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 b s t r a c t

In the present work, a reduced-order method, “Proper Generalized Decomposition (PGD)” 
is extended and applied to the resolution of the Reynolds equation describing the behavior 
of the lubricant in hydrodynamic journal bearing. The PGD model is employed to solve 
the characteristic ‘Reynolds’ partial differential equation using the separation technique 
through the alternating direction strategy. The resulting separated-dimension system has a 
low computation cost compared to classical finite-difference resolution. Several numerical 
benchmark examples are investigated to verify the validity and accuracy of the proposed 
method. It has been found that numerical results obtained by the PGD method can achieve 
an improved convergence rate with a very low computation cost.

1. Introduction

The fundamental basis of hydrodynamic lubrication theory was firstly developed by O. Reynolds in 1886 [1]. Reynolds’ 
analysis was inspired by previous experimental findings of N.P. Petrov [2] and B. Tower [3], who demonstrated that the 
viscosity is the most important property in film lubrication and that the load-carrying ability of a bearing is the result of 
the high pressures developed in the clearance space between the journal and the sleeve [4]. The so-called “Reynolds equa-
tion” provides essentially a prediction of the pressure distribution in the thin film lubrication, which is derived from the 
Navier–Stokes and continuity equations for incompressible flows [5]. Several approaches have been proposed to solve the 
Reynolds partial differential equation describing the journal bearing lubrication behavior. On one side, we can find the ana-
lytical models, which under certain conditions and simplifications can give some interesting results for very particular cases 
(infinitely short bearing [6,7], infinitely long bearing [8], finite bearing [9,10]). On the other side, several numerical meth-
ods have been developed to solve the fluid film lubrication problems; Raimondi and Boyd [11] applied the finite-difference 
method in the design and analysis of finite journal bearings. In general, journal bearing lubrication problems were solved 
using the finite element method in [12]. Deligant et al. [13] have solved the Reynolds equation by a finite-difference method 
using the Gauss–Seidel iterative method. Liang et al. [14,15] have used FDM (Finite Difference Method) in the study of hy-
drodynamic journal bearing. These methods are known to be accurate, but very time consuming [16], which motivates the 
search for new approaches with considerably lower computational cost [17]. Model reduction methods have gained a lot of 
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interest in the last decade [18,19]. In the field of fluid mechanics, the a posteriori model reduction method named Proper 
Orthogonal Decomposition (POD) has been widely used to simulate computational fluid problems [20–22]. Note that this 
method requires the snapshot of the flow issued from higher fidelity methods, which is often related to a significant compu-
tational cost. This drawback is circumvented in the a priori methods, where the reduced model is constructed without prior 
knowledge of the solution. The LATIN method, considered to be the first a priory model reduction method, was proposed 
by P. Ladeveze [23]. This method established a separated representation of the space and time coordinates for a complex 
physical model. It have been adopted to multi-physics frameworks [24–26]. In the case of complex fluids descriptions, a gen-
eralized representation was employed by [27–29] for approximating the solution to multi-dimensional characteristic partial 
differential equations. Dumon et al. [30] demonstrated the ability of PGD (Proper Generalized Decomposition) to solve many 
classical fluid problems accurately with considerable computational time saving. In [31], PGD was coupled with spectral 
discretization to solve several transfer and Navier–Stokes equations. Aghighi et al. [32] applied PGD to solve the Rayleigh–
Bénard flow problem that studies the natural thermal convection. Tamellini et al. [33] proposed a method for solving the 
steady incompressible Navier–Stokes equation based on PGD coupled with stochastic Galerkin approximation.

In our work, the first of its kind, the extension of the Proper Generalized Decomposition (PGD) approach to the resolution 
of the hydrodynamic lubrication problems in journal bearing is proposed, with the objective of reducing the computational 
cost of the simulation. In this paper, the PGD method is formulated and applied to the steady hydrodynamic lubrication 
equation. Section 2 describes the governing equations for hydrodynamic journal bearing, section 3 details the separated 
representation of the Reynolds equation with the use of the alternating direction strategy scheme and its PGD implementa-
tion, section 4 presents the numerical results obtained by PGD for the solution to the Reynolds equation. Comparisons are 
made with other classical methods through several benchmark examples. Finally section 5 concludes the work.

2. Governing equations for hydrodynamic journal bearing

2.1. Reynolds equation

The Reynolds equation in the hydrodynamic lubrication describes the pressure distribution in journal bearing, which is 
an elliptic, partial and differential equation for the pressure in terms of lubricant properties, density and viscosity, as well 
as the film thickness under simplifying assumptions [34]. For a Newtonian fluid, the Reynolds equation is written as

∂

∂x

(
h3 ∂ P

∂x

)
+ ∂ P

∂z

(
h3 ∂ P

∂z

)
= 6μRaω

dh

dx
(1)

We can express the Reynolds equation (1) in the θ and z coordinates by the following development:
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We make the following transformations:{
dx = Ra·dθ

∂x = Ra·∂θ
(4)

so the previous equation (3) becomes:
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then the Reynolds equation with the θ and z coordinates Fig. 1 is written as
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where P is the pressure, h is the film thickness, Ra is the bearing radius, ω is the angular velocity and μ is the lubricant’s 
viscosity.

The oil film thickness, h, which in turn varies as a function of the angular position θ , is calculated from the following 
equation

h = C(1 + ε cos θ) (7)

where ε = e
C is the eccentricity ratio, e is the eccentricity, C is the radial clearance.

The pressure is influenced by the geometry of the fluid wedge, which is formed to sustain the load, as illustrated in 
Fig. 1 [4].



Fig. 1. Journal bearing-geometric parameterization.

