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The paper is devoted to a linear dynamics for non-autonomous perturbation of the Gibbs semigroup on a separable Hilbert space. It is shown that evolution family {U(t, s)} 0≤s≤t solving the non-autonomous Cauchy problem can be approximated in the trace-norm topology by product formulae. The rate of convergence of product formulae approximants {U n (t, s)} {0≤s≤t,n≥1} to the solution operator {U(t, s)} {0≤s≤t} is also established.

Introduction and main result

The aim of the paper is two-fold. Firstly, we study a linear dynamics, which is a non-autonomous perturbation of Gibbs semigroup. Secondly, we prove product formulae approximations of the corresponding to this dynamics solution operator {U(t, s)} {0≤s≤t} , known also as evolution family, fundamental solution, or propagator, see [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF] Ch.VI, Sec.9.

To this end we consider on separable Hilbert space H a linear non-autonomous dynamics given by evolution equation of the type:

∂ u(t) ∂t = -C(t)u(t), u(s) = u s , s ∈ [0, T ) ⊂ R + 0 , C(t) := A + B(t), u s ∈ H, t ∈ I := [0, T ], (1.1)
where R + 0 = {0} ∪R + and linear operator A is generator of a Gibbs semigroup. Note that for the autonomous Cauchy problem (ACP) (1.1), when B(t) = B, the outlined 1 programme corresponds to the Trotter product formula approximation of the Gibbs semigroup generated by a closure of operator A + B, [START_REF] Zagrebnov | Gibbs Semigroups, Operator Theory Series: Advances and Applications[END_REF] Ch. [START_REF] Kato | Abstract evolution equation of parabolic type in Banach and Hilbert spaces[END_REF].

The main result of the present paper concerns the non-autonomous Cauchy problem (nACP) (1.1) under the following Assumptions:

(A1) The operator A ≥ 1 in a separable Hilbert space H is self-adjoint. The family {B(t)} t∈I of non-negative self-adjoint operators in H is such that the bounded operator-valued function (1 + B(•)) -1 : I -→ L(H) is strongly measurable.

(A2) There exists α ∈ [0, 1) such that inclusion: dom(A α ) ⊆ dom(B(t)), holds for a.e. t ∈ I. Moreover, the function B(•)A -α : I -→ L(H) is strongly measurable and essentially bounded in the operator norm:

C α := ess sup t∈I B(t)A -α < ∞. (1.2) (A3) The map A -α B(•)A -α : I -→ L(H)
is Hölder continuous in the operator norm: for some β ∈ (0, 1] there is a constant L α,β > 0 such that one has estimate [START_REF] Ichinose | Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations[END_REF] to prove the operatornorm convergence of product formula approximants {U n (t, s)} 0≤s≤t to solution operator {U(t, s)} 0≤s≤t . Then they were widely used for product formula approximations in [START_REF] Neidhardt | On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations[END_REF]- [START_REF] Nickel | Evolution semigroups and product formulas for nonautonomous Cauchy problems[END_REF] in the context of the evolution semigroup approach to the nACP, see [START_REF] Monniaux | Semigroup method to solve non-autonomous evolution equations[END_REF]- [START_REF] Neidhardt | On abstract linear evolution equations[END_REF].

A -α (B(t) -B(s))A -α ≤ L α,β |t -s| β , (t, s) ∈ I × I. (1.3) (A4) The operator A is generator of the Gibbs semigroup {G(t) = e -tA } t≥0 , that is, a strongly continuous semigroup such that G(t)| t>0 ∈ C 1 (H). Here C 1 (H) denotes the * -ideal of trace-class operators in C * -algebra L(H) of bounded operators on H. Remark 1.1 Assumptions (A1)-(A3) are introduced in

