
HAL Id: hal-02437599
https://hal.science/hal-02437599

Submitted on 6 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multi-species annotation of transcriptome and
chromatin structure in domesticated animals

Sylvain Foissac, Sarah Djebali, Kylie Munyard, Nathalie Vialaneix, Andrea
Rau, Kévin Muret, Diane Esquerre, Matthias Zytnicki, Thomas Derrien,

Philippe Bardou, et al.

To cite this version:
Sylvain Foissac, Sarah Djebali, Kylie Munyard, Nathalie Vialaneix, Andrea Rau, et al.. Multi-species
annotation of transcriptome and chromatin structure in domesticated animals. BMC Biology, 2019,
17 (1), 25 p. �10.1186/s12915-019-0726-5�. �hal-02437599�

https://hal.science/hal-02437599
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Foissac et al. BMC Biology          (2019) 17:108 
https://doi.org/10.1186/s12915-019-0726-5

RESEARCH ARTICLE Open Access

Multi-species annotation of
transcriptome and chromatin structure in
domesticated animals
Sylvain Foissac1*† , Sarah Djebali1†, Kylie Munyard2, Nathalie Vialaneix3, Andrea Rau4, Kevin Muret5,
Diane Esquerré1,6, Matthias Zytnicki3, Thomas Derrien7, Philippe Bardou1, Fany Blanc4, Cédric Cabau1,
Elisa Crisci4,10, Sophie Dhorne-Pollet4, Françoise Drouet8, Thomas Faraut1, Ignacio Gonzalez3,
Adeline Goubil4, Sonia Lacroix-Lamandé8, Fabrice Laurent8, Sylvain Marthey4, Maria
Marti-Marimon1, Raphaelle Momal-Leisenring4, Florence Mompart1, Pascale Quéré8, David Robelin1,
Magali San Cristobal1, Gwenola Tosser-Klopp1, Silvia Vincent-Naulleau9, Stéphane Fabre1,
Marie-Hélène Pinard-Van der Laan4, Christophe Klopp3, Michèle Tixier-Boichard4,
Hervé Acloque1,4, Sandrine Lagarrigue5 and Elisabetta Giuffra4*

Abstract

Background: Comparative genomics studies are central in identifying the coding and non-coding elements
associated with complex traits, and the functional annotation of genomes is a critical step to decipher the
genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes
(FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by
profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in
species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples
related to metabolism (liver) and immunity (CD4+ and CD8+ T cells).

Results: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified
differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an
enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative
analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs)
and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data.
Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than
species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly
conserved across species.
Conclusions: We report the first multi-species and multi-assay genome annotation results obtained by a FAANG
project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals,
the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective
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*Correspondence: sylvain.foissac@inra.fr; elisabetta.giuffra@inra.fr
†Sylvain Foissac and Sarah Djebali contributed equally to this work.
1GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde
Rouge, F-31326 Castanet-Tolosan Cedex, France
4GABI, AgroParisTech, INRA, Université Paris Saclay, F-78350 Jouy-en-Josas,
France
Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12915-019-0726-5&domain=pdf
http://orcid.org/0000-0002-2631-5356
mailto: sylvain.foissac@inra.fr
mailto: elisabetta.giuffra@inra.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Foissac et al. BMC Biology          (2019) 17:108 Page 2 of 25

(Continued from previous page)

pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG
for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets
being generated by this community on different species.

Keywords: Functional annotation, Livestock, RNA-seq, ATAC-seq, Hi-C

Background
Most complex trait-associated loci lie outside protein-
coding regions, and comparative genomics studies have
shown that the majority of mammalian-conserved and
recently adapted regions consist of non-coding elements
[1–3]. This evidence prompted the first large-scale efforts
into genome annotation for human and model organisms
[4–6]. The genome-wide annotation maps generated by
these projects helped to shed light on the main features
of genome activity. For example, chromatin conformation
or transcription factor occupancy at regulatory elements
can often be directly tied to the biology of the specific cell
or tissue under study [3, 7, 8]. Moreover, although a sub-
set of core regulatory systems are largely conserved across
humans andmice, the underlying regulatory systems often
diverge substantially [9–11], implying that understand-
ing the phenotypes of interest requires organism-specific
information for any specific physiological phase, tissue
and cell.
The Functional Annotation of Animal Genomes

(FAANG) initiative [12] aims to support and coordinate
the community in the endeavor of creating reference
functional maps of the genomes of domesticated ani-
mals across different species, tissues, and developmental
stages, with an initial focus on farm and compan-
ion animals [13–16]. FAANG carries out activities to
standardize assay protocols and analysis pipelines, to
coordinate and facilitate data sharing. The FAANG
Data Coordination Center provides an infrastructure for
genotype-to-phenotype data [17, 18]. Substantial efforts
are being dedicated to farm animal species, as decipher-
ing the genotype-to-phenotype relationships underlying
complex traits such as production efficiency and disease
resistance is a prerequisite for exploiting the full potential
of livestock [13, 16].
Here we report the main results of a pilot project

(FR-AgENCODE [19]) launched at the beginning of the
FAANG initiative. The broad aim was to generate stan-
dardized FAANG reference datasets from four livestock
species (cattle, goat, chicken, and pig) through the adap-
tation and optimization of molecular assays and anal-
ysis pipelines. We first collected a panel of samples
from more than 40 tissues from two males and two
females of four species: Bos taurus (cattle, Holstein breed),
Capra hircus (goat, Alpine breed), Gallus gallus (chicken,
White Leghorn breed), and Sus scrofa (pig, Large White

breed), generating a total of 4115 corresponding entries
registered at the EMBL-EBI BioSamples database (see
“Methods” section). For molecular characterization, three
tissues were chosen to represent a “hub” organ (liver) and
two broad immune cell populations (CD4+ and CD8+ T
cells). This allowed the acquisition of a partial represen-
tation of energy metabolism and immunity functions, as
well as the optimization of the protocols for experimen-
tal assays for both tissue-dissociated and primary sorted
cells. In addition to the transcriptome, we analyzed chro-
matin accessibility by the assay for transposase-accessible
chromatin using sequencing (ATAC-seq, [20]), and we
characterized the three-dimensional (3D) genome archi-
tecture by coupling proximity-based ligation with mas-
sively parallel sequencing (Hi-C, [21]) (Fig. 1). Using this
combination of tissues/assays, we assessed the expression
of a large set of coding and non-coding transcripts in
the four species, evaluated their patterns of differential
expression in light of chromatin accessibility at promoter
regions, and characterized active and inactive topologi-
cal domains of these genomes. The integrative analysis
showed a global consistency across all data, emphasizing
the value of a coordinated action to improve the genomic
annotation of livestock species, and revealed multiple lay-
ers of evolutionary conservation from birds to mammals.

Results and discussion
High-depth RNA-seq assays provide gene expression
profiles in liver and immune cells from cattle, goat,
chicken, and pig
For each animal (two males, two females) of the four
species, we used RNA-seq to profile the transcrip-
tome of liver, CD4+ and CD8+ T cells (see “Methods”
section, Fig. 1 and Additional file 1: Table S1). We pre-
pared stranded libraries from polyA+ selected RNAs
longer than 200 bp, and we sequenced them on an Illu-
mina HiSeq3000 (see “Methods” section). Between 250M
(chicken) and 515M (goat) read pairs were obtained per
tissue on average, of which 94% (chicken) to 98% (pig)
mapped to their respective genome using STAR [22, 23]
(see “Methods” section, Additional file 1: Figure S1 and
Tables S2-S4). As an initial quality control step, we pro-
cessed the mapped reads with RSEM [24] to estimate
the expression levels of all genes and transcripts from
the Ensembl reference annotation (hereafter called “ref-
erence” genes/transcripts/annotation) (Additional file 1:
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Fig. 1. Experimental design overview. For each species, samples from liver and T cells of two males and two females were processed by RNA-seq,
ATAC-seq, and Hi-C assays. See Additional file 1: Table S1 for a complete list of experiments performed and available datasets