2.2. Journal bearing characteristics

2.2.1. Load applied to the shaft
The integral of the pressure distribution obtained from the Reynolds equation should balance the externally applied 

load W , in order to have an equilibrium of forces. For the two-dimensional problem, this condition reads:

W =
2π∫

0

+L/2∫
−L/2

P (θ, z) dθdz (8)

with

W =
√

W 2
x + W 2

y (9)

where the load components are written as:⎧⎨
⎩

W x = ∫ 2π
0

∫ +L/2
−L/2 P (θ, z) cos θ R dθdz

W y = ∫ 2π
0

∫ +L/2
−L/2 P (θ, z) sin θ R dθdz

(10)

2.2.2. Sommerfeld number
The characteristics in steady running of a journal bearing of specified design are usually expressed non-dimensionally 

as functions of a single parameter called the Sommerfeld Number [35]. It is often referred to as the bearing characteristic 
number. The Sommerfeld number, S , has been conveniently used to compare the various non-dimensional characteristics of 
varied bearing arcs. The Sommerfeld Number can be mathematical represented as in equation (11):

S = μLDN

W

(
R

C

)2

(11)

where L is the bearing length, D the shaft diameter, N the rotational speed of the shaft.

2.2.3. Friction torque
The friction torque is obtained by integrating the shear stresses acting on the journal:

Cfr =
2π∫

0

+L/2∫
−L/2

R

(
μ

∂ P

∂θ
(2z − h) + Rω

μ

h

)
dθdz (12)

and the friction number is defined as follows:

f = Cfr

C ·W (13)



2.3. Analytical solution in particular cases

We can solve the Reynolds equation analytically by introducing a geometrical simplification corresponding to the in-
finitely short/long bearing.

2.3.1. Infinitely short journal bearing
When the ratio L/D is small, the circumferential pressure gradient can be neglected in comparison with the axial pres-

sure gradient. This assumption was made for the first time by Michell [7] and developed by Ocvirk and Dubois [6]. It is 
justified for bearings with L/D smaller or equal to 1/8. Practically, this assumption is used for L/D up to 0.5 since the errors 
remain small on torque and flow rate and remain acceptable for the load-carrying capacity. Errors become very important 
for the maximum pressure in the film. They decrease with eccentricity. The Reynolds equation can then be written as:

∂

∂z

(
h3 ∂ p

∂z

)
= 6μω

dh

dθ
(14)

with the boundary conditions:

P
(
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2
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2

) = 0
(15)

The pressure field is:

P (θ, z) = −3μω

C2

(
z2 − L2

4

)
ε sin θ

(1 + ε cos θ)3
(16)

The pressure varies as sin θ ; it is positive for θ ∈ [0,π]. To assess the load, Ocvirk and Dubois used Gtimbel’s boundary 
conditions:
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)2( R
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)2 ε(
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√
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Sommerfeld’s number is:
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(

D

L

)2 (
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)2

πε
√

16ε2 + π2
(
1 − ε2

) (18)

The friction torque is given by:

Ca = μωR3L

C

π (2 + ε)

(1 + ε)
√

1 − ε2
(19)

and the journal friction number:

f = Ca

C W
= π2 S (2 + ε)

(1 + ε)
√

1 − ε2
(20)

The axial flow rate is:

Q z = LC V ε (21)

2.3.2. Infinitely long journal bearing
In the approximation of an infinitely long bearing, the axial flow is neglected with respect to the circumferential one. 

This assumption is used for L/D ratios up to 4. Then the Reynolds equation (6) is reduced to:
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with the Reynolds boundary conditions:
P (θ = 0) = 0 or P (ψ = 0) = 0

P (θ = 0s) =
(

dP
dθ

)
θ=θs

= 0 or P (ψ = ψs) =
(

dP
dψ

)
ψ=ψs

= 0

and the change in the variable of Sommerfeld [36]:

1 + ε cos θ = 1 − ε2

(23)

1 − ε cosψ



The pressure field is given by:

P (ψ) = 6μR2ω

C2
(
1 − ε2

)3/2

{
ψ − ε sinψ − 2ψ − 4ε sinψ + ε2ψ + ε2 sinψ cosψ

2(1 − ε cosψs)

}
+ Pa (24)

where ψs corresponds to the abscissa of film break down location, and is defined by:

ε (sinψs cosψs − ψs) + 2 (sinψs − ψs cosψs) = 0 (25)

The load is given by the flowing equation:
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(
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C

)2 1√
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4
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the attitude angle by:

tgφ = 2
√
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ε(1 − ε cosψs)
2

(27)

the Sommerfeld’s number by:
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1 − ε2(1 − ε cosψs)

3π
√
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4
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(28)

the friction torque by:

Ca = μR3ωL

C

[
2π + ε (sinψs − ψs cosψs)√

1 − ε2(1 − ε cosψs)

]
+ e

2
W sinφ (29)

the journal friction number by:

f = Ca

C W
= πS

[
2π + ε (sinψs − ψs cosψs)√

1 − ε2(1 − ε cosψs)

]
+ ε

2
sinφ (30)

3. Proper generalized decomposition for the resolution of the Reynolds equation

3.1. Separated representation related to the Reynolds equation

To analyze the lubricating film, the Reynolds equation Eq. (6) is formulated by PGD to find different parameters, like 
pressure distribution.