Remark 1.2

The following main facts were established (see, e.g., [START_REF] Ichinose | Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations[END_REF][START_REF] Nagel | Well-poseness of nonautonomous abstract Cauchy problems[END_REF][START_REF] Vuillermot | A general TrotterKato formula for a class of evolution operators[END_REF][START_REF] Yagi | Parabolic evolution equation in which the coefficients are the generators of infinitly differentiable semigroups[END_REF]) about the nACP for perturbed evolution equation of the type (1.1): (a) By assumptions (A1)-(A2) the operators {C(t) = A + B(t)} t∈I have a common dom(C(t)) = dom(A) and they are generators of contraction holomorphic semigroups. Hence, the nACP (1.1) is of parabolic type [START_REF] Kato | Abstract evolution equation of parabolic type in Banach and Hilbert spaces[END_REF][START_REF] Sobolevskii | Parabolic equations in a Banach space with an unbounded variable operator, a fractional power of which has a constant domain of definition[END_REF]. (b) Since domains dom(C(t)) = dom(A), t ≥ 0, are dense, the nACP is well-posed with time-independent regularity subspace dom(A). (c) Assumptions (A1)-(A3) provide the existence of evolution family solving nACP (1.1) which we call the solution operator. It is a strongly continuous, uniformly bounded family of operators {U(t, s)} (t,s)∈∆ , ∆ := {(t, s) ∈ I × I : 0 ≤ s ≤ t ≤ T }, such that the conditions U(t,t) = 1 for t ∈ I, U(t, r)U(r, s) = U(t, s), for, t, r, s ∈ I for s ≤ r ≤ t, (1.4) are satisfied and u(t) = U(t, s) u s for any u s ∈ H s is in a certain sense (e.g., classical, strict, mild) solution of the nACP (1.1).

(d) Here H s ⊆ H is an appropriate regularity subspace of initial data. Assumptions (A1)-(A3) provide H s = dom(A) and U(t, s)H ⊆ dom(A) for t > s.

In the present paper we essentially focus on convergence of the product approximants {U n (t, s)} (t,s)∈∆ ,n≥1 to solution operator {U(t, s)} (t,s)∈∆ . Let

s = t 1 < t 2 < . . . < t n-1 < t n < t, t k := s + (k -1) t-s n , (1.5) 
for k ∈ {1, 2, . . ., n}, n ∈ N, be partition of the interval [s,t]. Then corresponding approximants may be defined as follows:

W (n) k (t, s) :=e -t-s n A e -t-s n B(t k ) , k = 1, 2, . . . , n, U n (t, s) :=W (n) n (t, s)W (n) n-1 (t, s) × • • • × W (n) 2 (t, s)W (n)
1 (t, s).

(1.6)

It turns out that if the assumptions (A1)-(A3), adapted to a Banach space X, are satisfied for α ∈ (0, 1), β ∈ (0, 1) and in addition the condition α < β holds, then solution operator {U(t, s)} (t,s)∈∆ admits the operator-norm approximation ess sup

(t,s)∈∆ U n (t, s) -U(t, s) ≤ R β ,α n β -α , n ∈ N, (1.7) 
for some constant R β ,α > 0. This result shows that convergence of the approximants {U n (t, s)} (t,s)∈∆ ,n≥1 is determined by the smoothness of the perturbation B(•) in (A3) and by the parameter of inclusion in (A2), see [START_REF] Neidhardt | Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems[END_REF].

The Lipschitz case β = 1 was considered for X in [START_REF] Neidhardt | On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations[END_REF]. There it was shown that if α ∈ (1/2, 1), then one gets estimate

ess sup t∈I U n (t, s) -U(t, s) ≤ R 1,α n 1-α , n = 2, 3, . . . . (1.8)
For the Lipschitz case in a Hilbert space H the assumptions (A1)-(A3) yield a stronger result [START_REF] Ichinose | Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations[END_REF]:

ess sup (t,s)∈∆ U n (t, s) -U(t, s) ≤ R log(n) n , n = 2, 3, . . . . (1.9) 
Note that actually it is the best of known estimates for operator-norm rates of convergence under conditions (A1)-(A3).

The estimate (1.7) was improved in [START_REF] Neidhardt | Trotter Product Formula and Linear Evolution Equations on Hilbert Spaces. Analysis and Operator Theory[END_REF] for α ∈ (1/2, 1) in a Hilbert space using the evolution semigroup approach [START_REF] Evans | Time dependent perturbations and scattering of strongly continuous groups on Banach spaces[END_REF][START_REF] Howland | Stationary scattering theory for time-dependent Hamiltonians[END_REF][START_REF] Neidhardt | On abstract linear evolution equations[END_REF]. This approach is quite different from technique used for (1.9) in [START_REF] Ichinose | Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations[END_REF], but it is the same as that employed in [START_REF] Neidhardt | On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations[END_REF].