Table S2 and Figure S1; Additional file 2). As expected, a
large majority of the reads (from 62% in cattle to 72% in
goat) fell in annotated exons of the reference genes (Addi-
tional file 1: Figure S2). In spite of the specialized scope of
this initial study limited to liver and immune cells, a large
share of all reference genes were detected (from 58% in
chicken to 65% in goat), even considering only transcript
isoforms with an expression level higher than 0.1 TPM in
at least two samples (see “Methods” section and Table 1).
For each species, we explored the similarity among sam-

ples using the expression profiles of the reference genes.
Principal component analysis (PCA) revealed quite con-
sistent patterns across species, where the first principal
component (explaining 84 to 91% of the variability among
samples) clearly separated samples according to their tis-
sue of origin (liver vs. T cells). A more moderate yet
systematic separation was observed between CD4+ and
CD8+ T cells on the second principal component (Addi-
tional file 1: Figure S3). The consistency of these patterns
across species supports the reliability of our RNA-seq
data.
To compare the expression pattern of reference genes

between species, we first checked that the male-to-female
expression ratio was globally uniform genome-wide with
the exception of the sex chromosomes in chicken (Addi-
tional file 1: Figure S4). Dosage compensation (leading for
instance to X chromosome inactivation in mammals) can
indeed be observed in all species except chicken, which
is consistent with previous reports on dosage compensa-
tion [25]. Next, we hierarchically clustered our samples

using the expression of 9461 genes found to be ortholo-
gous across the four species (Fig. 2, “Methods” section and
Additional file 3). Regardless of the species, liver and T cell
samples clustered separately. Interestingly, T cell samples
clustered first by species and then by subtypes (i.e., CD4+
versus CD8+). This suggests a strong specialization of the
immune system during speciation, although the specific
clustering pattern of CD4+ and CD8+ samples might also
be driven by a small subset of genes whose expression
varies largely across species and little across cell subtypes
[26]. These results also depend on the set of ortholo-
gous genes available in the reference annotation. For most
species and tissues, samples also clustered by sex, possibly
due in part to the physiological state of females in lactation
or laying eggs. These results highlight a high conservation
of the liver gene expression program across vertebrates
and that global transcriptome comparisons across several
tissues and species can result in samples clustering by
either factor, as shown in other studies [26–28].

Most reference genes are differentially expressed between
liver and T cells
To provide functional evidence supporting our RNA-seq
data, we performed a differential gene expression analysis
across tissues per species for each gene in the refer-
ence annotation. Gene read counts provided by RSEM
[24] were TMM-normalized [29] (see “Methods” section).
Taking into account the specificities of our experi-
mental design, in which samples from different tissues
come from the same animal, we fitted generalized linear
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Table 1 Reference and FR-AgENCODE detected transcripts. This table provides the total number of reference transcripts for each
species, the number and percent of those that were detected by RNA-seq (TPM ≥ 0.1 in at least 2 samples), the total number of
FR-AgENCODE transcripts, and the subsets of them that were mRNAs (known and novel) and lncRNAs (known and novel). Overall, the
transcript repertoire is increased by about 100% in most of the species. As these results naturally depend on the input data, details
about the genome assemblies and reference annotations that were used for this study are listed in Additional file 1: Table S2

Species

Reference transcripts FR-AgENCODE transcripts

All
Expressed

�
mRNAs lncRNAs

� % of total Known Novel Known Novel

Cattle 26,740 16,100 60.2 84,971 11,576 48,225 13 22,711

Goat 53,266 34,442 64.7 78,091 26,973 31,854 2247 11,617

Chicken 38,118 22,180 58.2 57,817 14,765 32,802 1314 6797

Pig 49,448 29,786 60.2 77,540 23,701 40,020 327 12,284

models (GLM) to identify genes with differential expres-
sion in either all pairwise comparisons between liver,
CD4+ and CD8+ (model 1), or liver versus T cells globally
(model 2).
As expected, the liver to T cell comparison yielded the

largest number of differentially expressed genes, and rela-
tively few genes were found to be differentially expressed
between the two T cell populations (CD4+ and CD8+, see
Additional file 1: Table S5 and Additional file 4). Strik-
ingly, most genes showed significantly different expression
between liver and immune cells in each species (from
7000 genes in chicken to 10,500 genes in goat), reflect-
ing the difference between the physiological functions of
these highly specialized cell types, in line with findings
from the GTEx project [30]. Accordingly, Gene Ontology
(GO) analysis provided results in line with the role of liver
in metabolism and of T cells in immunity for all species
(Additional file 1: Figure S5–8 and “Methods” section).
In accordance with the results of the hierarchical clus-

tering (Fig. 2), most orthologous genes found to be differ-
entially expressed between CD4+ and CD8+ T cells within
species showed high variability of expression levels across
species (not shown). This variability is likely caused by the
natural heterogeneity in the relative proportions of T cell
subtypes among the different species, as already reported
between mammals [31, 32]. Nevertheless, 39 orthologous
genes could consistently differentiate CD4+ and CD8+ in
the four species, including mammals and chicken, which
is significantly more than expected by chance (p value
< 10−3, permutation test). Among those, 10 and 29 genes
showed significant overexpression in CD4+ and CD8+
cells respectively (Additional file 1: Table S6).We searched
for the human orthologs of theses genes in the baseline
expression dataset of human CD4+ and CD8+ αβ T cell
subsets generated by the Blueprint Epigenome Project
[33, 34] and considered their relative enrichment in each
cell subset. With one exception (ACVRL1), all genes were

found to be expressed in human CD4+ and/or CD8+ αβ

T cells and 25 of them showed a relative enrichment in
CD4+ (or CD8+) human cells consistent with our data
across the four species. Out of these 25 genes, six and
eight genes, respectively, could be associated with CD4+
and CD8+ T cell differentiation, activation, and function
according to the literature (Additional file 1: Table S6).

Analysis of new transcripts improves and extends gene
structure annotation
In order to test if our data could improve the refer-
ence gene annotation for each species, we used STAR
and Cufflinks to identify all transcripts present in our
samples and predict their exon-intron structures. We
then quantified their expression in each sample using
STAR and RSEM (see “Methods” section and Addi-
tional file 1: Figure S1) and only retained the transcripts
and corresponding genes expressed in at least two sam-
ples with TPM ≥0.1. We identified between 58,000 and
85,000 transcripts depending on the species (Table 1,
Additional file 5), hereafter called “FR-AgENCODE
transcripts”.
To characterize these FR-AgENCODE transcripts with

respect to the reference transcripts, we grouped them
into four positional classes (see “Methods” section): (1)
known: a FR-AgENCODE transcript whose exon-intron
structure is strictly identical to a reference transcript (i.e.,
exact same exons and introns); (2) extension: same as
(1), but the FR-AgENCODE transcript extends a refer-
ence transcript by at least 1 bp on at least one side;
(3) alternative: a FR-AgENCODE transcript that shares
at least one intron with a reference transcript but does
not belong to the previous categories (only multi-exonic
transcripts can be in this class); and (4) novel: a FR-
AgENCODE transcript that does not belong to any of the
above categories. We found that most FR-AgENCODE
transcripts (between 37% for goat and 49% for chicken)
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Fig. 2. RNA-seq sample heatmap and hierarchical clustering based on the expression of the 9461 orthologous genes across the four species.
Pairwise similarity between samples is computed as the Pearson correlation between the base 10 logarithm of the expression (TPM) of the 9461
orthologous genes. These similarities are plotted as a heatmap, where samples appear both as rows and columns and are labelled by their species
and tissue and the sex of the animal. The color of each heatmap cell also reflects the similarity (Pearson correlation) between each sample pair (the
lighter, the higher). Hierarchical clustering is performed using one minus the squared Pearson correlation as a distance and the complete linkage
aggregation method

were of the alternative class, therefore enriching the refer-
ence annotation with new splice variants of known genes
(Additional file 1: Table S7). The proportion of com-
pletely novel transcripts was relatively high for cattle,
which is likely due to the incompleteness of the UMD3.1
version of the Ensembl annotation used at the time of
the study (Table 1, Additional file 1: Figure S2, S9 and
Table S7).
In order to identify interesting new transcripts involved

in immunity and metabolism, we first selected the novel
FR-AgENCODE coding transcripts that unambiguously
project to a single human coding gene. We identi-
fied 93 (cattle), 52 (goat), 74 (chicken), and 26 (pig)
genes, of which 12 are common to at least 2 livestock
species (see “Methods” section, Additional file 1: Table S8,
Figure S10A and Additional file 6). Gene set enrichment
analyses on these gene lists confirmed their relevance for