Consider the solution to the Reynolds equation (Eq. (6)) in a two-dimensional rectangular domain 	 = 	θ × 	z =
(0,2π) × (−L/2, L/2). For all suitable test functions P∗ , we consider the global weak form of Eq. (6):∫

	θ×	z

P∗
[

3
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a

dh
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+ 1

R2
a

∂2 P

∂θ2
+ ∂2 P

∂z2
− 6

μωdh

h3dθ

]
dθdz = 0 (31)

Our goal is to obtain a PGD approximate solution to Eq. (6) in the separated form

P (θ, z) =
N∑

i=1

Xi(θ)·Yi(z) (32)

we shall do so by computing each term of the expansion one at a time, thus enriching the PGD approximation until a 
suitable convergence criterion is satisfied.

3.2. Progressive construction of the separated representation

At each enrichment step n (n ≥ 1), we have already computed the n − 1 first terms of the PGD approximation Eq. (32):

Pn−1 (θ, z) =
n−1∑

Xi (θ) ·Yi (z) (33)

i=1



We now wish to compute the next term Xn (θ) ·V , Yn (z) to obtain the enriched PGD solution

Pn (θ, z) = Pn−1 (θ, z) + Xn (θ) · Yn (z) =
n−1∑
i=1

Xi (θ) · Yi (z) + Xn (θ) · Yn (z) , (34)

both functions Xn (θ) ·Yn (z) are unknown at the current enrichment step n, and they appear in the form of a product. 
The resulting problem is thus non-linear, and a suitable iterative scheme is required. We shall use the index q to denote a 
particular iteration.

At enrichment step n, the PGD approximation Pn,q obtained at iteration q thus reads

Pn,q(θ, z) = Pn−1(θ, z) + Xq
n(θ)·Y q

n (z) (35)

The simplest iterative scheme is an alternating direction strategy that computes Xq
n(θ) from Y q−1

n (z), and then Y q
n (z) from 

Xq
n(θ). An arbitrary initial guess Y 0

n (z) is specified to start the iterative process. The non-linear iterations proceed until 
reaching a fixed point within a user-specified tolerance ξ , i.e.∥∥∥Xq

n(θ)·Y q
n (z) − Xq−1

n (θ)·Y q−1
n (z)

∥∥∥
L2(	)∥∥∥Xq−1

n (θ)·Y q−1
n (z)

∥∥∥
L2(	)

< ξ (36)

The enrichment step n thus ends with the assignments Xn(θ) ← Xq
n(θ) and Yn(z) ← Y q

n (z).The enrichment process itself 
stops when an appropriate measure of error κ(n) becomes small enough, i.e. κ(n) < ξ̃ (a chosen enrichment tolerance). The 
corresponding stopping criterion is based on the norm (L2) of mode n with respect to the norm of the first mode, i.e.

κ (n) = ‖Xn (θ) · Yn (z)‖L2(	)

‖X1 (θ) · Y1 (z)‖L2(	)

(37)

We now describe in more detail one particular alternating direction iteration at a given enrichment step.

3.2.1. Alternating direction strategy
Each iteration of the alternating direction scheme consists in the following two steps:

1. Computing Xq
n(θ) from Y q−1

n (z):
In this case, the approximation reads

Pn,q (θ, z) =
n−1∑
i=1

Xi (θ) ·Yi (z) + Xq
n (θ) ·Y q−1

n (z) (38)

where all functions are known except Xq
n(θ). The simplest choice for the weight function P∗ in the weighted residual 

formulation (Eq. (31)) is

P∗(θ, z) = X∗
n (θ)·Y q−1

n (z) (39)

Injecting Eq. (38) and Eq. (39) into Eq. (31), we obtain∫
	θ×	z

X∗
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dθ
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+
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+
∫

	θ×	z

X∗
n (θ)·Y q−1

n (z)·G1·
n∑

i=1
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+ 1

R2
a

∫
X∗

n(θ)·Y q−1
n (z)·

n∑
i=1

d2 Xi(θ)

dθ2
·Yi(z)·dθdz
	θ×	z



+
∫
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X∗
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n (z)·
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Xi(θ)·d2Yi(z)

dz2
·dθdz

−
∫

	θ×	z

X∗
n(θ)·Y q−1

n (z)·G2·dθdz = 0

with G1 = 3
hR2

a

dh
dθ

and G2 = 6μwdh
h3·dθ

.

Here comes a crucial point: since all functions of z are known in the above expression, we can compute the following 
one-dimensional integrals over 	z:
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δθ
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(41)

Equation (40) reduces to:
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∫
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= −
∫
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n ·G1·

n−1∑
i=1

(γ θ
i
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dθ
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R2
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(γ θ
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dθ2
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−
∫
	θ

X∗
n ·
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i=1

(δθ
i Xi(θ))·dθ +

∫
	θ

X∗
n ·ζ θ ·dθ

(42)

We have thus obtained the weighted residual form of a one-dimensional problem defined over 	θ that can be solved 
by using any discretization technique operating on the model weak form (finite element method, finite volumes) to 
obtain the function Xq

n we are looking for. Another possibility consists in coming back to the strong form of Eq. (42):

αθ ·G1·dXq
n(θ)

dθ
+ 1

R2
a
·αθ ·d2 Xq

n(θ)

dθ2
+ βθ ·Xq

n

= −G1·
n−1∑
i=1

γ θ
i ·dXi(θ)

dθ
− 1

R2
a
·

n−1∑
i=1

γ θ
i ·d2 Xi(θ)

dθ2
−

n−1∑
i=1

δθ
i ·Xi(θ) + ζ θ

(43)

This could be solve it numerically by means of any suitable numerical method (Finite Differences, Pseudo-Spectral 
Techniques, etc.). The strong form Eq. (43) is a second-order ordinary differential equation for Xq

n .
Having thus computed Xq

n(θ), we are now ready to proceed with the second step of iteration q.
2. Computing Y q

n (z) from Xq
n(θ):

The procedure exactly mirrors what we have done above. Indeed, we simply exchange the roles played by all relevant 
functions of θ and z.
The current PGD approximation reads

Pn,q(θ, z) =
n−1∑
i=1

Xi(θ)·Yi(z)+Xq
n(θ)·Y q

n (z) (44)

where all functions are known except Y q
n (z).

