Linear Gaussian inverse problems

Linear Gaussian inverse problems define an archetypal class of problems that could be ef-

ficiently tackled by the models and algorithms introduced in Sections II and III. Suppose that

some noisy signals y are observed and one wants to infer an hidden parameter x under the linear

model

y = Hx+ e (25)

where H is a direct operator and e stands for noise or error modeling. Then, assuming that e

is a Gaussian random vector with covariance matrix Ω−1, the likelihood distribution associated

with the observation vector y is

p
(
y|x
)
∝ exp

[
−1

2
(Hx− y)T Ω (Hx− y)

]
. (26)

In most applicative contexts, H is not invertible and inferring the unknown parameter vector

x from the observation vector y under the linear model (25) is known to be an ill-posed

inverse problem. To alleviate this issue, a convenient and widely admitted approach consists

in adopting some sort of regularization. Within a Bayesian setting, this is done by assigning a

prior distribution to the unknown parameter vector x. Assuming that this prior distribution is

given by the general form

p (x) ∝ exp
[
−g(x)

]
, (27)

it follows by applying Bayes’ rule that the posterior distribution of x has the same form as

(3) where f(x) =
1

2
(Hx− y)T Ω (Hx− y). As a consequence, the proposed methodology can

be implemented to sample efficiently from a close approximation of this posterior distribution

and use these samples to infer the hidden parameter x. In the sequel, two standard problems
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involving Gaussian and total variation (TV) prior distributions, respectively, are considered. One

can easily verify that Assumptions 1 and 2 along with Theorem 1 hold for all these problems.

B. Deconvolution with a smooth prior

In the setup considered in this paragraph, the function g in (27) is chosen to be quadratic as

in (19) with µ2 = 0N and Q2 = γLTL, where L is a circulant matrix associated to a Lapla-

cian filter. These choices lead to a frequently encountered smoothing conjugate Gaussian prior

N
(
0N ,

(
γLTL

)−1
)

, for instance used in [43]–[45]. Note that this Gaussian prior distribution is

degenerated since constant images are not penalized leading to the first eigenvalue of Q2 being

equal to zero. Thus the posterior distribution (20) becomes

π(x|y) = N
(
m,Q−1

)
(28)

where Q = HTΩH+ γLTL (29)

m = Q−1HTΩy. (30)

Additionally, in the sequel, the operator H will be assumed to be an N×N circulant convolution

matrix associated to a time/space-invariant blurring kernel. Finally, the noise covariance matrix is

assumed to be diagonal, i.e., Ω−1 = diag[σ2
1, . . . , σ

2
N ]. Direct sampling according to the posterior

distribution (28) is a challenging task, mainly due to the presence of the precision matrix Ω.

Indeed, as emphasized in paragraph III-A1, the two terms in (29) cannot be diagonalized in the

same basis (e.g. Fourier) which leads to computational problems in high dimension.

Conversely, assuming that ϕ1 and ϕ2 have the form (15) and (16) with parameters ρ and α,

the proposed SPA Gibbs algorithm samples according to the conditional distributions

p(x|z,u) = N
(
mx,Gx

−1
)

(31)

p(z|x,u) = N
(
mz,Gz

−1
)

(32)

p(u|x, z) = N
(
mu,Gu

−1
)

(33)

where 

Gx = HTΩH+
1

ρ2
IN (34)

Gz = γLTL+
1

ρ2
IN (35)

Gu =
α2 + ρ2

α2ρ2
IN . (36)
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Thanks to the splitting-and-augmenting approach, these three sampling steps are much easier

to handle than the direct sampling from the target posterior distribution (28). Indeed, sampling

from (31) can be conducted by using the auxiliary method of [39] to deal separately with HTH

from the coupling induced by Ω (see Appendix C-B). Additionally, sampling from (32) can be

efficiently achieved in the Fourier domain (see Appendix C-A for details). Finally, sampling from

(33) is straightforward since the covariance matrix is diagonal. Again, as previously noticed in

Section III and more particularly in paragraph III-A1 dedicated to Gaussian distributions, the

proposed splitting-and-augmenting allows specific and simpler sampling steps to be conducted

where the difficulties inherent to f (here the Gaussian likelihood) and g (here the Gaussian prior)

have been dissociated. The strategy developed in this paragraph will be experimentally assessed

in paragraph V-A.