T cell biology (Additional file 1: Figure S10B) and the
added value of the FR-AgENCODE novel transcripts in
terms of annotation of complex but important loci like
TRBV and TRAV (Additional file 1: Figure S10C).
In addition, we performed a differential gene expression

analysis similar to the one done on reference genes (see
above and “Methods” section). Results were globally sim-
ilar, with more than 88% of correspondence between the
differentially expressed genes from the reference and the
FR-AgENCODE annotation (Additional file 1: Figure S11,
Tables S5 and S9; Additional file 7). Among the latter,
between 202 (chicken) and 1032 (goat) genes were coding
(at least one coding transcript predicted by FEELnc—
see below) and did not overlap any reference gene on
the same strand. This highlights the potential to iden-
tify novel interesting candidates for further functional
characterization.
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Identification, classification, and comparative analysis of
lncRNAs
Since deep RNA-seq libraries allow the detection of
weakly expressed transcripts [35], we sought to iden-
tify the proportion of long non-coding RNAs (lncRNAs)
among the FR-AgENCODE transcripts. Using the FEELnc
classifier [36] trained on the reference annotation (see
“Methods” section), we identified from 7502 (chicken) to
22,724 (cattle) lncRNA transcripts, among which a large
majority were not previously reported (Additional file 1:
Tables S10–11; Additional file 8). The high number of
lncRNAs found in cattle is likely due in part to the incom-
plete genome annotation and genome assembly used at
the time of the study (Additional file 1: Table S2). Con-
sistent with previous reports in several species including
human [37], dog [36], and chicken [38], predicted lncRNA
genes had lower expression levels than reference protein-
coding genes (Additional file 1: Figure S12). The structural
features of these predicted lncRNA transcripts were con-
sistent between the four species: lncRNAs are spliced but
with fewer exons (1.5 vs. 10) and higher median exon
length (660 vs. 130 bp) compared to mRNAs (Additional
file 1: Figure S12). LncRNAs are also smaller than mRNAs
(1800 vs. 3600 bp). Notably, the lower number of exons
and consequent smaller size of lncRNAs compared to
mRNAs could also be due to the weaker expression of
lncRNAs, which makes their structure more difficult to
identify [39].
In addition to the coding/non-coding classification,

FEELnc can also categorize lncRNAs as intergenic or
intragenic based on their genomic positions with respect
to a provided set of reference genes (usually protein cod-
ing), and considering their transcription orientation with
respect to these reference genes. This analysis revealed an
overwhelming majority of intergenic lncRNA genes over
intragenic ones (Additional file 1: Table S10), which is con-
sistent with results obtained in human [37] and in chicken
[38].
We and others previously showed a sharp decrease in

lncRNA sequence conservation with increasing phyloge-
netic distance [37, 38, 40], in particular between chicken
and human that diverged 300M years ago. We therefore
analyzed lncRNA conservation between the four livestock
species using a synteny approach based on the orthol-
ogy of protein-coding genes surrounding the lncRNA and
not on the lncRNA sequence conservation itself [38] (see
“Methods” section). We found 73 such conserved, or syn-
tenic, lncRNAs across cattle, goat, and pig, 19 across
cattle, chicken, and pig, and 6 across all four species
(Additional file 8). All were expressed in these species
and located in the same orientation with respect to the
flanking orthologous genes. An example of such a con-
served lncRNA, hitherto unknown in our four species,
is provided in Fig. 3. In human, this lncRNA is called

CREMos for “CREM opposite sense” since it is in a diver-
gent position with respect to the neighboring CREM
protein-coding gene. Interestingly, synteny is conserved
across species from fishes to mammals and the CRE-
Mos lncRNA is overexpressed in T cells while the CREM
protein-coding gene is overexpressed in liver in goat, cat-
tle and chicken (Fig. 3). Additional examples of syntenic
lncRNAs are provided in Additional file 8, and the ones
found to be conserved between the 4 species are repre-
sented in Additional file 1: Figure S13.

Landscape of chromatin accessibility in cattle, goat,
chicken, and pig
We used ATAC-seq to profile the accessible chromatin
of liver, CD4+ and CD8+ T cells in animals from the
four species. Between 480M (chicken) and 950M (pig)
ATAC-seq fragments were sequenced per species, and
were processed by a standard pipeline (“Methods” section
and Additional file 1: Figure S14). Peaks were called in
each tissue separately (see “Methods” section), resulting
in between 26,000 (pig, liver) and 111,000 (pig, cd8) peaks
per tissue (Additional file 1: Table S12). Those peaks were
further merged into a unique set of peaks per species,
resulting in between 75,000 (goat) and 149,000 (pig) peaks
(Additional file 1: Table S12; Additional file 9), covering 1
to 5% of the genome. The average peak size was around
600 bp for all species, except for chicken where it was less
than 500 bp. Merging tissue peaks did not result in much
wider peaks (Additional file 1: Figure S15).
In comparison to the reference annotation, about 10–

15% of the peaks lie at 5 kb or less from a Transcription
Start Site (TSS) and can be considered to be promoter
peaks. The precise distribution of these promoter peaks
showed a clear higher accumulation at the TSS for all
species (Fig. 4), supporting the quality of both the anno-
tation and our data. Importantly, this signal was also
observed around the TSS of novel FR-AgENCODE tran-
scripts (i.e., those not from the known class; Additional
file 1: Figure S16).
The vast majority of the peaks, however, were either

intronic or intergenic (Fig. 4, Additional file 1: Figure S17;
Additional file 9), similar to GWAS variants associated
with human diseases [3]. In particular, from 38% (goat) to
55% (cattle) of the peaks were located at least 5 kb away
from any reference gene (Additional file 1: Figure S17),
indicating that ATAC-seq can detect both proximal and
distal regulatory regions.
Since active enhancers are expected to be enriched in

chromatin regions that are both accessible and tagged
with specific histone modification marks, we compared
our ATAC-seq peaks to histone ChIP-seq peaks from
another functional genomics study [42]. In that study,
two histonemodificationmarks (H3K4me3 andH3K27ac)
were profiled in the genome of 20 mammals including
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Fig. 3. A novel lncRNA conserved across multiple species. Phylogenetic representation based on the NCBI taxonomy of the 22 annotated species
from fishes to mammals using iTOL [41]. a, b Three gene syntenic region centered on CREMos lncRNA with NCBI IDs for lncRNAs already annotated
in reference databases and distance between entities in nucleotides. The cases where CREM and CREMos genes are overlapping are indicated by the
“0*” distance. c Expression of the 3 genes in cattle, goat, chicken and pig: CREMos is generally less expressed in liver than in T cells (in cattle, chicken
and pig) whereas CREM is generally more expressed in liver than in T cells (in cattle, chicken and goat)

pig, for which we have ATAC-seq data in the same tis-
sue (liver). This comparison showed that 6773 out of the
9632 H3K4me3 peaks (70.3%) and 8821 out of the 33,930
H3K27ac peaks (28.3%) overlapped our liver ATAC-seq
peaks. These numbers were significantly higher than
expected by chance as measured by shuffling peak posi-
tions (p value < 10−3, permutation tests). Moreover,
this subset of overlapping peaks have significantly higher
q-value signal scores than their non-overlapping coun-
terparts (p value < 2.2 × 10−16, Wilcoxon tests), which
confirms the existence of a common signal between the
datasets.
To further characterize functional regulatory sites in our

samples, we compared chromatin accessibility between
liver and T cells. The ATAC-seq peaks of each species
were quantified in each sample and resulting read counts
were normalized using a loess correction (see “Methods”
section). A differential analysis similar to the one used
for RNA-seq genes was then performed on normal-
ized counts (see “Methods” section). We identified from
4800 (goat) to 13,600 (chicken) differentially accessible
(DA) peaks between T cells and liver (Additional file 1:
Table S13; Additional file 10). To test for the presence of

regulatory signals in these regions, we computed the den-
sity of transcription factor binding sites (TFBS) in ATAC-
seq peaks genome-wide. Interestingly, TFBS density was
significantly higher in DA ATAC-seq peaks compared to
non-DA ATAC-seq peaks (Model 2; p value < 7.1 × 10−4

for goat and p value < 2.2 × 10−16 for chicken and pig,
Wilcoxon tests, see “Methods” section). This enrichment
was also observed for distal ATAC-seq peaks, at least
5 kb away from promoters (not shown), and suggests that
differentially accessible peaks are more likely to have a
regulatory role than globally accessible peaks.

Promoter accessibility is associated with both positive and
negative regulation of gene expression
Accessible promoters are commonly associated with gene
activation [43, 44]. Given the specific distribution of the
ATAC-seq signal, we initially focused on proximal chro-
matin peaks (i.e., at 1 kb or less from a gene TSS) and used
them to assign a promoter accessibility value to each gene.
Using normalized read counts (see “Methods” section), we
investigated the correlation between ATAC-seq and RNA-
seq data either across all genes within each sample, or
across all samples for each gene.
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Fig. 4. Density of ATAC-seq peaks around Transcription Start Sites (TSS) for cattle (a), goat (b), chicken (c), and pig (d). Mean coverage values of
ATAC-seq peaks (y-axis) were computed genome-wide relatively to TSS positions (x-axis). The proportion of ATAC-seq peaks within the [−1;+1]Kb
interval is represented by the shaded area between the dotted lines. The corresponding percentage is indicated above the double arrow, indicating
that most of the ATAC-seq signal is distal to TSSs

Within each sample, genes with highly accessible pro-
moters showed higher expression values globally (Addi-
tional file 1: Figure S18), as already reported in mouse
and human [45]. For pig and goat, the number of avail-
able samples further allowed us to compute for each gene
the correlation between promoter accessibility and gene
expression across all samples (Additional file 1: Figure S19
and “Methods” section). Interestingly, while the corre-
lation value distribution appeared to be unimodal for
non-differentially expressed genes, it was bimodal for
differentially expressed genes, with an accumulation of
both positive and negative correlation values (Fig. 5 and
Additional file 1: Figure S20). This pattern supports the
existence of different types of molecular mechanisms (i.e.,
both positive and negative) involved in gene expression
regulation.