The Galerkin formulation of Eq. (31) is obtained with the particular choice

P∗(θ, z) = Xq
n(θ)·Y ∗

n (z) (45)



Then, by introducing (44) and (45) into (31), we get∫
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∫
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with G1 = 3
hR2
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dh
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and G2 = 6μwdh
h3dθ

.

As all functions of θ are known, the integrals over 	θ can be computed to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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ζ z = ∫
	θ

Xq
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Equation (46) becomes∫
	z

ψ z·Y ∗
n (z)·G1·Y q

n (z)dz + 1

R2
a

∫
	z

β z·Y ∗
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∫
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∫
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i ·Yi(z)·dz − 1

R2
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∫
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As before, we have thus obtained the weighted residual form of an elliptic problem defined over 	z whose solution is 
the function Y q

n (z). Alternatively, the corresponding strong formulation of this one-dimensional problem reads

ψ z·G1·Y q
n (z) + 1

R2
a
·β z·Y q

n (z) + αz d2Y q
n (z)

dz2
= −G1·

n−1∑
i=1

φz
i ·Yi(z) − 1

R2
a
·

n−1∑
i=1

δz
i ·Yi(z) −

n−1∑
i=1

γ z
i ·d2Yi(z)

dz2

+ ζ z (49)

3.3. PGD program description

The algorithm of the PGD source code implemented in Matlab is given in Algorithm 1. The procedure is as follows.

1. The bearing characteristics are defined.
2. When the geometry of the problem domain is created, a set of field nodes is generated to represent the problem 

domain.
3. A progressive construction of the separated representation is performed through two loops; the outer loop is for the 

main enrichment procedure, stopping when the criterion (Eq. (37)) is satisfied, and the boundary conditions are applied. 
In the inner loop, the non-linear iterations proceed until reaching a fixed point within the tolerance defined in Eq. (36); 
the detailed procedure is described in Algorithm 1.



4. The separated representation is reconstructed to obtain pressure solution.
5. Post-processing is performed to obtain results in terms of load carrying capacity, Sommerfeld and friction numbers.

Algorithm 1 Pseudo-code of the implemented PGD approach.

1: Input data (bearing characteristics, geometry mesh, ξ, ξ̃ , maximum number of enrichments (Maxterms), maximum number of iterations in the fixed 
point loop (Maxfp))

2: Mesh definition for each dimension: Nθ , Nz

3: for i = 1:Maxterms do (main enrichment loop)

4: Initialization of the fixed point loop: Sθ = random(Nθ , 1), Sz = random(Nz, 1)

5: Definition of the boundary conditions

6: for j = 1:Maxfp do (fixed point iterations)

7: Store the old values of Sθ and Sz for later comparison

8: procedure Alternating Direction Strategy

9: Solve for Sθ the system of one-dimensional integrals (Eq. (41))

10: Construction of the finite difference solution for the strong form given in Eq. (43)

11: Solve for Sz the system of one-dimensional integrals (Eq. (47))

12: Construction of the finite-difference solution for the strong form given in Eq. (49)

13: Norm of the difference Sdiff between the two fixed point iterations (Eq. (36))

14: if Sdiff < ξ then

15: Break (stopping from fixed point iterations)

16: Computation of the error κ (Eq. (37))

17: if κ < ξ̃ then (verification of the second stopping criterion)

18: Break (stopping from the main enrichment loop)

4. Numerical results and discussions

In this section, the accuracy and the efficiency of PGD method are investigated through several benchmark examples. In 
the first part, a comparison of the evaluated fluid film pressure distribution obtained from PGD, FDM, FDMsor and analytical 
solution in the cases of infinitely short and long journal bearing (ISJB, ILJB) is presented. This comparison is extended 
to the evaluation of the journal bearing characteristics (load carrying capacity, Sommerfeld and friction numbers). A final 
comparison is carried out in terms of CPU time consuming for all the above-mentioned numerical methods. In the second 
part, the same comparisons are performed for the finite journal bearing (FJB) with different L/D ratios.
We note that, for the following study, the PGD associated parameters are chosen as follows:

– termination criterion for the fixed point iterations: ξ = 10−8,
– termination criterion used for the enrichment process: ξ̃ = 10−5,
– maximum number of enrichments: Maxterms = 4,
– maximum number of iterations in the fixed point loop: Maxfp = 20.

In the case of finite difference formulation, central difference scheme of spacial discretization is used to numerically solve 
the Reynolds equation. Successive Over Relaxation (SOR) (	SOR = 2) of the Finite Difference Method is also employed in 
order to accelerate the convergence process.

4.1. Error index

In order to check the accuracy of the obtained solutions, the definition of a specific error index is necessary. The relative 
error on the pressure computation is defined as follows:

E P =

∥∥∥�

P − P
∥∥∥

L2(	)

‖P‖L2(	)

(50)

where 
�

P and P are the pressures computed by the used numerical methods and the exact analytical solution, respectively. 
In order to evaluate the convergence rates of each numerical methods, we introduce a characteristic length hmesh. For a grid 
of rectangular cells:

hmesh =
√

A	

nc
(51)

where A	 is the area of the problem domain and nc the number of cells.