C. Image inpainting with total variation

TV has become an ubiquitous regularization to solve imaging problems [46]–[48]. Within the

considered Bayesian framework, it consists in choosing the g function in (27) as g(x) = βTV(x)

where β > 0 and TV(x) =
∑

1≤i,j≤N

∥∥∥(∇x)i,j∥∥∥
2

(∇x is the two-dimensional discrete gradient

of x). This type of prior is used for instance in image inpainting problems, which consist in

recovering an original image x ∈ RN from the noisy and partial measurements y ∈ RM under

the linear model (25). Note that, in general, M ≪ N . Here, the noise is assumed to be white

and Gaussian such that Ω−1 = σ2IM and the operator H stands for the matrix associated with

a damaging binary mask. Under this setting, the posterior distribution of x (3) becomes

p
(
x|y
)
∝ exp

[
− 1

2σ2
∥Hx− y∥22 − βTV(x)

]
. (37)

Direct sampling from this posterior is a challenging task mainly due to i) the generally high

dimension of the image to be recovered, ii) the non-conjugacy of the TV-based prior, leading to

a non-standard posterior distribution and iii) the non-differentiability of g which precludes the

use of some advanced simulation techniques, e.g., Hamiltonian Monte Carlo algorithms [11].

Conversely, instead of directly sampling from this posterior distribution, the proposed approach

is applied. Again, assuming that ϕ1 and ϕ2 have the forms (15) and (16) with parameters ρ and
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α, respectively, the conditional distributions associated to SPA are

p(x|z,u) ∝ exp

[
− 1

2σ2
∥Hx− y∥22

]
× exp

[
− 1

2ρ2
∥∥x− (z− u)

∥∥2
2

]
(38)

p(z|x,u) ∝ exp

[
−βTV(z)− 1

2ρ2
∥∥z− (x+ u)

∥∥2
2

]
(39)

p(u|x, z) ∝ exp

[
− 1

2α2
∥u∥22 −

1

2ρ2
∥∥u− (z− x)

∥∥2
2

]
(40)

Here, assuming that ϕ1 and ϕ2 are quadratic allows to retrieve Gaussian distributions for (38)

and (40). Sampling from (40) in high-dimension is not a problem since the covariance matrix is

constant diagonal. However, the covariance matrix associated to (38) is
(
σ−2HTH+ ρ−2IN

)−1,

which is more complex to handle. Hopefully, the direct operator H is a M ×N binary matrix

which can be obtained by taking a subset of rows of the identity matrix in dimension N . Due

to this simple structure, HHT = IM and by using the Sherman-Morrison-Woodbury formula, it

follows that (
1

σ2
HTH+

1

ρ2
IN

)−1

= ρ2

(
IN −

ρ2

σ2 + ρ2
HTH

)
. (41)

The matrix HTH corresponds to an identity matrix with some zeros in the diagonal (correspond-

ing to the missing pixels). Thereby, the covariance matrix (41) is diagonal and the sampling from

(38) can be conducted efficiently with the exact perturbation-optimization (E-PO) algorithm [40].

As previously discussed in paragraph III-A2, the conditional distribution (39) being log-

concave, one can sample efficiently from the latter in high-dimension with P-MALA or P-

MYULA. In the sequel, P-MYULA will be preferred because its mixing properties are better

than P-MALA and the estimation error is of the order of 1% using well-defined parameters [20].

As a conclusion, as advocated earlier, the proposed splitting-and-augmenting approach allows

simpler sampling steps to be efficiently conducted thanks to dedicated algorithms.

V. EXPERIMENTS

This section reports results of experiments aimed at comparing the proposed methodology with

that of current state-of-the-art (optimization and Bayesian) methods for the inverse problems

discussed in Section IV. All the results presented in this section have been obtained using

MATLAB, on a computer equipped with an Intel Xeon 3.70 GHz processor, with 16.0 GB of
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RAM, and running Windows 7. Other examples of the proposed approach on machine learning

problems can be found in [30], [49].

A. Deconvolution with a smooth prior

1) Problem considered: The Gaussian sampling problem introduced in Section IV-B is con-

sidered. A blurred and noisy image y ∈ RM of size 512× 512 (M = 262144) is observed. The

purpose is then to recover the original image x ∈ RN of size 512× 512 (N = 262144).

2) Experimental design: The diagonal elements σ2
i of the noise covariance matrix Ω−1 have

been randomly drawn according to the mixture σi ∼ (1−β)δκ1+βδκ2 (κ1, κ2 > 0 and 0 < β < 1)

with β = 0.35, κ1 = 13 and κ2 = 40. This particular structure for Ω−1 may be not physical but

permits to show the interest of the proposed approach. The prior parameter γ has been set to

γ = 6× 10−3.