Proposition 1.3 [12] Let assumptions (A1)-(A3) be satisfied for β ∈ (0, 1). If β > 2α -1 > 0, then estimate ess sup (t,s)∈∆ U n (t, s) -U(t, s) ≤ R β n β , (1.10) 
holds for n ∈ N and for some constant R β > 0.

Note that the condition β > 2α -1 is weaker than β > α (1.7), but it does not cover the Lipschitz case (1.8) because of condition β < 1.

The main result of the present paper is the lifting of any known operator-norm bounds (1.7)-(1.10) (we denote them by R α,β ε α,β (n)) to estimate in the trace-norm topology • 1 . This is a subtle matter even for ACP, see [START_REF] Zagrebnov | Gibbs Semigroups, Operator Theory Series: Advances and Applications[END_REF] Ch.5.4.

-The first step is the construction for nACP (1.1) a trace-norm continuous solution operator {U(t, s)} (t,s)∈∆ , see Theorem 2.2 and Corollary 2.3.

-Then in Section 3 for assumptions (A1)-(A4) we prove (Theorem 1.4) the corre-

sponding trace-norm estimate R α,β (t, s)ε α,β (n) for difference U n (t, s) -U(t, s) 1 .
Theorem 1.4 Let assumptions (A1)-(A4) be satisfied. Then the estimate

U n (t, s) -U(t, s) 1 ≤ R α,β (t, s)ε α,β (n) , (1.11) 
holds for n ∈ N and 0 ≤ s < t ≤ T for some R α,β (t, s) > 0.

Preliminaries

Besides Remark 1.2(a)-(d) we also recall the following assertion, see, e.g., [START_REF] Sobolevskii | Parabolic equations in a Banach space with an unbounded variable operator, a fractional power of which has a constant domain of definition[END_REF] Note that solution of (1.

1) is called classical if u(t) ∈ C([0, T ], H) ∩ C 1 ([0, T ], H), u(t) ∈ dom(C(t)), u(s) = u s , and C(t)u(t) ∈ C([0, T ],
H) for all t ≥ s, with convention that (∂ t u)(s) is the right-derivative, see, e.g., [START_REF] Sobolevskii | Parabolic equations in a Banach space with an unbounded variable operator, a fractional power of which has a constant domain of definition[END_REF], Theorem 1, or [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF], Ch.VI.9.

Since the involved into (A1), (A2) operators are non-negative and self-adjoint, equation (2.1) implies that the solution operator consists of contractions:

∂ t U(t, s)u 2 = -2(C(t)U(t, s)u,U(t, s)u) ≤ 0, for u ∈ H. (2.2)
By (A1) G(t) = e -tA : H → dom(A). Applying to (2.1) the variation of constants argument we obtain for U(t, s) the integral equation :

U(t, s) = G(t -s) - t s dτ G(t -τ) B(τ)U(τ, s), U(s, s) = 1 .
(2.3)

Hence evolution family {U(t, s)} (t,s)∈∆ , which is defined by equation (2.3), can be considered as a mild solution of nACP (2.1) for 0 ≤ s ≤ t ≤ T in the Banach space L(H) of bounded operators, cf. [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF], Ch.VI.7. Note that assumptions (A1)-(A4) yield for 0 ≤ s < t ≤ T , τ ∈ (s,t) and for the closure A -α B(τ):

G(t -s)A α 1 ≤ M α (t -τ) α and A -α B(τ) ≤ C α .
(2.4)

Then (2.
2), (2.4) give the trace-norm estimate 

t s dτ G(t -τ) B(τ)U(τ, s) 1 ≤ M α C α 1 -α (t -s) 1-α , (2.5 
S 0 (t, s) = U A (t -s), S n (t, s) = - t s ds G(t -τ) B(τ) S n-1 (τ, s), n ≥ 1.
(2.6)

Since in (2.6) the operators S n≥1 (t, s) are the n-fold trace-norm convergent Bochner integrals