4.2. Infinitely short and long journal bearing

4.2.1. Pressure distribution
In the present section, the following input data associated with the problem of journal bearing lubrication are used 

(Table 1).
The pressure distribution fields obtained numerically by PGD (with a regular mesh = 100 × 100 nodes) for the infinitely 

short journal bearing (L/D = 0.12) and infinitely long journal bearing (L/D = 6) are illustrated in Figs. 2 and 3, respectively.

Table 1
Journal bearing and lubricant characteristics.

Parameters Infinitely short 
journal bearing

Infinitely long 
journal bearing

L journal length 6·10−3 m 300·10−3 m
D journal diameter 50·10−3 m 50·10−3 m
C radial clearance 20·10−6 m 20·10−6 m
ε eccentricity ratio 0.1 0.1
N journal rotation speed 1000 rpm 1000 rpm
μ lubricant dynamic viscosity 0.19 Pa·s 0.19 Pa·s

mesh 100 × 100 nodes 100 × 100 nodes

Fig. 2. Pressure distribution for ISJB (L/D = 0.12).

Fig. 3. Pressure distribution for ILJB (L/D = 6).



Fig. 4. Normalized functions for ISJB: Xi(θ) (left) and Yi(z) (right) with i = 1, ...,3.

Fig. 5. Normalized functions for ILJB: Xi(θ) (left) and Yi(z) (right) with i = 1, ...,4.

Fig. 6. Comparison of pressure distribution obtained by PGD, FDM, FDMsor, and analytical solution at z = 0 for ISJB.

In Figs. 4 and 5, the normalized separated functions Xi(θ) and Yi(z) are illustrated for i = 1, ..., 3 and i = 1, ..., 4 respec-
tively. It is noticed that for the computation of the PGD solution in the case of the ISJB problem, only three enrichment 
steps are needed (where the stopping criterion is satisfied), while in the case of the ILJB problem, all steps are carried out.



Fig. 7. Comparison of pressure distribution obtained by PGD, FDM, FDMsor, and analytical solution at z = 0 for ILJB.

In Figs. 6 and 7, the pressure distribution obtained by PGD is plotted along the mid-line of the plain journal bearing 
(z = 0) and compared with the numerical solutions to FDM, FDMsor and the analytical solutions. It is noticed that the 
pressure curves are quite close for all the approaches. However, the error level of the PGD method is smaller than those 
obtained by FDM and FDMsor. For a more accurate comparison, a mesh convergence study is conducted in section 4.2.4 with 
the computation of the error norm (equation (50)).

We note that these first comparison tests of pressure distribution (given in Figs. 6 and 7) are calculated at half length 
(z = 0). These comparison tests are still insufficient to evaluate the pressure computation error in the whole domain. For 
a more correct comparison, the evaluation of the Sommerfeld and friction numbers, which requires the calculation of 
the integral of the pressure distribution over the whole domain (load carrying capacity), is performed in the next sec-
tions.

4.2.2. Sommerfeld number
In Table 2, the Sommerfeld number is calculated for ISJB and ILJB with increasing the eccentricity ratio (ε = 0.1–0.9), 

using PGD, FDM and FDMsor methods and compared with the results given in the reference [34].
Figs. 8 and 9 display the Sommerfeld number as a function of the eccentricity ratio in the cases of ISJB and ILJB. It is 

noticed that the Sommerfeld number calculated with the proposed method (PGD) agrees with the results obtained in [34]
and other methods.

Table 2
Sommerfeld number for ISJB and ILJB with different values of eccentricity ratio.

Parameters Eccentricity ratio ε

L/D Sommerfeld 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SJB S(L/D)2-[34] 0.99 0.461 0.272 0.17 0.106 0.0625 0.033 0.0139 0.00331

S(L/D)2-PGD 0.99 0.464 0.273 0.17 0.106 0.0631 0.033 0.0140 0.00336

S(L/D)2-FDM 1.08 0.504 0.298 0.18 0.117 0.0694 0.037 0.0159 0.00506

S(L/D)2-FDMsor 1.08 0.503 0.297 0.18 0.116 0.0694 0.037 0.0159 0.00405

LJB S-[34] 0.247 0.123 0.0823 0.0628 0.0483 0.0389 0.0297 0.0211 0.0114

S-PGD 0.395 0.192 0.123 0.0850 0.0601 0.0394 0.0194 0.0118 0.0050

S-FDM 0.422 0.208 0.136 0.0980 0.0743 0.0566 0.0420 0.0286 0.0150

S-FDMsor 0.422 0.208 0.136 0.0980 0.0743 0.0566 0.0420 0.0286 0.0150



Fig. 8. Sommerfeld number with different values of the eccentricity ratio for ISJB.

Fig. 9. Sommerfeld number with different values of the eccentricity ratio for ILJB.

4.2.3. Friction number
In Table 3, the friction number is calculated for ISJB and ILJB with increasing the eccentricity ratio (ε = 0.1–0.9), using 

PGD, FDM, and FDMsor methods and compared with the results given in reference [34].
Figs. 10 and 11 show the friction number as a function of the eccentricity ratio in the cases of ISJB and ILJB. It is noticed 

that the friction number computed with the PGD method is in good correspondence with other results obtained in [34] and 
from FDM, FDMsor methods.



Table 3
Friction number for the ISJB and ILJB with different values of eccentricity ratio.