The proposed SP and SPA algorithms SP are compared to RJ-PO [41] and to the algorithms

denoted AuxV1 and AuxV2 proposed in [39]. The parameters associated to SP and SPA have

been set to ρ = 20 and (ρ, α) = (20, 1), respectively. RJ-PO has been run using conjugate

gradient (CG) algorithm as the required linear solver whose tolerance has been adapted to reach

an acceptance rate of 0.9. The number of burn-in iterations has been set to Tbi = 200 for AuxV1,

RJ-PO, SP and SPA and to Tbi = 2200 for AuxV2 (due to its slower mixing properties, see

below). For each MCMC algorithm, 800 samples obtained after the burn-in period have been

used. The number of iterations TMC and Tbi were empirically chosen by graphically inspecting

the behavior of the Markov chains produced by the samplers.

The performances of the different approaches have been assessed by the signal-to-noise ratio

(SNR) and the peak signal-to-noise ratio (PSNR)

SNR = 10 log10
∥x∥22
∥x− x̂∥22

(42)

PSNR = 10 log10
2552

N−1 ∥x− x̂∥22
(43)

where x̂ refers to the MMSE estimate of x approximated by empirical averages of the samples

generated by the MCMC algorithms. The performance results have been averaged over 25 Monte

Carlo runs.

3) Results: Table II shows the average SNR and PSNR associated to the MMSE estimate

for the different algorithms. The standard deviation associated to these results is the same for
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TABLE II

GAUSSIAN SAMPLING: AVERAGE SNR AND PSNR (OVER 25 OBSERVATIONS) ASSOCIATED TO THE MMSE ESTIMATES.

SNR (dB) PSNR (dB)

RJ-PO 19.58 25.24

AuxV1 19.58 25.24

AuxV2 19.60 25.26

SP 19.58 25.23

SPA 19.58 25.23

the different methods and is equal to 0.02 and all the algorithms share similar performance

results. However, we emphasize that the computational cost of each algorithm can differ widely

as shown by Table III.

Table III presents the numerical complexity related to one iteration of each algorithm along

with the average number of iterations performed and the average computational time for each

algorithm (over the 25 Monte Carlo runs). The complexity of N refers to the sampling from an

univariate normal distribution. The complexity of O(N logN) refers to the use of the Fourier

transform as the matrices H and L are circulant and thereby diagonalizable in the Fourier domain.

One can denote that SP, SPA, AuxV1 and AuxV2 share a roughly similar numerical complexity

(for one iteration) whereas RJ-PO is slower because of the use of the CG method. The latter has

a complexity of O(NCGN logN) where NCG is the number of iterations performed by the CG

method. In this example, NCG = 155 on average (after the burn-in period). On the other hand,

the average computing times associated to each MCMC algorithm widely differ. RJ-PO is the

slowest mainly due to the number of CG iterations performed at each iteration. AuxV1 appears

to be the fastest. However, one has to recall that this algorithm was explicitly designed for this

type of inference problems and cannot be used directly for more general Gaussian sampling

tasks. SP and SPA appear to have reasonable computational costs compared to AuxV1. Finally,

AuxV2 needs more iterations and thereby more time to reach the same level of performance as

the other approaches. This algorithm can be used in more general cases than AuxV1 but appears

to be roughly 3 times more costly than the proposed approach which covers a wider scope of

sampling problems. This high computational cost is mainly related to the poor mixing properties

of AuxV2 compared to the other methods as drawn by Fig. 2.
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TABLE III

GAUSSIAN SAMPLING: COMPUTATIONAL COMPLEXITY RELATED TO ONE ITERATION, AVERAGE NUMBER OF ITERATIONS

AND AVERAGE COMPUTATIONAL TIME FOR EACH ALGORITHM.

computational complexity # iterations time (s)

RJ-PO O(NCGN logN) + (M +N)N 103 4192

AuxV1 O(N logN) + 2NN 103 37

AuxV2 O(N logN) + 4NN 3× 103 209

SP O(N logN) + 3NN 103 62

SPA O(N logN) + 4NN 103 86

Fig. 2. Gaussian sampling: average chain autocorrelation functions of SP (green), SPA (blue), AuxV1 (red), AuxV2 (magenta)

and RJ-PO (cyan). Shaded areas represent the intervals corresponding to the standard deviation computed over 25 trials.

Fig. 2 compares the autocorrelation functions (using − log π(x|y) as a scalar summary) of

AuxV1, AuxV2, RJ-PO, SP and SPA averaged over the 25 Monte Carlo runs, where only samples

obtained after the burn-in period have been considered. The shaded regions depicted in Fig. 2

represent the standard deviation ranges associated to each MCMC algorithm. One can denote that

all the algorithms share good mixing properties except AuxV2 which explores less efficiently the

parameter space. This result is consistent with the findings highlighted in [39] which pointed out

that the quality of the samples generated by RJ-PO and AuxV1 was better than those generated

by AuxV2.