Comparative genomics reveals a core set of conserved
chromatin accessible sites
We then investigated the evolution of chromatin accessi-
bility genome-wide by performing a comparative analysis
of all (proximal and distal) conserved ATAC-seq peaks
across species. We identified conserved peaks by aligning
all the sequences that corresponded to peaks from each
species (both proximal and distal) to the human genome
(see “Methods” section). Most peaks could be mapped
globally, with an expected strong difference between
mammals (72–80% of the peaks) and chicken (12% of
the peaks). After keeping the best sequence hits, merging
them on the human genome and retaining the unambigu-
ous ones (see “Methods” section), we obtained a set of
212,021 human projections of livestock accessible chro-
matin regions, that we call human hits.
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Fig. 5. Correlation between gene expression and promoter
accessibility in pig. For each expressed FR-AgENCODE gene with an
ATAC-seq peak in the promoter region, the Pearson correlation was
computed between the base 10 logarithm of the RNA-seq gene
expression (TMM) and the base 10 logarithm of the ATAC-seq
chromatin accessibility (normalized by csaw). The distribution is
represented for genes with no significant differential expression
between liver and T cells (a, top) and for differentially expressed genes
(b, bottom). The distribution obtained for differentially expressed
genes showed an accumulation of both positive and negative
correlation values, suggesting a mixture of regulatory mechanisms

A large majority of the human hits (about 86%) origi-
nated from a single livestock species, which is consistent
with previous reports about the fast evolution of regu-
latory elements and the species-specific feature of many
enhancers [5, 42]. Nevertheless, the remaining 28,292
human hits (14%) had a conserved accessibility across two
or more livestock species (“Methods” section and Addi-
tional file 11). As they share both sequence information
and experimental evidence between several species, we

refer to those human hits as “conserved peaks” and to the
number of species sharing the peak as their “similarity
level”. Among these human hits, 1083 had a similarity level
of 4, i.e., were shared by all 4 livestock species. Human
hits from a single species were assigned a similarity level
of 1. As previously done with the orthologous genes using
RNA-seq data, we performed a hierarchical clustering of
the samples based on the normalized accessibility values
of the peaks with a similarity level of 4 (Additional file 1:
Figure S21). Contrary to what was observed from the
expression data, samples here mostly clustered according
to species first, with the chicken as a clear outlier. How-
ever, for the two phylogenetically closest species (goat and
cattle), we observed that all T cells clustered together, sep-
arately from liver. This suggests a stronger divergence and
specialization of the regulatory mechanisms compared to
the gene expression programs.
In addition, shuffling the peak positions within each

species did not drastically change the mapping efficiency
on the human genome overall but resulted in a much
lower proportion of orthologous peaks (from 14 to 3%
human hits with a similarity level > 1, see “Methods”
section). Also, the overlap on the human genome between
all the 212,021 human hits and ENCODE DNAse I hyper-
sensitive sites from liver and T cell samples [46] was three
to four times higher than with the random set of shuffled
peaks (25–39% per species vs. 7–9%).
Lastly, human hits that were identified as differentially

accessible between liver and T cells in at least one species
had higher PhastCons conservation scores on the human
genome than the non differential peaks of the same sim-
ilarity level (Fig. 6). This difference was significant for
three out of the four similarity levels (p values < 0.01
overall, Wilcoxon tests), supporting a selective pressure
on functionally active regulatory regions. Remarkably, this
contrast was even stronger after discarding human hits
close to a TSS in any of the species (Additional file 1:
Figure S22, p values < 10−6 overall, Wilcoxon tests,
Additional file 11), in line with a specific conservation of
distal regulatory elements beyond the promoter regions.
Altogether, these results highlight a core set of conserved
regulatory regions from birds to mammals that include
both proximal and distal sites.

Comprehensive maps of topological domains and genomic
compartments in goat, chicken, and pig
In order to profile the structural organization of the
genome in the nucleus, we performed in situ Hi-C on liver
cells from the two male and the two female samples of pig,
goat, and chicken. The in situ Hi-C protocol was applied
as previously described [47] with slight modifications (see
FAANG protocols online and “Methods” section). Reads
were processed using a bioinformatics pipeline based on
HiC-Pro [48] (“Methods” section). From 83 to 91% of
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Fig. 6. Relationship between chromatin accessibility conservation and differential accessibility Phastcons scores of ATAC-seq human hits were
plotted after dividing the human hits according to both their similarity level (between 1 and 4, x-axis) and their differential accessibility (DA) status
(DA in at least one species or DA in none of the 4 species, boxplot color). Although the phastcons score obviously increases with the similarity level,
it is clear that, for a given similarity level, the phastcons score is higher for DA human hits than for non DA human hits (all similarity levels except 3, p
values < 0.01 overall, Wilcoxon tests) (number of elements in the boxplots from left to right: 163509, 21578, 16329, 4437, 6231, 6231, 2241, 878, 417)

the reads could be genomically mapped depending on
the sample, and after filtering out all inconsistent map-
ping configurations we obtained a total of 182, 262, and
290M valid read pairs in goat, chicken, and pig respec-
tively (Additional file 1: Table S14 and Figure S23). These
sequencing depths allowed us to build interaction matri-
ces (or Hi-C contact heatmaps) at the resolution of 40
and 500 kb in order to detect Topologically Associat-
ing Domains (TADs) and A/B compartments respectively
(Additional file 1: Figure S24).
We identified from ≈ 650 (chicken) to 2000 (pig) TADs

of variable sizes (≈ 1 Mb on average, Additional file 1:
Table S15; Additional file 12), with a 73–89% genome-
wide coverage. To validate these domains predicted by
Juicer [49] (see “Methods” section), we computed three
metrics along the genome: the Directionality Index (DI),
to quantify the degree of upstream or downstream inter-
action bias for any genomic region [50], the local inter-
action score to represent the insulation profile along
the genome [51, 52], and the density of in silico pre-
dicted CTCF binding sites, expected to be prevalent at
TAD boundaries [53, 54]. For each species, we observed

that the distribution of these three metrics was consis-
tent with previous reports on model organisms (Fig. 7
and Additional file 1: Figure S25), supporting the rele-
vance of our topological annotation. Similar results were
obtained using another TAD finding tool called Armatus
[55], although predicted domains were smaller (150 to
220 kb on average) and consequently more abundant
(Additional file 1: Figure S25).
At a higher organizational level, we identified “active”

(A) and “inactive” (B) epigenetic compartments as defined
by [21] (see “Methods” section and Additional file 1:
Figure S24). We obtained from ≈ 580 to 700 compart-
ments per genome with a mean size between 1.6 Mb
(chicken) and 3.4 Mb (goat) and covering between 71.9%
(goat) and 88.6% (pig) of the genome (see Additional
file 1: Table S15; Additional file 12). We also observed
high consistency of the compartments between replicates
(same compartment for 80% of the loci in all 4 animals,
see Additional file 1: Figure S26). In model organisms,
A compartments represent genomic regions enriched for
open chromatin and transcription compared to B com-
partments [50]. By using RNA-seq and ATAC-seq data
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Fig. 7. CTCF motif density and local interaction score within and around TADs. Local interaction score across any position measured from Hi-C
matrices and represented on the y-axis (left). The mean density of predicted CTCF binding sites is also shown on the y-axis (right). Mean interaction
score and CTCF density are plotted relative to the positions of Hi-C-derived Topologically Associating Domains. Dotted lines indicate TAD
boundaries. Absolute scale is used on the x-axis up to 0.5 Mb on each side of the TADs while relative positions are used inside the domains (from 0
to 100% of the TAD length)
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from the same liver samples as those for which we had Hi-
C data, we observed that, as expected, both the average
gene expression and the average chromatin accessibility
were significantly higher in A than in B compartments
(Fig. 8, p value < 2.2 × 10−16 for each comparison,
Wilcoxon tests), emphasizing the biological consistency of
our results across all molecular assays and species.