Parameters Eccentricity ratio ε

L/D Friction number 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ISJB f(L/D)2-[34] 18.75 8.514 4.98 3.14 2.016 1.25 0.722 0.355 0.114
f(L/D)2-PGD 19.75 9.348 5.66 3.69 2.437 1.55 0.921 0.463 0.152
f(L/D)2-FDM 21.43 10.145 6.15 4.01 2.649 1.69 1.005 0.507 0.169
f(L/D)2-FDMsor 21.43 10.144 6.15 4.01 2.647 1.69 1.004 0.507 0.169

ILJB f-[34] 5.02 2.61 1.84 1.47 1.25 1.10 0.98 0.852 0.658
f-PGD 7.84 3.88 2.55 1.85 1.37 0.97 0.53 0.391 0.220
f-FDM 8.3 4.02 2.55 1.76 1.25 0.85 0.51 0.189 0.150
f-FDMsor 8.36 4.16 2.76 2.04 1.60 1.29 1.04 0.817 0.560

Fig. 10. Friction number with different values of the eccentricity ratio for ISJB.

Fig. 11. Friction number with different values of the eccentricity ratio for ILJB.

4.2.4. Mesh convergence study
Different sets of regularly distributed nodes are employed: (20 × 20), (40 × 40), (70 × 70), (100 × 100), (200 × 200), 

(300 × 300), (400 × 400), (500 × 500), (600 × 600). The convergence curves of pressure field obtained from FDM, FDMsor
and PGD methods are listed in Table 4 and plotted in Figs. 12 and 13.



Table 4
Errors in pressure computation for ISJB and ILJB using FDM, FDMsor and PGD methods.

Nodes hmesh Error E P for ISJB hmesh Error E P for ILJB

PGD FDM FDMsor PGD FDM FDMsor

400 0.00970 0.006759 0.28120 0.10647 0.00686 0.11664 0.24676 0.36086
1600 0.00485 0.006759 0.14912 0.05986 0.00343 0.06696 0.12399 0.17724
4900 0.00277 0.006767 0.08931 0.03919 0.00196 0.04661 0.07264 0.10171

10000 0.00194 0.006767 0.06483 0.03114 0.00137 0.04291 0.05207 0.07206
40000 0.00097 0.006767 0.03589 0.02120 0.00068 0.03964 0.02833 0.03769
90000 0.00064 0.006767 0.02615 0.01767 0.00045 0.03901 0.02042 0.02629

160000 0.00048 0.006767 0.02127 0.01577 0.00038 0.03879 0.01648 0.02063
250000 0.00038 0.006767 0.01834 0.01454 0.00027 0.03869 0.01412 0.01726
360000 0.00032 0.006767 0.01639 0.01365 0.00022 0.03863 0.01254 0.01503

Fig. 12. Error in pressure computation for ISJB using FDM, FDMsor, and PGD methods.
Fig. 13. Error in pressure computation for ILJB using FDM, FDMsor and PGD methods.



Table 5
Comparison of computational time required for calculation of fluid film pressure using FEM, FEMsor, and PGD.

Nodes Computational time (s)

ISJB ILJB

PGD FDM FDMS O R PGD FDM FDMS O R

2500 0.08 0.14 0.16 0.10 0.15 0.17
10,000 0.09 0.79 0.86 0.11 0.81 0.87
40,000 0.15 21.06 21.49 0.19 21.11 21.28
90,000 0.33 123.08 125.25 0.42 122.67 124.59

160,000 0.64 401.97 406.99 0.69 395.07 397.65
250,000 0.95 981.70 992.09 1.07 979.91 988.56
360,000 1.22 2045.88 2057.86 1.55 2027.67 2272.35

Fig. 14. FDM versus PGD computational time when increasing the number of nodes in ISJB (L/D = 0.12).

The convergence rate of the proposed approach (PGD) is relatively better than those obtained by FDM, FDMsor methods. It 
is also noticed that the error in PGD computation have a tendency to stabilize immediately for the first mesh configurations. 
This is due to the enrichment iteration procedure of PGD, where the error stabilizes when the convergence rate is reached 
(i.e. until reaching the fixed point, Algorithm 1). In general, a finer mesh typically results in a more accurate solution. 
However, as a mesh is made finer, the computation time increases. Because of that, an investigation on the computational 
time required for the PGD resolution procedure is more than essential.

4.2.5. Computational time
The computational times required for the calculation of fluid film pressure with different mesh configurations using FDM, 

FDMsor and PGD methods are listed in Table 5.
The computations are performed on Intel Core i5-2450M CPU @ 2.50 GHz (6 GB RAM, 64 bit) using Matlab. Figs. 14 and 

15 illustrate the computational time when increasing the number of nodes using FDM, FDMsor and PGD methods.
Through this comparison, the efficiency of PGD compared to other methods, in term of computational time, is quite 

clear. We notice that for an increasingly finer mesh, unlike other methods, PGD stay incredibly less time consuming. This is 
justified by the fact that in the PGD method, a separated representation of the spacial domain is performed, thus making 
the order of computations impressively reduced. More clarifications about the order of computations in PGD method are 
provided at the end of this paper.

4.3. Finite journal bearing

A more complete analysis of the capabilities of the proposed method can be done from the resolution of the Reynolds 
equation in the case of finite journal bearing (FJB) with different values of the L/D ratio.
Table 6 describes the model parameters related to the finite journal bearing considered in this case.



Fig. 15. FDM versus PGD computational time when increasing the number of nodes in ILJB (L/D = 6).

Table 6
Finite journal bearing characteristics and lubricant properties.

Parameters Finite journal bearing

L journal length 0.0125 m 0.025 m 0.05 m 0.1 m

D journal diameter 50·10−3 m

L/D ratio 1/4 1/2 1 2

C radial clearance 20·10−6 m
ε eccentricity ratio 0.1∼0.9
N journal rotation speed 1000 rpm
μ lubricant dynamic viscosity 0.19 Pa·s

mesh 100 × 100 nodes

4.3.1. Pressure distribution
The pressure distribution field obtained numerically by PGD (with a regular mesh = 100 × 100 nodes) on the finite 

journal bearing with L/D = 1, as illustrated in Fig. 16.
In Fig. 17, the normalized separated functions Xi(θ) and Yi(z) are illustrated for i = 1, ..., 4. It is noticed that for the 
computation of the PGD solution in the case of FJB problem, all enrichment steps are carried out.