4) Discussion: For this specific experiment, the proposed general splitting-and-augmenting

framework has shown that it can compete with efficient algorithms designed only for this type

of sampling problems (e.g. AuxV1). Additionally, it proves to be more efficient than algorithms
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Fig. 3. Set of 256 × 256 images used. From top left to bottom right: balloons, baboon, elaine, clock, donna, house, peppers,

cameraman, boat.

designed for wider Gaussian sampling tasks (e.g. AuxV2 and RJ-PO). The performance of the

proposed approach is strengthened by the fact that SP and SPA have also demonstrated to be

more efficient than state-of-the-art MCMC algorithms designed to sample from other types of

distributions, such as log-concave densities, as illustrated in the next paragraph V-B.

B. Image inpainting with total variation

1) Problem considered: The image inpainting problem introduced in Section IV-C and also

addressed in [26] is considered here. Fig. 3 presents the nine 256×256 original gray-level images

used for this experiment. The observation vector denoted y consists of 60% randomly selected

of the original image pixels x, corrupted by a white Gaussian noise with SNR of 40dB.

Fig. 4a and 4b present, as an example, the original Cameraman image and one of its associated

observations where the missing pixels are depicted in white. The restoration results for this image

are also presented in Fig. 4.

2) Experimental design: The two proposed algorithms SP and SPA, leading to sampling from

(38)-(40), are compared with the split augmented Lagrangian shrinkage algorithm (SALSA) [26],

which can be interpreted as a deterministic counterpart of SPA, as emphasized in paragraph III-B.

SALSA solves the minimization problem resulting from the MAP inference associated with the

posterior distribution (37) by using ADMM. These algorithms have been also compared with

P-MYULA specifically designed to sample from possibly non-smooth log-concave distributions

(see paragraph III-A2). The number of burn-in iterations has been set to Tbi = 200 for SP and

SPA and to Tbi = 95200 for P-MYULA (due to slower mixing, see below). For each MCMC

algorithm, 4800 samples obtained after the burn-in period have been used to approximate the

MMSE estimator by empirical averaging.

Sampling from (39) has been done with P-MYULA (λ = ρ2 and γ = ρ2/4) using Chambolle’s

algorithm [50] to compute the proximal operator of g. The SP and SPA parameters have been
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Fig. 4. Image inpainting with TV regularization using SPA: (a) original image; (b) noisy observation with missing pixels

depicted in white; (c) MMSE estimate of x; (d) MMSE estimate of z; (e) MMSE estimate of u; (f) Pixel-wise 90% credibility

intervals.

set to ρ = 2.8, α = 1 and β = 0.2 for Algo. 1 and to ρ = 2 and β = 0.2 for Algo. 2. In

particular, the choice of ρ is discussed thereafter.

The performance of the estimators has been measured by computing the improvement in

signal-to-noise ratio (ISNR) defined as

ISNR = 10 log10
∥x− y∥22
∥x− x̂∥22

(44)

where x̂ refers to the MMSE (resp. MAP) estimate of x for SP, SPA and P-MYULA (resp.,

SALSA). This performance measure has been averaged over 25 Monte Carlo runs.

3) Influence of α: Fig. 5 highlights the potential benefit of the data augmentation step

described in II-B. Thus, the autocorrelation functions associated to SP and SPA for different

values of ρ and α are depicted. The latter were obtained by using 104 samples and by considering

the Markov chains from their first iteration (no burn-in period has been considered here). The

results are averaged over 10 independent runs. The standard deviations being very small, they

are not depicted in Fig. 5. The effect of α for intermediate and large values of ρ (ρ ≥ 1 in this
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Fig. 5. Image inpainting: effect of the parameter α (associated to the data augmentation step) for different values of the

parameter ρ on the autocorrelation functions of SPA (from guppie green to blue) and SP (red). The results were averaged over

10 independent runs.

case) is not significant. However, as ρ decreases, the impact of the data augmentation scheme

governed by α on the autocorrelation function increases significantly. This behavior is expected

since this data augmentation was introduced to bring an additional degree of freedom compared

to the SP scheme when ρ is small. Although the limiting case ρ → 0 is not considered in this

experiment, it could be desired in some practical scenarios. In such cases, considering the data

augmentation step proposed in the manuscript can bring a significant benefit concerning the

exploration of the parameter space.