Genome structure comparison reveals a multi-scale
selective pressure on topological features across evolution
It has been shown that the general organization in TADs
tends to be conserved across species [54, 56] and that the
presence of specific TAD boundaries can be crucial for
biological functions like development [57]. In line with
these reports, we wondered if TAD boundaries might
play a fine grain regulatory role beyond a binary model
of simple absence/presence. Under this assumption, we
hypothesized that the insulating capacity of conserved
TAD boundaries could be under selective pressure. We
therefore assessed the link between their insulation poten-
tial and their evolutionary conservation.
As previously done with ATAC-seq peaks (see “Methods”

section and above) we first mapped all the TAD bound-
aries from each species to the human genome to identify
the orthologous ones. Pairwise comparisons of their local
interaction scores showed a clear correlation between our
species (Fig. 9a). Since the interaction score here reflects
the proportion of cis-contacts across a TAD bound-
ary, such a correlation supports a conservation of the
insulation strength between adjacent TADs. Strikingly,
similar correlations were obtained between each of our
mammalian species and human (GM12878 cell line, see
“Methods” section and Fig. 9b, c) [47]. Beside confirming
a general conservation of the TAD structure throughout
evolution, these results emphasize the quantitative nature
of this activity, in line with previous findings [54, 58, 59].
Moreover, a conserved insulation level at TAD bound-
aries suggests various degrees of functional impact and
a fine control of their regulatory role, involving complex
molecular mechanisms.
To further characterize this link between conservation

and TAD strength, we assigned to each boundary a simi-
larity level depending on the number of livestock species
with a common hit on the human genome, as we did for
ATAC-seq peaks (see above and Additional file 13). In
all 3 species, we observed that the higher the similarity
level of a TAD boundary, the lower its interaction score
(Fig. 9d). These results revealed that TAD boundaries
under stronger selective pressure had higher insulation
activities and, expectedly, a more important role in terms
of genome architecture and regulatory function. These
conclusions complement previous findings about genome
structure conservation across various evolutionary dis-
tances [58, 60].
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Fig. 8. Gene expression (a) and chromatin accessibility (b) in A and B
topological compartments. For the three species with Hi-C-derived A
and B compartments, the distribution of the RNA-seq gene expression
values (normalized read counts, top panel) and ATAC-seq chromatin
accessibility values (normalized read counts, bottom panel) is shown
per compartment type. A “active” compartments. B “repressed”
compartments. As Hi-C data was only available from liver, only RNA-
seq and ATAC-seq values from the same samples were considered.
The significant and systematic difference of gene expression and
chromatin accessibility values between A and B compartments (p
values < 2.2 × 10−16 overall, Wilcoxon tests) confirms a general
consistency between RNA-seq, ATAC-seq and Hi-C data across species
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Fig. 9. Relationship between chromatin structure conservation and functionality Interaction scores of orthologous TAD boundaries between goat
and pig (a), goat and human (b), and pig and human (c). d For each species with Hi-C data, TAD boundaries were divided according to their
similarity level (1, 2, and 3, x-axis, and boxplot colours) and their interaction scores were plotted (y-axis). There is a clear decrease of the interactions
core with the TAD boundary similarity level, indicating a stronger insulation for more evolutionarily conserved TAD boundaries

Unlike TADs, chromosomal A/B compartments have
often been reported as highly variable between tis-
sues or developmental stages, involving dynamic mecha-
nisms of epigenetic control [61–63]. Here, we postulated
that despite its plasticity, the structural organization in
genome compartments for a given tissue could also be
under selective pressure across a large phylogenetic spec-
trum, as shown in closely related species [58]. As active
compartments are known to be gene-rich we first con-
firmed that, although both compartment types roughly
have the same size, most genes were found in A com-
partments in each species. In addition, we observed that
the general proportion of genes in A compartments was
remarkably stable across species (66.9%, 69.7%, and 70.1%
of all genes in chicken, goat, and pig respectively). The
5728 orthologous genes with a predicted compartment
in all three species were also found to be preferentially
localized in active compartments, with slightly higher pro-
portions than for all genes in general (69.5%, 75.9%, and

76.4% for chicken, goat, and pig respectively), probably
due to the fact that conserved genes tend to have higher
expression levels.
Since all these orthologous genes were assigned a com-

partment type (i.e., A or B label) in each species sep-
arately, we tested whether any significant conservation
of compartment type across species could be detected.
Among the 5728 orthologous genes, 3583 had the same
compartment type in all species, which was 49% more
than expected by chance assuming independence between
species. This cross-species conservation was observed for
both A and B compartments (p value < 2.2 × 10−17 for
both, χ2 goodness-of-fit test), suggesting that such con-
servation was not restricted to regions of higher gene
expression.
Altogether, results from the cross-species comparisons

of ATAC-seq peaks, TAD boundaries and A/B com-
partments reveal a general conservation of the genome
structure at different organizational levels from birds to
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mammals, and shed a new light on the complex interplay
between genome structure and function.

Conclusion
We report the first multi-species and multi-assay genome
annotation results obtained by a FAANG project. The
main outcomes were consistent with our expectations and
provide new evolutionary insights about regulatory and
structural aspects of the genome:

• Despite only three different tissues being used, a
majority of the reference transcripts could be
detected. Moreover, the newly identified transcripts
considerably enrich the reference annotations of
these species.

• Differential analyses of gene expression in liver and T
cells yielded results consistent with known
metabolism and immunity functions and identified
novel interesting candidates for functional analyses,
including conserved syntenic lncRNAs.

• ATAC-seq data allowed an abundance of potential
regulatory regions to be mapped, and, upon
integration with RNA-seq data, suggested complex
mechanisms of gene expression regulation.
Comparative genomics analyses revealed evolutionary
conservation both for proximal and distal regulators.

• Hi-C experiments provided the first set of
genome-wide 3D interaction maps of the same tissue
from three livestock species. Beyond the
chromosome topology annotation, the analysis
showed high consistency with gene expression and
chromatin accessibility. Multi-species analyses
revealed a global selective pressure on organizational
features of the genome structure at different scales,
beyond the TAD level.

Therefore, the FR-AgENCODE group has delivered a
strong proof of concept of a successful collaborative
approach at a national scale to apply FAANG guidelines to
various experimental procedures and animal models. This
notably includes the set up of a combination of sequenc-
ing assays on primary cells and tissue-dissociated cells,
as well as a large collection of documented tissue sam-
ples available for further projects. It also confirmed, in
line with several studies in model species [4–6, 8] the
value of combining molecular assays on the same sam-
ples to simultaneously identify the transcriptomes and
investigate underlying regulatory mechanisms.
In the context of the global domesticated animal

genome annotation effort, lessons learned from this pilot
project confirm conclusions drawn by the FAANG com-
munity regarding the challenges to be addressed in the
future [13]. Furthermore, the mosaic nature of a global
annotation effort that gathers contributions from various

partners worldwide emphasizes the challenge of translat-
ing recent advances from the field of data science into
efficient methods for the integrative analysis of ’omics
data and the importance of futuremeta-analyses of several
datasets [16].
Altogether, these annotation results will be useful for

future studies aiming to determine which subsets of puta-
tive regulatory elements are conserved, or diverge, across
animal genomes representing different phylogenetic taxa.
This will be beneficial for devising efficient annotation
strategies for the genomes of emerging domesticated
species.

Methods
Animals, sampling, and tissue collections
Animals and breeds
Well-characterized breeds were chosen in order to obtain
well-documented samples. Holstein is the most widely
used breed for dairy cattle. For goats, the Alpine breed
is one of the two most commonly used dairy breeds, and
for pigs, the Large white breed is widely used as a dam
line. For chickens, the White Leghorn breed was chosen
as it provides the genetic basis for numerous experimental
lines and is widely used for egg production.
Four animals were sampled for each species, two males

and two females. They all had a known pedigree. Animals
were sampled at an adult stage, so that they were sexually
mature and had performance records, obtained in known
environmental conditions. Females were either lactating
or laying eggs.
All animals were fasted at least 12 h before slaughter.

No chemicals were injected before slaughtering, animals
were stunned and bled in a licensed slaughter facility at
the INRA research center in Nouzilly.

Samples
Liver samples of 0.5 cm3 were taken from the edge of the
organ, avoiding proximity with the gallbladder and avoid-
ing blood vessels. Time from slaughter to sampling varied
from 5 min for chickens to 30 min for goats and pigs and
45 min for cattle. For the purpose of RNA-seq, samples
were immediately snapfrozen in liquid nitrogen, stored in
2-ml cryotubes and temporarily kept in dry ice until final
storage at −80°C.
For mammals, whole blood was sampled into EDTA

tubes before slaughter; at least one sampling took place
well before slaughter (at least 1 month) and another
just before slaughter, in order to obtain at least 50 ml
of whole blood for separation of lymphocytes (PBMC).
PBMC were re-suspended in a medium containing
10% FCS, counted, conditioned with 10% DMSO and
stored in liquid nitrogen prior to the sorting of spe-
cific cell types: CD3+CD4+ (“CD4”) and CD3+CD8+
(“CD8”).
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For chicken, spleen was sampled after exsanguination.
Spleen leucocytes were purified by density-gradient sep-
aration to remove nucleated erythrocytes contamination
and stored in liquid nitrogen prior to CD4+ and CD8+ T
cell sorting.
All protocols for liver sampling, PBMC separation,

splenocyte purification, and T cell sorting can be found at
http://ftp.faang.ebi.ac.uk/ftp/protocols/samples/

Experimental assays and protocols
All assays were performed according to FAANG guide-
lines and recommendations, available at http://www.
faang.org. All detailed protocols used for RNA extraction
and libraries production for RNA-seq, ATAC-seq, and Hi-
C are available at http://ftp.faang.ebi.ac.uk/ftp/protocols/
assays/.