Fig. 16. Pressure distribution for FJB (L/D = 1) with ε = 0.1 (mesh size = 100 × 100).



Fig. 17. Normalized function Xi(θ) (left) and Yi(z) (right) with i = 1, ...,4.

Fig. 18. Comparison of pressure distributions obtained by PGD, FDM, FDMsor at z = 0 for FJB (L/D = 1/4).

Fig. 19. Comparison of pressure distributions obtained by PGD, FDM, FDMsor at z = 0 for FJB (L/D = 1/2).



Fig. 20. Comparison of pressure distributions obtained by PGD, FDM, FDMsor at z = 0 for FJB (L/D = 1).

Fig. 21. Comparison of pressure distributions obtained by PGD, FDM, FDMsor at z = 0 for FJB (L/D = 2).

In Figs. 18–21, the pressure distribution obtained by PGD along the mid-line of the plain journal bearing (z = 0) with 
different values of the L/D ratio (L/D = 1/4, 1/2, 1, 2) is plotted and compared with the numerical solutions to FDM, 
FDMsor. It is noticed that the pressure curves are quite close for all the approaches. For more correct and global comparisons, 
the evaluation of the Sommerfeld and friction numbers is performed in the next sections.

4.3.2. Sommerfeld number
In Table 7, the Sommerfeld number is calculated for different L/D ratios with increasing the eccentricity ratio (ε =

0.1–0.9), using PGD, FDM and FDMsor methods, and compared with the results given in [34].
Figs. 22 to 25 display the Sommerfeld number as a function of the eccentricity ratio for different values of the L/D

ratio in FJB. It is noticed that the Sommerfeld number calculated with the proposed method (PGD) agrees with the results 
obtained in [34] and from FDM, FDMsor methods.

4.3.3. Friction number
Table 8 shows the variation of the friction number with increasing the eccentricity ratio for different L/D ratio performed 

using PGD, FDM and FDMsor methods compared with [34].



Table 7
Sommerfeld number for different L/D ratios with different values of the eccentricity ratio.

Parameters Eccentricity ratio ε

L/D Sommerfeld 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/4 S-[34] 16.2 7.57 4.49 2.83 1.78 1.07 0.58 0.263 0.0728
S-PGD 16.24 7.57 4.47 2.81 1.75 1.03 0.55 0.233 0.0566
S-FDM 17.61 8.24 4.90 3.11 1.97 1.19 0.65 0.299 0.0862
S-FDMsor 17.61 8.24 4.90 3.11 1.97 1.19 0.65 0.299 0.0861

1/2 S-[34] 4.32 2.03 1.21 0.784 0.508 0.318 0.184 0.0912 0.0309
S-PGD 4.35 2.038 1.21 0.760 0.480 0.28 0.156 0.0699 0.0202
S-FDM 4.71 2.23 1.35 0.870 0.570 0.36 0.216 0.1097 0.0383
S-FDMsor 4.71 2.23 1.35 0.870 0.570 0.36 0.216 0.1097 0.0382

1 S-[34] 1.33 0.631 0.388 0.260 0.178 0.12 0.0776 0.0443 0.0185
S-PGD 1.38 0.653 0.394 0.255 0.167 0.105 0.0613 0.0299 0.0091
S-FDM 1.48 0.716 0.446 0.303 0.211 0.145 0.0947 0.0549 0.0233
S-FDMsor 1.48 0.716 0.446 0.303 0.211 0.145 0.0947 0.0549 0.0233

2 S-[34] 0.559 0.271 0.173 0.122 0.0893 0.0654 0.0463 0.0297 0.0173
S-PGD 0.638 0.306 0.190 0.128 0.0876 0.0576 0.0342 0.016 0.0059
S-FDM 0.676 0.33 0.212 0.149 0.1098 0.0806 0.0571 0.0367 0.0178
S-FDMsor 0.676 0.33 0.212 0.149 0.1098 0.0806 0.0571 0.0367 0.0178

Fig. 22. Sommerfeld number with different values of the eccentricity ratio for FJB (L/D = 1/4).

Fig. 23. Sommerfeld number with different values of the eccentricity ratio for FJB (L/D = 1/2).
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Fig. 24. Sommerfeld number with different values of the eccentricity ratio for FJB (L/D = 1).

Fig. 25. Sommerfeld number with different values of the eccentricity ratio for FJB (L/D = 2).

Figs. 26–29 show the friction number as a function of the eccentricity ratio for different values of the L/D ratio in FJB. It 
is also noteworthy that there is a very good correspondence between the solution given by PGD and other solutions given 
by FDM, FDMsor and [34].
T
F

able 8
riction number for different L/D ratios with different values of eccentricity ratio.