4) Influence of ρ: Fig. 6 shows the ISNR obtained with SPA on the Cameraman image w.r.t.

the number of iterations and for different values of the parameter ρ ranging from ρ = 1 (blue)

to ρ = 8 (yellow). High values of ρ (yellow to green) rapidly lead to a stable but not optimal

ISNR with low variance. Conversely, small values of ρ (e.g. ρ = 1, dark blue) struggle to lead to
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Fig. 6. Image inpainting: ISNR associated to SPA MMSE w.r.t. the number of iterations (in log-scale for the main figure and

in normal-scale for the zoomed one) for different values of ρ.

an acceptable ISNR in a reasonable computational time. On the other hand, intermediate values

of ρ (e.g. ρ ∈ [2, 4], blue to green) appear to be a trade-off between speed and precision of the

estimation. Thus, this range of values manages to lead, in a reasonable number of iterations, to

an ISNR competing with the one obtained by SALSA (see Table IV).

5) Performance results: Table IV shows the average ISNR obtained with the different algo-

rithms for each image depicted in Fig. 3. P-MYULA applied to the original target distribution

(3) presents a lower ISNR on each image than the three other algorithms. However, when P-

MYULA is used within the SP or SPA frameworks, it manages to reach average performance

similar to SALSA. Note that the three MCMC approaches, contrary to the optimization algorithm

SALSA, also carry credibility intervals for each pixel of the image to infer x, see Fig. 4(f).

Table V presents the numerical complexity resulting from one iteration along with the average

number of iterations performed and the average computational time for each algorithm. The

complexity of O(N2) refers to matrix-vector multiplication, that of O(N) to the use of a proximal

operator and N stands for the sampling from an univariate normal distribution. Note that the

number of iterations and thereby the computational time of SALSA has been adapted to each

observation to reach a target reconstruction error. This has not been the case for the MCMC

algorithms where the total number of iterations has been fixed beforehand. Note that the cost of

one MCMC iteration is roughly equivalent to the cost of one iteration in an ADMM framework.

The difference in computational time is mainly related to the number of iterations performed by

each algorithm. P-MYULA took on average roughly 3400 longer time than SALSA. Much more
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TABLE IV

IMAGE INPAINTING: AVERAGE RESULTS OVER 25 DIFFERENT OBSERVATION VECTORS IN TERMS OF ISNR FOR VARIOUS

ALGORITHMS AND IMAGES. THE ISNR ASSOCIATED TO P-MYULA, SP AND SPA WAS COMPUTED WITH THE MMSE

ESTIMATOR.

SALSA P-MYULA SP SPA

Balloons 26.18 23.00 26.19 26.18

Baboon 14.37 13.35 14.60 14.59

Elaine 23.61 21.21 23.86 23.84

Clock 25.72 24.50 25.45 25.42

Donna 24.71 21.69 23.87 23.82

House 20.21 19.59 20.43 20.43

Peppers 20.35 19.20 20.22 20.20

Cameraman 19.48 18.76 19.34 19.34

Boat 20.81 19.80 20.74 20.71

efficient, SP and SPA allowed to reduce the computing time w.r.t. P-MYULA by roughly 16 by

embedding P-MYULA and by simplifying its task. This gain of computational time is mainly

related to the Lipschitz constant of the gradient of the smooth potential used within P-MYULA.

Indeed, the convergence of P-MYULA, similarly to forward-backward splitting algorithms in

optimization, is driven by the Lipschitz constant of the gradient of the smooth term in the

potential f + g. Namely, in this experiment, the Lipschitz constant Lf of ∇f is given by Lf =

σ−2λmax(H
TH), where λmax(H

TH) is the largest eigenvalue of HTH. This constant is highly

dependent on the problem, more precisely on the forward operator H and cannot be tuned. On

the contrary, if the proposed variable splitting approach is used, P-MYULA is now embedded

in the Gibbs sampling scheme and is used to sample from (39). In (39), the relevant Lipschitz

constant is L′
f = ρ−2: this constant now can be chosen carefully to improve the mixing and

accelerate the convergence of P-MYULA within SPA, see Fig. (6).

Fig. 4 shows the results obtained by SPA on the Cameraman image. Those obtained by SP

were similar and are omitted here for brevity. The MMSE estimators of x and z are very

close, ensuring that the proposed variable splitting method behaves successfully. The variable

splitting residuals contained in u appear to be close to 0 for most pixels but present a certain
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TABLE V

IMAGE INPAINTING: COMPUTATIONAL COMPLEXITY RELATED TO ONE ITERATION, AVERAGE NUMBER OF ITERATIONS

PERFORMED AND AVERAGE COMPUTATIONAL TIME FOR EACH ALGORITHM.

computational complexity # iterations time (s)

SALSA O(N2) +O(N) 43 1

P-MYULA O(N2) +O(N) +NN 105 3408

SP O(N2) +O(N) + 3NN 5× 103 207

SPA O(N2) +O(N) + 4NN 5× 103 215

structure. Thus, positive and negative residuals seem to share a complementary structure near

the boundaries of objects in the image. This particular structure of the residuals is confirmed by

the analysis of the credibility intervals: there is more uncertainty (of about 80 grey-levels) on

the object contours of the image. The same conclusion was drawn in [12] when P-MALA was

applied to an image deblurring problem with total variation.