RNA extraction
Cells and tissues were homogenized in TRIzol reagent
(Thermo) using an ULTRA-TURRAX (IKA-Werke) and
total RNAs were extracted from the aqueous phase. They
were then treated with TURBO DNase (Ambion) to
remove remaining genomic DNA and then processed to
separate long and small RNAs using the mirVana miRNA
Isolation kit. Small and long RNA quality was assessed
using an Agilent 2100 Bioanalyzer and RNA 6000 nano
kits (Agilent) and quantified on a Nanodrop spectropho-
tometer.

RNA-seq
Stranded mRNA libraries were prepared using the TruSeq
Stranded mRNA Sample Prep Kit -V2 (Illumina) on 200
ng to 1μg of total long RNAwith a RNA Integrity Number
(RIN) over 8 following the manufacturer’s instructions.
Libraries were PCR amplified for 11 cycles and library
quality was assessed using the High Sensitivity NGS Frag-
ment Analysis Kit DNF-474 and the Fragment Analyser
system (AATI). Libraries were loaded onto a High-seq
3000 (Illumina) to reach a minimum read numbers of
100M paired reads for each library.

Hi-C
In situ Hi-C libraries were made according to [47] with
a few modifications. For all species, fresh liver biopsies
were dissociated using Accutase, and each resulting cell
suspension was filtered using a 70 μm cell strainer. Cells
were then fixed with 1% formaldehyde for 10 min at 37 °C
and fixation was stopped by adding Glycine to a final con-
centration of 0.125M. After two washes with PBS, cells
were pelleted and kept at −80°C for long term storage.
Subsequently, cells were thawed on ice and 5 million cells
were processed for each Hi-C library. Cell membranes
were disrupted using a potter-Elvehjem PTFE pestle and
nuclei were then permeabilized using 0.5% SDS with

digestion overnight with HindIII endonuclease. HindIII-
cut restriction sites were then end-filled in the presence
of biotin-dCTP using the Klenow large fragment and were
religated overnight at 4 °C. Nucleus integrity was checked
using DAPI labelling and fluorescence microscopy. Nuclei
were then lysed and DNA was precipitated and purified
using Agencourt AMPure XP beads (Beckman Coulter)
and quantified using the Qubit fluorimetric quantification
system (Thermo). Hi-C efficiency was controlled by PCR
using specific primers for each species and, if this step was
successful, DNA was used for library production. DNA
was first treated with T4 DNA polymerase to remove unli-
gated biotinylated ends and sheared by sonication using a
M220 Covaris ultra-sonicator with the DNA 550 pb Snap-
Cap microtube program (Program length: 45 s; Picpower
50; DutyF 20; Cycle 200; Temperature 20 °C).
Sheared DNA was then size-selected using magnetic

beads, and biotinylated fragments were purified using
M280 Streptavidin Dynabeads (Thermo) and reagents
from the Nextera_Mate_Pair Sample preparation kit (Illu-
mina). Purified biotinylated DNA was then processed
using the TrueSeq nano DNA kit (Illumina) following the
manufacturer’s instructions. Libraries were amplified for
10 cycles and then purified using Agencourt AMPure XP
beads. Library quality was assessed on a Fragment Anal-
yser (AATI) and by endonuclease digestion using NheI
endonuclease. Once validated, each library was sequenced
on an Illumina Hi-Seq 3000 to reach a minimum number
of 150M paired reads per library. Libraries from the cat-
tle samples failed the Quality Control steps (proportion of
mapped reads, number of valid interactions) and were not
included in the analysis.

ATAC-seq
ATAC-seq libraries were prepared according to [20] with
a few modifications. For liver, cells were dissociated from
the fresh tissue to obtain a single cell suspension. Cells
were counted and 50,000 cells were processed for each
assay. Transposition reactions were performed using the
Tn5 Transposase and TD reaction buffer from the Nex-
tera DNA library preparation kit (Illumina) for 30 min at
37 °C. DNA was then purified using the Qiagen MinE-
lute PCR purification kit. Libraries were first amplified
for 5 cycles using custom-synthesized index primers and
then a second amplification was performed. The appro-
priate number of additional PCR cycles was determined
using real-time PCR, permitting the cessation of ampli-
fication prior to saturation. The additional number of
cycles needed was determined by plotting the Rn versus
Cycle and then selecting the cycle number corresponding
to one-third of the maximum fluorescent intensity. After
PCR amplification, libraries were purified using a Qiagen
MinElute PCR purification kit followed by an additional
clean-up and sizing step using AMPure XP beads (160 μl

http://ftp.faang.ebi.ac.uk/ftp/protocols/samples/
http://www.faang.org
http://www.faang.org
http://ftp.faang.ebi.ac.uk/ftp/protocols/assays/
http://ftp.faang.ebi.ac.uk/ftp/protocols/assays/
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of bead stock solution was added to 100 μl of DNA in EB
buffer) following the manufacturer’s instructions. Library
quality was assessed on a BioAnalyser (Agilent) using Agi-
lent High Sensitivity DNA kit (Agilent), and libraries were
quantified using a Qubit Fluorometer (Thermo). Consid-
ering that the Hi-C protocol was not successful on the
liver samples from cattle, ATAC-seq was not attempted on
these samples either.

Bioinformatics and data analysis
All software used in this project along with the corre-
sponding versions are listed in Additional file 1: Table S3.
The reference gene annotation was obtained from the
Ensembl v90 release (pig: Sscrofa11.1, chicken: GalGal5,
cattle: UMD3.1, goat: ARS1). Since Capra hircus was
not part of the Ensembl release, we used the NCBI
CHIR_ARS1 annotation (see Additional file 1: Table S2).

RNA-seq
RNA-seq pipeline Prior to any processing, all RNA-seq
reads were trimmed using cutadapt version 1.8.3. Reads
were thenmapped twice using STAR v2.5.1.b [22, 23]: first
on the genome indexed with the reference gene annota-
tion to quantify expression of reference transcripts, and
secondly on the same genome indexed with the newly
generated gene annotation (FR-AgENCODE transcripts)
(see below and Additional file 1: Figure S1) [64]. The
STAR -quantMode TranscriptomeSAM option was
used in both cases in order to additionally generate a
transcriptome alignment (bam) file. After read mapping
and CIGAR-based softclip removal, each sample align-
ment file (bam file) was processed with Cufflinks 2.2.1
[65, 66] with the max-intron-length (100000) and
overlap-radius (5) options, guided by the reference
gene annotation (-GTF-guide option) ([64], Additional
file 1: Figure S1). All cufflinks models were then merged
into a single gene annotation using Cuffmerge 2.2.1 [65,
66] with the -ref-gtf option. The transcript and gene
expressions on both the reference and the newly gener-
ated gene annotation were quantified as TPM (transcripts
per million) using RSEM 1.3.0 [24] on the correspond-
ing transcriptome alignment files ([64], Additional file 1:
Figure S1). The newly generated transcripts were then
processed with FEELnc version 0.1.0 [36] in order to clas-
sify them into “lncRNA”, “mRNA” and “otherRNA” (Addi-
tional file 1: Figure S1, Tables S10–11, Figure S9). The
newly generated transcripts with a TPM value of at least
0.1 in at least 2 samples were called FR-AgENCODE tran-
scripts and kept as part of the new annotation. The 0.1
threshold was chosen knowing that the expression val-
ues of polyadenylated transcripts usually go from 0.01 to
10,000 [35] and that we wanted to simultaneously capture
long non coding RNAs that are generally lowly expressed
and reduce the risk of calling artefactual transcripts.

PCA based on gene expression Principal Component
Analysis (PCA) was performed using the mixOmics R
package [67] on the RNA-seq sample quantifications of
each species. This was done using the expression (TPM)
of two different sets of genes: reference genes with TPM
0.1 in at least two samples (Additional file 1: Figure S3)
and FR-AgENCODE genes with TPM 0.1 in at least two
samples (Additional file 1: Figure S11).

Annotated gene orthologs We used Ensembl Biomart
[68] to define the set of orthologous genes across cat-
tle, chicken and pig. Only “1 to 1” similarity relationships
were kept (11,001 genes). Since goat was not part of
the Ensembl annotation, goat gene IDs were added to
this list using gene name as a correspondence term. The
resulting 4-species orthologous set contained 9461 genes
(Additional file 3).