Parameters Eccentricity ratio ε

L/D Friction number 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/4 f-[34] 307.0 140.0 82.5 52.67 34.26 21.85 13.19 6.97 2.7
f-PGD 322.0 152.0 92.6 60.57 40.67 25.64 15.2 7.88 2.56
f-FDM 349.0 165.0 100.6 65.91 43.67 28.11 16.78 8.53 2.81
f-FDMsor 349.0 165.0 100.6 65.9 43.66 28.11 16.78 8.53 2.81

1/2 f-[34] 82.1 37.71 22.55 14.75 9.94 6.67 4.33 2.59 1.27
f-PGD 86.47 41.07 25.05 16.48 10.98 7.13 4.33 2.3 0.91
f-FDM 93.33 44.35 27.08 17.82 11.85 7.62 4.48 2.12 0.4
f-FDMsor 93.34 44.37 27.1 17.84 11.88 7.66 4.52 2.16 0.44

(continued on next page)



Table 8 (continued)

Parameters Eccentricity ratio ε

L/D Friction number 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 f-[34] 25.36 11.87 7.35 5.07 3.67 2.7 1.99 1.4 0.859
f-PGD 27.51 13.17 8.16 5.51 3.81 2.6 1.68 0.98 0.41
f-FDM 29.26 13.88 8.44 5.49 3.55 2.13 1.02 0.12 0.59
f-FDMsor 29.28 13.93 8.51 5.59 3.76 2.26 1.17 0.28 0.43

2 f-[34] 10.76 5.21 3.4 2.5 1.96 1.6 1.31 1.04 0.73
f-PGD 12.67 6.17 3.94 2.76 1.99 1.42 0.94 0.52 0.26
f-FDM 13.2 6.24 3.75 2.38 1.46 0.74 0.14 0.4 0.9
f-FDMsor 13.27 6.36 3.94 2.63 1.77 1.11 0.57 0.09 0.38

Fig. 26. Friction number with different values of the eccentricity ratio from FJB (L/D = 1/4).

Fig. 27. Friction number with different values of the eccentricity ratio from FJB (L/D = 1/2).



Fig. 28. Friction number with different values of the eccentricity ratio from FJB (L/D = 1).

Fig. 29. Friction number with different values of the eccentricity ratio from FJB (L/D = 2).

4.3.4. Computational time
The computational time required for the evaluation of the fluid film pressure operating under the following conditions: 

L/D = 1, ε = 0.1 and mesh nodes = [50, 100, 200, ..., 600]2, using FDM, FDMsor and PGD methods, is listed in Table 9 and 
plotted in Fig. 30.

Through this comparison, we notice that the PGD method is clearly more efficient (meaning less time consuming) com-
pared to other methods. But, this time, the number of arithmetic operations required for computation of the solution is 
investigated. It is observed that the most of the CPU time required by each numerical method (PGD and others) is essen-
tially elasped for solving systems of linear equations. In our case, LU factorization with partial pivoting technique is used for 
this purpose. The factorization of a square matrix of order N into L and U requires [(2/3) · N3] floating-point arithmetic op-

Table 9
Comparison of the computational time required for the calculation of the fluid film pressure using FEM, FEMsor and PGD in FJB.

L/D Method Mesh (number of nodes)

2500 10,000 40,000 90,000 160,000 250,000 360,000

1 PGD 0.11 0.12 0.23 0.54 0.97 1.53 2.33
FDM 0.15 0.81 21.19 123.57 399.50 985.21 2036.59
FDMsor 0.16 0.87 21.88 126.12 403.23 992.22 2048.64



Fig. 30. FDM versus PGD computational time when increasing the number of nodes in FJB.

Table 10
Number of operations for different mesh size from the PGD and FDM methods.

FLOPS Number of nodes

2500 10,000 40,000 90,000 160,000 250,000 360,000

PGD 3.0000e+07 2.4000e+08 1.9200e+09 6.4800e+09 1.5360e+10 3.0000e+10 5.1840e+10
FDM 2.3438e+10 1.5000e+12 9.6000e+13 1.0935e+15 6.1440e+15 2.3438e+16 6.9984e+16

Fig. 31. Number of flops for different mesh configurations.

erations (flops) [37]. Taking into account just flops required for solving linear systems, we can say that in order to solve the 
resultant system of order [(N × N)] obtained from FDM we have to consume [(2/3) · (N × N)3] flops (for FEMSOR it is even 
more expensive, in term of flops, due to the additional over-relaxation procedure), whereas, in the PGD method, the space 
separated representation allows us to reduce the number of flops to [(2/3) · (N)3 · number of dimensions · Maxterms · Maxfp] 
(Algorithm 1), in our case PGDflops = [(2/3) · (N)3 · 2 · 4 · 20]. The numbers of flops required for the PGD and FDM methods 
are listed in Table 10 and plotted in Fig. 31.



From the latter comparison, it is noticed that the number of flops required by PGD is much smaller than that required 
by FDM, and tends to slightly increase when the number of nodes become prohibitive.

5. Conclusion

In this paper, a new extension of the Proper Generalized Decomposition method for the analysis of journal bearing 
hydrodynamic lubrication is presented. The main idea of the PGD approach is to compute iteratively each term of the 
numerical approximation using products of functions defined in lower dimensions, which induces a reduced separated 
representation of the solution. We have demonstrated that the PGD method is able to solve the Reynolds equation accurately 
and with impressive CPU time saving, compared to other finite difference models. Another advantage of the proposed 
approach over other computational methods is to include high accuracy with relatively few grid nodes and an instantaneous 
solution that is function of the convergence of the fixed point algorithm. In terms of computational time, the verdict is truly 
impressive: PGD converges at the first node configurations with a relatively constant CPU time, the same error order is 
attained from FDM methods at a CPU time over thousand times bigger than that of PGD. This work is the first step toward 
dealing with model order reduction in journal bearing hydrodynamic lubrication. Increasing the order of complexity of 
this problem to be able to treat a thermo-elasto-hydrodynamic lubrication problem (TEHD) will be the subject of further 
studies. Indeed, it would be interesting to include other journal bearing model parameters, like the number of grooves and 
the geometry of sliders as extra-coordinates of the problem. It might be hoped that the real-time resolution property of 
PGD will be put to profit in real industrial applications.
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