Fig. 7 compares the average autocorrelation functions (using − log p(x|y) as a scalar summary

and obtained after the burn-in period) of SP, SPA and P-MYULA on the Cameraman image.

The shaded regions depicted in Fig. 7 represent the standard deviation ranges associated to

each MCMC algorithm. SP and SPA present better mixing properties than P-MYULA, showing

that the proposed approaches successfully and more efficiently explore their respective parameter

space. Additionally, although the average autocorrelation functions of SP and SPA are similar, the

data augmentation scheme within SPA led to a Markov chain with more stable mixing properties

over different observations (see the green and blue shaded areas). Note that the potential benefit

of the data augmentation step detailed in Section II-B increases when ρ decreases.

6) Discussion: The expectations from MCMC algorithms like SP, SPA and P-MYULA are

threefold. Firstly, to infer the hidden image x, the MCMC methods are expected to efficiently

explore the parameter space, in particular nearby the high potential regions. Secondly, the

computational cost of these algorithms should remain reasonable compared to SALSA. Finally,

they have to produce Markov chains with good mixing properties in order to explore the entire

probability distribution and thus provide accurate credibility intervals.

Based on the previous results, SP and SPA appear as a very good trade-off between these

three expectations: mixing properties, efficient exploration and reasonable computational cost.
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Fig. 7. Image inpainting: average chain autocorrelation functions of SP (green), SPA (blue) and P-MYULA (red). Shaded areas

represent the intervals corresponding to the standard deviation computed over 25 trials.

The latter expectation is particulary satisfied. Yet, even though the computing times associated

to the proposed approaches are reasonable, they are roughly 200 times higher than SALSA for a

problem in high dimension (N = 65536). This overhead cost results from the exploration of the

parameter space: this is the price to pay to derive confidence intervals on the inferred parameter,

and it seems difficult to get cheaper methods.

VI. CONCLUSION

This paper introduced a new general Bayesian framework which aims at solving large-scale

inference problems. To derive the proposed methodology, two new optimization-driven hierar-

chical Bayesian models and their associated MCMC algorithms, inspired from variable splitting

and data augmentation, were introduced. Similarly to the ADMM in an optimization context, the

proposed approach could be summarized as a “divide and conquer” method. Thus, the derived

algorithms lead to simpler sampling steps so that efficient state-of-the-art MCMC algorithms

can be embedded for each sampling task. Note that the proposed approach can also be used to

distribute MCMC methods on multiples machines as detailed in [30].

The versatility and efficiency of the proposed algorithms have been assessed on two often-

studied problems and compared to recent state-of-the-art optimization and sampling approaches.

Based on these results, SP and SPA appear to be more efficient while sharing a large scope

of applications. Additionally, their reasonably low computational cost compared to optimization

algorithms helps to reduce the gap between optimization and simulation-based approaches while

providing precious credibility intervals.
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Future works will focus on other forms for the functions f , g, ϕ1 and ϕ2 to illustrate the broad

scope of applications of the proposed approach. In particular, it will include inference problems

involving non-convex target distributions. Finally, this paper presented SP and SPA as efficient

algorithms designed to solve an inference problem. They could also be used to approximate

complex target distributions. In this approximation context, future works will include a theoretical

analysis of the proposed approach.

APPENDIX A

PROOF OF THEOREM 1

Proof: The usual target distribution (3) has the form

π(x) =
exp

[
−f(x)− g(x)

]∫
RN exp

[
−f(x)− g(x)

]
dx
, (45)

and has been assumed to define a proper probability distribution. By denoting

pϕ1(x, z; ρ
2) ≜

exp
[
−ϕ1(x, z; ρ

2)
]∫

RN exp
[
−ϕ1(x, z; ρ2)

]
dz
, (46)

the split-distribution (4) writes

πρ(x, z) =
exp

[
−f(x)− g(z)

]
pϕ1(x, z; ρ

2)∫
RN

∫
RN exp

[
−f(x)− g(z)

]
pϕ1(x, z; ρ

2)dzdx
. (47)

Let define

pρ(x) =

∫
RN

πρ(x, z)dz. (48)

Under the two distributions (45) and (48), we are interested in showing that∥∥π − pρ∥∥TV
=

∫
RN

∣∣π(x)− pρ(x)∣∣ dx (49)

tends towards zero when ρ2 → 0.