RNA-seq sample hierarchical clustering Based on the
expression of the 9461 orthologous genes in the 39 RNA-
seq samples from the four species, the sample-by-sample
correlation matrix was computed using the Pearson cor-
relation of the log10 gene TPM values (after adding a
pseudocount of 10−3).We then represented this sample by
sample correlationmatrix as a heatmap where the samples
were also clustered using a complete linkage hierarchical
clustering (Fig. 2).

RNA-seq normalization and differential analysis To
perform the differential analysis of gene expression,
we used the expected read counts provided by RSEM
[24]. RNA-seq library size normalization factors were
calculated using the weighted Trimmed Mean of M-
values (TMM) approach of [69] as implemented in the
R/Bioconductor package edgeR [29]. The same package
was used to fit three different per-gene negative binomial
(NB) generalized log-linear models [70].

• InModel 1, the expression of each gene was
explained by a tissue effect; because all three tissues
(liver, CD4, CD8) were collected from each animal,
an animal effect was also included to account for
these repeated measures:

logμgi

si
= βg,tissue(i) + γg,animal(i),

where μgi represents the mean expression of gene g
in sample i, si the TMM normalization factor for
sample i, tissue(i) ∈ {liver, CD4, CD8} and
animal(i) ∈ {1, 2, 3, 4} the tissue and animal
corresponding to sample i, and βg,tissue(i) and
γg,animal(i) the fixed tissue and animal effects,
respectively, of gene g in sample i. Hypothesis tests
were performed to identify significantly differentially
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expressed genes among each pair of tissues, e.g.,

H0g : βg,liver = βg,CD4.
• Model 2 is identical to the previous model, where

gene expression was modeled using both a tissue and
an animal effect, with the exception that the CD4 and
CD8 tissues were collapsed into a single group. In this
model, the only hypothesis of interest is thus between
the liver and global CD cell group:

H0g : βg,liver = βg,CD.

All hypothesis tests were performed using likelihood-
ratio tests and were corrected for multiple testing with the
Benjamini-Hochberg (FDR, [71]) procedure. Genes with
an FDR smaller than 5% and an absolute log-fold change
larger than 2 were declared differentially expressed.

GO analysis of differentially expressed genes For each
species, GO term enrichment analysis was performed
on the genes found to be over- or under-expressed in
liver versus T cells. This analysis was done separately for
each species (Additional file 1: Figure S5-S7) and sub-
sequently for genes identified for all species (Additional
file 1: Fig. S8), using the three following ontologies: biolog-
ical process (BP), molecular function (MF) and cell com-
partment (CC), and using the GOstat R/Bioconductor
package [72]) for only those genes with a human ortholog.

FR-AgENCODE transcript positional classification
The FR-AgENCODE transcript models were first classi-
fied according to their position with respect to reference
transcripts:

known the FR-AgENCODE transcript is strictly identical
to a reference transcript (same intron chain and same
initial and terminal exons)

extension the FR-AgENCODE transcript extends a refer-
ence transcript (same intron chain but one of its two
most extreme exons extends the reference transcript
by at least one base pair)

alternative the FR-AgENCODE transcript corresponds
to a new isoform (or variant) of a reference gene,
i.e., the FR-AgENCODE transcript shares at least
one intron with a reference transcript but does not
belong to the above categories

novel the FR-AgENCODE transcript is in none of the
above classes

FR-AgENCODE transcript coding classification
The FR-AgENCODE transcript models were also clas-
sified according to their coding potential. For this,
the FEELnc program (release v0.1.0) was used to dis-
criminate long non-coding RNAs from protein-coding
RNAs. FEELnc includes three consecutive modules:

FEELncfilter, FEELnccodpot and FEELncclassifier. The first
module, FEELncfilter, filters out non-lncRNA transcripts
from the assembled models, such as transcripts smaller
than 200 nucleotides or those with exons strandedly
overlapping exons from the reference annotation.
This module was used with default parameters except
-b transcript_biotype=protein_coding,
pseudogene to remove novel transcripts overlapping
protein-coding and pseudogene exons from the refer-
ence. The FEELnc codpot module then calculates a coding
potential score (CPS) for the remaining transcripts based
on several predictors (such as multi k-mer frequencies
and ORF coverage) incorporated into a random forest
algorithm [73]. In order to increase the robustness of
the final set of novel lncRNAs and mRNAs, the options
-mode=shuffle and -spethres=0.98,0.98 were
set. Finally, the FEELncclassifier classifies the resulting
lncRNAs according to their positions and transcriptional
orientations with respect to the closest annotated refer-
ence transcripts (sense or antisense, genic or intergenic)
in a 1Mb window (-maxwindow=1000000).
It is worth noting that between 83 and 2718 lncRNA

transcripts were not classified because of their localization
on the numerous unassembled contigs in livestock species
with no annotated genes.

FR-AgENCODE gene conservation between species
In order to obtain gene orthology relationships, we
projected FR-AgENCODE transcripts from the four
livestock species to the human GRCh38 genome
using the UCSC pslMap program (https://github.com/
ENCODE-DCC/kentUtils/tree/master/src/hg/utils/
pslMap, v302). More precisely, we used the UCSC
hg38To[species.assembly].over.chain.gz
chain file for each species (created in-house for goat fol-
lowing UCSC instructions) and retained only the best hit
for each transcript (according to the pslMap score). We
further required each FR-AgENCODE gene to project to
a single human gene that did not strandedly overlap any
other projected FR-AgENCODE gene.

Syntenic conservation of lncRNAs Briefly, a lncRNA
was considered as “syntenically” conserved between two
species if (1) the lncRNA was located between two orthol-
ogous protein-coding genes, (2) the lncRNA was the
only one in each species between the two protein-coding
genes, and (3) the relative gene order and orientation
of the resulting triplet was identical between species.
Using these criteria, we found six triplets shared between
the four species, 73 triplets shared between cattle, goat,
and pig, and 19 triplets shared between cattle, chicken,
and pig.

https://github.com/ENCODE-DCC/kentUtils/tree/master/src/hg/utils/pslMap
https://github.com/ENCODE-DCC/kentUtils/tree/master/src/hg/utils/pslMap
https://github.com/ENCODE-DCC/kentUtils/tree/master/src/hg/utils/pslMap


Foissac et al. BMC Biology          (2019) 17:108 Page 18 of 25

ATAC-seq
ATAC-seq data analysis pipeline ATAC-seq reads were
trimmed with trimgalore 0.4.0 using the -stringency
3, -q 20, -paired and -nextera options (Additional
file 1: Table S3). The trimmed reads were then mapped to
the genome using bowtie 2 2.3.3.1 with the -X 2000 and
-S options [74]. The resulting sam file was then converted
to a bam file with samtools 1.3.1, and this bam file was
sorted and indexed with samtools 1.3.1 [75]. The reads
for which the mate was also mapped and with a MAPQ
≥10 were retained using samtools 1.3.1 (-F 12 and -q
10 options, [75]), and finally only the fragments where
both reads had a MAPQ ≥10 and which were on the same
chromosome were retained.
Mitochondrial reads were then filtered out, as well

as duplicate reads (with picard tools, MarkDuplicates
subtool). The highest proportion of filtering was due
to the MAPQ 10 and PCR duplicate filters (Additional
file 1: Figure S14). The peaks were called using MACS2
2.1.1.20160309 [76] in each tissue separately using all
the mapped reads from the given tissue (-t option) and
with the -nomodel, -f BAMPE and -keep-dup all
options. To get a single set of peaks per species, the tissue
peaks were merged using mergeBed version 2.26.0 [77].
These peaks were also quantified in each sample by sim-
ply counting the number of mapped reads overlapping the
peak.
ATAC-seq peaks were also classified with respect to

the reference gene annotation using these eight genomic
domains and allowing a peak to be in several genomic
domains:

exonic the ATAC-seq peak overlaps an annotated exon
by at least one bp

intronic the ATAC-seq peak is totally included in an
annotated intron

tss the ATAC-seq peak includes an annotated TSS
tss1Kb the ATAC-seq peak overlaps an annotated TSS

extended 1 kb both 5’ and 3’
tss5Kb the ATAC-seq peak overlaps an annotated TSS

extended 5 kb both 5’ and 3’
tts the ATAC-seq peak includes an annotated TTS
tts1Kb the ATAC-seq peak overlaps an annotated TTS

extended 1 kb both 5’ and 3’
tts5Kb the ATAC-seq peak overlaps an annotated TTS

extended 5 kb both 5’ and 3’
intergenic the ATAC-seq peak does not overlap any gene

extended by 5 kb on each side

ATAC-seq differential analysis: normalization and
model Contrary to RNA-seq counts, ATAC-seq counts
exhibited trended biases visible in log ratio-mean average
(MA) plots between pairwise samples after normalization
using the TMM approach, suggesting that an alternative

normalization strategy was needed. In particular, trended
biases are problematic as they can potentially inflate vari-
ance estimates or log fold-changes for some peaks. To
address this issue, a fast loess approach [78] implemented
in the normOffsets function of the R/Bioconductor pack-
age csaw [79] was used to correct differences in log-counts
vs log-average counts observed between pairs of samples.
As for RNA-seq, we used two different differential

models: Model 1 for tissue pair comparisons, Model 2
for T cell versus liver comparisons (see corresponding
“RNA-seq” section for more details).