S n (t, s) = t s dτ 1 τ 1 s dτ 2 . . . τ n-1 s dτ n G(t -τ 1 )(-B(τ 1 ))G(τ 1 -τ 2 ) • • • G(τ n-1 -τ n )(-B(τ n ))G(τ n -s), (2.7)
by contraction property (2.2) and by estimate (2.5) there exit 0 ≤ s ≤ t such that M α C α (t -s) 1-α /(1 -α) =: ξ < 1 and

S n (t, s) 1 ≤ ξ n , n ≥ 1. (2.8)
Consequently ∑ ∞ n=0 S n (t, s) converges for t > s in the trace-norm and satisfies the integral equation (2.3). Thus we get for solution operator of nACP the representation

U(t, s) = ∞ ∑ n=0 S n (t, s) .
(2.9)

This result can be extended to any 0 ≤ s < t ≤ T using (1.4). We note that for s ≤ t the above arguments yield the proof of assertions in the next Theorem 2.2 and Corollary 2.3, but only in the strong ([19] Proposition 3.1, main Theorem in [START_REF] Vuillermot | A general TrotterKato formula for a class of evolution operators[END_REF]) and in the operator-norm topology, [START_REF] Ichinose | Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations[END_REF] 

(H)) ∩ C 1 ((s, T ], C 1 (H)) with U(s, s) = 1 and U(t, s) ∈ C 1 (H), C(t)U(t, s) ∈ C 1 (H) for t > s, which means that solution U(t, s) of (2.10) is strict, cf. [19] Definition 1.1.
We note that these results for ACP in Banach space C 1 (H) are well-known for Gibbs semigroups, see [START_REF] Zagrebnov | Gibbs Semigroups, Operator Theory Series: Advances and Applications[END_REF], Chapter 4. Now, to proceed with the proof of Theorem 1.4 about trace-norm convergence of the solution operator approximants (1.6) we need the following preparatory lemma. Lemma 2.4 Let self-adjoint positive operator A be such that e -tA ∈ C 1 (H) for t > 0, and let V 1 ,V 2 , . . . ,V n be bounded operators L(H).

Then n ∏ j=1 V j e -t j A 1 ≤ n ∏ j=1 V j e -(t 1 +t 2 +...+t n )A/4 1 , (2.11) 
for any set {t 1 ,t 2 , . . . ,t n } of positive numbers.

Proof. At first we prove this assertion for compact operators: V j ∈ C ∞ (H), j = 1, 2, . . . , n. Let t m := min{t j } n j=1 > 0 and T := ∑ n j=1 t j > 0. For any 1 ≤ j ≤ n, we define an integer ℓ j ∈ N by

2 ℓ j t m ≤ t j ≤ 2 ℓ j +1 t m . Then we get ∑ n j=1 2 ℓ j t m > T /2 and n ∏ j=1 V j e -t j A = n ∏ j=1
V j e -(t j -2 ℓ j t m )A (e -t m A ) ℓ j .

(2.12)

By the definition of the • 1 -norm and by inequalities for singular values

{s k (•)} k≥1 of compact operators n ∏ j=1 V j e -t j A 1 = ∞ ∑ k=1 s k n ∏ j=1 V j e -(t j -2 ℓ j t m )A (e -t m A ) 2 ℓ j ≤ ∞ ∑ k=1 n ∏ j=1 s k e -(t j -2 ℓ j t m )A s k (e -t m a ) 2 ℓ j s k (V j ) ≤ ∞ ∑ k=1 s k (e -t m A ) ∑ n j=1 2 ℓ j n ∏ j=1 V j . (2.13) 
Here we used that s k (e -(t j -2 ℓ j t m )A ) ≤ e -(t j -2 ℓ j t m )A ≤ 1 and that

s k (V j ) ≤ V j . Let N := ∑ n j=1 2 ℓ j and T m := Nt m > T /2. Since ∞ ∑ k=1
s k (e -tA/q ) q = ( e -tA/q q ) q , the inequality (2.13) yields for q = N:

n ∏ j=1 V j e -t j A 1 ≤ e -T m A/N N N n ∏ j=1 V j . (2.14) 
Now we consider an integer p ∈ N such that 2 p ≤ N < 2 p+1 . It then follows that T /4 < T m /2 < 2 p T m /N, and hence we obtain

e -T m A/N q=N N = ∞ ∑ k=1 s N k (e -T m A/N ) (2.15) ≤ ∞ ∑ k=1 s 2 p k (e -2 p T m A/2 p N ) ≤ ∞ ∑ k=1 s 2 p k (e -TA/2 p+2 ) = e -TA/2 2 1 ,
where we used that s k (e -T m A/N ) = s k (e -2 p T m A/2 p N ) ≤ e -T m A/N ≤ 1, and that s k (e -(t+τ)A ) ≤ e -tA s k (e -τA ) ≤ s k (e -τA ) for any t, τ > 0. Therefore, the estimates (2.14), (2.15) give the bound (2.11). Now, let V j ∈ L(H), j = 1, 2, . . . , n, and set Ṽj := V j e -εA for 0 < ε < t m . Hence, Ṽj ∈ C 1 (H) ⊂ C ∞ (H) and s k ( Ṽj ) ≤ Ṽj ≤ V j . If we set t j := t j -ε,

then n ∏ j=1 V j e -t j A 1 ≤ n ∏ j=1 V j e -(t 1 +t 2 +•••+t n )A/4
1 .

(2.16)

Since the semigroup {e -tA } t≥0 is • 1 -continuous for t > 0, we can take in (2.16) the limit ε ↓ 0. This gives the result (2.11) in general case.

3 Proof of Theorem 1.4

We follow the line of reasoning of the lifting lemma developed in [START_REF] Zagrebnov | Gibbs Semigroups, Operator Theory Series: Advances and Applications[END_REF], Ch.5.4.1. 1. By virtue of (1.4) and (1.6) we obtain for difference in (1.11) formula:

U n (t, s) -U(t, s) = 1 ∏ k=n W (n) k (t, s) - 1 ∏ l=n U(t l+1 ,t l ). (3.1) 
Let integer k n ∈ (1, n). Then (3.1) yields the representation:

U n (t, s) -U(t, s) = k n +1 ∏ k=n W (n) k (t, s) - k n +1 ∏ l=n U(t l+1 ,t l ) 1 ∏ k=k n W (n) k (t, s) + k n +1 ∏ l=n U(t l+1 ,t l ) 1 ∏ k=k n W (n) k (t, s) - 1 ∏ l=k n U(t l+1 ,t l ) ,
which implies the trace-norm estimate

U n (t, s) -U(t, s) 1 ≤ k n +1 ∏ k=n W (n) k (t, s) - k n +1 ∏ l=n U(t l+1 ,t l ) 1 ∏ k=k n W (n) k (t, s) 1 + k n +1 ∏ l=n U(t l+1 ,t l ) 1 1 ∏ k=k n W (n) k (t, s) - 1 ∏ l=k n U(t l+1 ,t l ) . (3.2) 
2. Now we assume that lim n→∞ k n /n = 1/2. Then (1.5) yields lim n→∞ t k n = (t + s)/2, lim n→∞ t n = t and uniform estimates (1.7)-(1.10) with the bound R α,β ε α,β (n) imply ess sup

(t,s)∈∆ k n +1 ∏ k=n W (n) k (t, s) -U(t, (t + s)/2) ≤ R (1) α,β ε α,β (n), (3.3) 
ess sup

(t,s)∈∆ 1 ∏ k=k n W (n) k (t, s) -U((t + s)/2, s) ≤ R (2) α,β ε α,β (n), (3.4) 
for n ∈ N and for some constants R 

{V k = e -t-s n B(t k ) } n k=1 there exists a 1 > 0 such that 1 ∏ k=k n W (n) k (t, s) 1 = 1 ∏ k=k n e -t-s n A e -t-s n B(t k ) 1 ≤ a 1 e -t-s 2 A 1 . (3.5)
Similarly there is a 2 > 0 such that (3.9)

k n +1 ∏ l=n U(t l+1 ,t l ) 1 ≤ a 2 e -t-s 2 A 1 . ( 3 
For the both case the rate of convergence ε α,β (n) for approximants (3.8),(3.9) is the same as in (1.11).