Assumption 1 implies that

lim
ρ2→0

exp
[
−f(x)− g(z)

]
pϕ1(x, z; ρ

2)

= exp
[
−f(x)− g(z)

]
δx(z). (50)



29

Since ∀ρ > 0, exp
[
−f(x)− g(z)

]
pϕ1(x, z; ρ

2) has been supposed to be integrable, see Section

II-A, it follows from the dominated convergence theorem that

lim
ρ2→0

∫
RN

∫
RN

exp
[
−f(x)− g(z)

]
pϕ1(x, z; ρ

2)dzdx (51)

=

∫
RN

∫
RN

exp
[
−f(x)− g(z)

]
δx(z)dzdx (52)

=

∫
RN

exp
[
−f(x)− g(x)

]
dx. (53)

Combining (50) and (53), it follows

lim
ρ2→0

πρ(x, z) =
exp

[
−f(x)− g(z)

]
δx(z)∫

RN exp
[
−f(x)− g(x)

]
dx
. (54)

Using one more time the dominated convergence theorem, as in (52) and (54) leads for all

x ∈ RN to

lim
ρ2→0

pρ(x) =
exp

[
−f(x)− g(x)

]∫
RN exp

[
−f(x)− g(x)

]
dx

= π(x). (55)

Finally, Scheffé’s lemma [51] ensures the convergence of pρ towards π in total variation, that

is

lim
ρ2→0

∥∥π − pρ∥∥TV
= lim

ρ2→0

∫
RN

∣∣π(x)− pρ(x)∣∣ dx = 0. (56)

APPENDIX B

CASE OF MULTIPLE FUNCTIONS hi

Assume that the problem considered involves the introduction of Nh functions hi along with

Nh observation operators Ki ∈ Rki×N , i ∈ {1, . . . , Nh}. Thereby, the usual target distribution

takes the form

π(x) ∝ exp

− Nh∑
i=1

hi(Kix)

 . (57)

Remark 1: In the case where Nh = 2 and K1 = K2 = IN , the usual target distribution defined

in (3) is retrieved.
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A. Derivation of SP

In order to simplify the sampling procedure, let introduce Nh splitting variables denoted

z1, z2, . . . , zNh
∈ Rki , a positive parameter ρ and Nh divergences ϕi defined on Rki × Rki such

that the underlying joint probability distribution has the form

p(x, z1, z2, . . . , zNh
; ρ2) ∝ exp

− Nh∑
i=1

hi(zi)

+ϕi

(
Kix, zi; ρ

2
)]
. (58)

Thereby, the generalized SP implies the sampling from the conditional distributions

p(x|zi,i∈{1,...,Nh}; ρ
2) ∝ exp

− Nh∑
i=1

ϕi

(
Kix, zi; ρ

2
) , (59)

p(zi|x; ρ2) ∝ exp
[
−hi(zi)− ϕi

(
Kix, zi; ρ

2
)]
, (60)

for all i ∈ {1, . . . , Nh}.

B. Derivation of SPA

In the same manner, let introduce Nh splitting and auxiliary variables denoted z1, z2, . . . , zNh
∈

Rki and u1,u2, . . . ,uNh
∈ Rki , respectively. Additionally, let introduce positive parameters ρ and

α, Nh divergences ϕi defined on Rki × Rki and Nh functions ψi defined on Rki such that the

underlying joint probability distribution has the form

p(x, zi,i∈{1,...,Nh},ui,i∈{1,...,Nh}; ρ
2, α2) ∝

exp

− Nh∑
i=1

hi(zi) + ϕi

(
Kix, zi − ui; ρ

2
)
+ ψi(ui;α

2)

 . (61)

The generalized SPA implies the sampling from the conditional distributions

p(x|zi,ui; ρ
2) ∝ exp

− Nh∑
i=1

ϕi

(
Kix, zi − ui; ρ

2
) , (62)

p(zi|x,ui; ρ
2) ∝ exp

[
−hi(zi)− ϕi

(
Kix, zi − ui; ρ

2
)]
, (63)

for all i ∈ {1, . . . , Nh}, and

p(ui|x, zi; ρ2, α2) ∝ exp
[
−ψi(ui;α

2) (64)

−ϕi

(
Kix, zi − ui; ρ

2
)]
,

for all i ∈ {1, . . . , Nh}.
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APPENDIX C

EFFICIENT GAUSSIAN SAMPLING IN HIGH DIMENSION

In this Appendix, notations are those of Section IV-B. Suppose that one wants to sample

efficiently from the high-dimensional Gaussian conditional distributions

p(z|x,u) = N
(
mz,Gz

−1
)