Note that extension of Theorem 1.4 to Gibbs semigroups generated by a family of non-negative self-adjoint operators {A(t)} t∈I can be done along the arguments outlined in Section 2 of [START_REF] Vuillermot | A general TrotterKato formula for a class of evolution operators[END_REF]. To this end one needs to add more conditions to (A1)-(A4) that allow to control the family {A(t)} t∈I .

Here we also comment that a general scheme of the lifting due to Lemma 2.4 and Theorem 1.4 can be applied to any symmetrically-normed ideal C φ (H) of compact operators C ∞ (H), [START_REF] Zagrebnov | Gibbs Semigroups, Operator Theory Series: Advances and Applications[END_REF] Ch.6. We return to this point elsewhere.

(1, 2 )

 2 α,β > 0. 3. Since lim n→∞ k n /n = 1/2 and t > s, by definition (1.6) and by Lemma 2.4 for contractions

n- 1

 1 (t, s) × • • • × W

  )and by(2.3) we ascertain that {U(t, s)} (t,s)∈∆ ∈ C 1 (H) for t > s.Therefore, we can construct solution operator {U(t, s)} (t,s)∈∆ as a trace-norm convergent Dyson-Phillips series ∑ ∞ n=0 S n (t, s) by iteration of the integral formula (2.3) for t > s. To this aim we define the recurrence relation

  Lemma 2.1. While for t > s these arguments prove a generalisation of Theorem 2.2 and Corollary 2.3 to the trace-norm topology in Banach space C 1 (H): Theorem 2.2 Let assumptions (A1)-(A4) be satisfied. Then evolution family {U(t, s)} (t,s)∈∆ (2.9) gives for t > s a mild trace-norm continuous solution of nACP (2.1) in Banach space C 1 (H). Proof. Since by Remark 1.2(c),(d) the function t → U(t, s) for t ≥ s is strongly continuous and since U(t, s) ∈ C 1 (H) for t > s, the product U(t + δ ,t)U(t, s) is continuous in the trace-norm topology for |δ | < ts . Moreover, since {u(t)}

	Corollary 2.3 For t > s the evolution family {U(t, s)} (t,s)∈∆ (2.9) is a strict solution
	of the nACP :	
	∂ t U(t, s) = -C(t)U(t, s), t ∈ (s, T ) and U(s, s) = 1, C(t) := A + B(t),	(s, T ) ⊂ [0, T ], (2.10)
	in Banach space C 1 (H).	

s≤t≤T is a classical solution of nACP (1.1), equation (2.1) implies that U(t, s) has strong derivative for any t > s. Then again by Remark 1.2(d) the trace-norm continuity of δ → U(t + δ ,t)U(t, s) and by inclusion of ranges: ran(U(t, s)) ⊆ dom(A) for t > s, the trace-norm derivative ∂ t U(t, s) at t(> s) exists and belongs to C 1 (H).

Therefore, U(t, s) ∈ C((s, T ], C 1

  By virtue of Lemma 2.4 the proof of Theorem 1.4 can be carried over almost verbatim for approximants { U n (t, s)} (t,s)∈∆ ,n≥1 : (t, s) :=e -t-s n B(t k ) e -t-s n A , k = 1, 2, . . . , n, U n (t, s) := W as well as for self-adjoint approximants { U n (t, s)} (t,s)∈∆ ,n≥1 :

					.6)
	4. Since for t > s the trace-norm c(t -s) := e -t-s 2 A	1 < ∞, by (3.2)-(3.6) we
	obtain the proof of the estimate (1.11) for
			R α,β (t, s) := (a 1 R	(1) α,β + a 2 R	(2) α,β ) c(t -s) ,	(3.7)
	and 0 ≤ s < t ≤ T .		
	Corollary 3.1 W	(n)	(n) n (t, s) W n-1 (t, s) × • • • × W (n) 2 (t, s) W (n) 1 (t, s), (n)	(3.8)
	W	(n)		

k k (t, s) :=e -t-s n A/2 e -t-s n B(t k ) e -t-s n A/2 , k = 1, 2, . . . , n, U n (t, s) := W
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