(65)

p(x|z,u) = N
(
mx,Gx

−1
)

(66)

where, in particular, 
Gz = γLTL+

1

ρ2
IN . (67)

Gx = HTΩH+
1

ρ2
IN (68)

A. Efficient sampling from (65)

The matrix L was assumed to be a circulant matrix. Thereby, the latter can be diagonalized

in the Fourier domain such that

L = FHΛLF, (69)

where F and FH are unitary matrices (FHF = FFH = IN ) associated with the Fourier and

inverse Fourier transforms. ΛL is the diagonal counterpart of L in the Fourier domain. Using

(69), the precision matrix defined in (67) has the form

Gz = γFHΛL
HFFHΛLF+

1

ρ2
IN

= γFHΛL
HΛLF+

1

ρ2
IN (70)

Then, the counterpart of Gz in the Fourier domain is diagonal and has the form

ΛGz = γΛL
HΛL +

1

ρ2
IN . (71)

Using (71), one can efficiently sample from (65) by drawing N independent Gaussian samples

in the Fourier domain.
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B. Efficient sampling from (66)

Unfortunately, although the matrix H was assumed circulant, the first term in (68) cannot be

diagonalized in the Fourier domain. To cope with this problem, the auxiliary method of [39] is

used. An additional variable v ∈ RN is introduced such that the conditional distributions of x

and v are

p(x|z,u,v) = N
(
m̃x, G̃

−1
x

)
(72)

p(v|x) = N
(
mv,Gv

−1
)

(73)

where, in particular, 
G̃x =

1

µ1

HTH+
1

ρ2
IN (74)

Gv
−1 =

1

µ1

IN −Ω. (75)

Remark 2: The positive parameter µ1 is such that µ1 ∥Ω∥S < 1 (∥.∥S stands for the spectral

norm of a matrix) ensuring that (75) is positive definite.

As in Appendix C-B, the matrix H (assumed circulant) can be diagonalized in the Fourier

domain. Under these two conditional distributions, x can be efficiently drawn in the Fourier

domain and v can be efficiently sampled in RN as Ω was assumed diagonal.
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[42] O. Féron, F. Orieux, and J. F. Giovannelli, “Gradient scan Gibbs sampler: An efficient algorithm for high-dimensional

Gaussian distributions,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 2, pp. 343–352, March 2016.

[43] R. Molina and B. D. Ripley, “Using spatial models as priors in astronomical image analysis,” J. Appl. Stat., vol. 16, no. 2,

pp. 193–206, 1989.

[44] R. Molina, J. Mateos, and A. K. Katsaggelos, “Blind deconvolution using a variational approach to parameter, image, and

blur estimation,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3715–3727, Dec. 2006.

[45] A. C. Likas and N. P. Galatsanos, “A variational approach for Bayesian blind image deconvolution,” IEEE Trans. Signal

Process., vol. 52, no. 8, pp. 2222–2233, Aug. 2004.

[46] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. Rev. D, vol. 60,

no. 1-4, pp. 259–268, Nov. 1992.

[47] D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Problems,

vol. 19, no. 6, pp. S165–S187, 2003.

[48] A. Chambolle et al., “An introduction to total variation for image analysis,” in Theoretical Foundations and Numerical

Methods for Sparse Recovery, De Gruyter, 2010.

[49] M. Vono, N. Dobigeon, and P. Chainais, “Sparse Bayesian binary logistic regression using the split-and-augmented Gibbs

sampler,” in Proc. IEEE Workshop Mach. Learning for Signal Process. (MLSP), 2018.

[50] A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imag. Vision, vol. 20, no. 1, pp.

89–97, Jan. 2004.

[51] H. Scheffe, “A useful convergence theorem for probability distributions,” Ann. Math. Statist., vol. 18, no. 3, pp. 434–438,

09 1947.


	Introduction
	Model
	Variable splitting
	Data augmentation

	Inference
	Gibbs samplers
	Gaussian distributions
	Non-smooth log-concave distributions

	When SPA meets ADMM

	Application to linear Gaussian inverse problems
	Linear Gaussian inverse problems
	Deconvolution with a smooth prior
	Image inpainting with total variation

	Experiments
	Deconvolution with a smooth prior
	Problem considered
	Experimental design
	Results
	Discussion

	Image inpainting with total variation
	Problem considered
	Experimental design
	Influence of 
	Influence of 
	Performance results
	Discussion


	Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Case of multiple functions hi
	Derivation of SP
	Derivation of SPA

	Appendix C: Efficient Gaussian sampling in high dimension
	Efficient sampling from (65)
	Efficient sampling from (66)

	References