ATAC-seq peak TFBS density In order to identify Tran-
scription Factor Binding Sites (TFBS) genome-wide, we
used the FIMO [80] software (Additional file 1: Table S3)
to look for genomic occurrences of the 519 TFs catalogued
and defined in the Vertebrate 2016 JASPAR database [81].
We then intersected these occurrences with the ATAC-
seq peaks of each species and computed the TFBS density
in differential vs non differential ATAC-seq peaks. Among
the predicted TFBSs, those obtained from the CTCFmotif
were used to profile the resulting density with respect to
Topological Associating Domains from Hi-C data (Fig. 7,
Additional file 1: Figure S25).

Comparison between ATAC-seq peaks and ChIP-seq
histone mark peaks Pig liver H3K4me3 and H3K27ac
ChIP-seq peaks from the Villar et al. study [42] were
downloaded from ArrayExpress (experiment number E-
MTAB-2633). As these peaks were provided on the
10.2 pig genome assembly, they were first lifted over to
the 11.1 pig genome assembly using the UCSC liftover
program (https://genome.sph.umich.edu/wiki/LiftOver).
About 86.7% (9632 out of 11,114) of the H3K4me3 peaks
and 91.8% (31,161 out of 33,930) of the H3K27ac peaks
could be lifted over to the 11.1 genome assembly. The
median peak size was 1944 bp for H3K4me3 and 2786 bp
for H3K27ac, and the peak size distribution was very simi-
lar for the initial 10.2 and the lifted over 11.1 peaks. As for
genome coverage, the H3K4me3 and H3K27ac peaks cov-
ered 0.9% and 4.7% of the 11.1 pig genome, respectively. In
comparison, there were 25,885 pig liver ATAC-seq peaks
with a median size of 360 bp and covering 0.5% of the pig
genome. Consistent with what was expected from the two
histone marks, the vast majority (94.9%) of the H3K4me3
peaks (known to be associated to promoter regions) over-
lapped (bedtools intersect program) with the H3K27ac
peaks (known to be associated to both promoter and
enhancer regions), and about 30% of the H3K27ac peaks
overlapped with the H3K4me3 peaks. Comparing our pig
liver ATAC-seq peaks to the histonemark peaks, we found
that 27.1% (7012 out of 25,885) and 36.4% (9410 out of
25,885) of our pig liver ATAC-seq peaks overlapped with

https://genome.sph.umich.edu/wiki/LiftOver
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the H3K4me3 and H3K27ac peaks, respectively. Recipro-
cally, 70.3% (6773 out of 9632) and 28.3% (8821 out of
31,161) of the H3K4me3 and H3K27ac peaks respectively
overlapped with our pig liver ATAC-seq peaks.
To assess if these numbers were higher than expected by

chance, we shuffled (bedtools shuffle program) the 25,885
pig liver ATAC-seq peaks 1000 times on the pig genome
and recomputed their intersection with the two sets
of histone mark peaks (H3K4me3 and H3K27ac). After
doing so, we never obtained percentages of H3K4me3
and H3K27ac peaks, respectively, overlapping the shuf-
fled ATAC-seq peaks that were equal or higher than the
ones obtained with the real ATAC-seq peaks. This means
that indeed, 70.3% and 28.3% of the histone mark peaks
overlapping our ATAC-seq peaks are percentages that are
significantly higher than expected by chance (p value <

10−3).
We also compared the ATAC-seq, H3K4me3 and

H3K27ac peak scores (fold enrichment against random
Poisson distribution with local lambda for ATAC-seq
peaks and fold-enrichment over background for ChIP-seq
peaks) of the common peaks versus the other peaks. In
doing so, we found that common peaks had significantly
higher scores than non common peaks (median 94 versus
32, p value < 2.2 × 10−16 for ATAC-seq peaks, median
57 versus 22, p value < 2.2 × 10−16 for H3K4me3 peaks
and median 32 versus 12, p value < 2.2 × 10−16 for
H3K27ac peaks, Wilcoxon tests), highlighting a common
signal between the two techniques.

Chromatin accessibility conservation across species
In order to investigate the conservation of chromatin
accessibility across our 4 livestock species, we used the
human GRCh38 genome as a reference. After indexing the
softmasked GRCh38 genome (main chromosomes) using
lastdb (last version 956, -uMAM4 and -cR11 options,
http://last.cbrc.jp/), we used the lastal program followed
by the last-split program (-m1 and –no-split options) (last
version 956, http://last.cbrc.jp/) to project the 104,985 cat-
tle, 74,805 goat, 119,894 chicken, and 149,333 pig ATAC-
seq peaks onto the human genome. In doing so and
consistent with the phylogenetic distance between our
species and human, we were able to project 72.6% (76,253)
cattle, 73.7% (55,113) goat, 12.3% (14,792) chicken, and
80.1% (119,680) pig peaks to the human genome. The per-
centage of bases of the initial peaks that could be aligned
was around 40% for mammals and 14% for chicken. Then,
for each peak that could be projected onto the human
genome, we retained its best hit (as provided by lastal) and
then merged all these best hits (i.e., from the 4 species)
on the human genome (using bedtools merge). A total
of 215,620 human regions were obtained, from which we
kept the 212,021 that came from a maximum of 1 peak

from each species. Those 212,021 regions were called
human hits.
Based on the 1083 four-species orthologous peaks in

the 38 ATAC-seq samples, the sample-by-sample correla-
tion matrix was computed using the Pearson correlation
of the log10 normalized ATAC-seq values (after adding
a pseudo-count of 10−3 to the values). We then rep-
resented this sample-by-sample correlation matrix as a
heatmap where the samples were also clustered using a
complete linkage hierarchical clustering (Additional file 1:
Figure S21). Chicken ATAC-seq samples clustered com-
pletely separately from mammal ATAC-seq samples. T
cell samples from cattle and goat were also closer to each
other than to liver samples.
To shuffle the 104,985 cattle, 74,805 goat, 119,894

chicken, and 149,333 pig ATAC-seq peaks, we used the
bedtools shuffle program on their respective genomes and
projected these shuffled peaks to the human genome as
was done for the real peaks.
We also compared the human hits to the combined set

of 519,616 ENCODE human DNAse I peaks from two
CD4+, two CD8+ and one “right lobe of liver” samples
(experiment accessions ENCSR683QJJ, ENCSR167JFX,
ENCSR020LUD, ENCSR316UDN, and ENCSR555QAY
from the encode portal https://www.encodeproject.org/,
by merging the peaks from the 5 samples into a single
set of peaks using bedtools merge). We found that 23.1%
(48,893 out of 212,021) of the human hits obtained from
the real ATAC-seq peaks overlapped human DNAse I
peaks, whereas only 8.5% (21,159 out of 249,943) of the
human hits obtained from shuffled ATAC-seq peaks over-
lapped human DNAse I peaks. This further supports the
biological signal present in these data.
Finally we used the phastcons measure of vertebrate

sequence conservation obtained from the multiple align-
ment of 100 vertebrate species genomes including human
(hg38.phastCons100way.bw bigwig file from the UCSC
web site https://genome.ucsc.edu/). For each human hit,
we computed its phastcons score using the bigWigAv-
erageOverBed utility from UCSC (https://github.com/
ENCODE-DCC/kentUtils).

Hi-C
Hi-C data analysis pipeline Our Hi-C analysis pipeline
includes HiC-Pro v2.9.0 [82] (Additional file 1: Table S3)
for the read cleaning, trimming, mapping (this part is
internally delegated to Bowtie 2 v2.3.3.1), matrix con-
struction, and matrix balancing ICE normalization [83].
HiC-Pro parameters: BOWTIE2_GLOBAL_OPTIONS
= -very-sensitive -L 30 -score-min
L,-1,-0.1 -end-to-end -reorder,
BOWTIE2_LOCAL_OPTIONS = -very-sensitive
-L 20 -score-min L,-0.6,-0.2 -end-to-end
-reorder, LIGATION_SITE = AAGCTAGCTT,

http://last.cbrc.jp/
http://last.cbrc.jp/
https://www.encodeproject.org/
https://genome.ucsc.edu/
https://github.com/ENCODE-DCC/kentUtils
https://github.com/ENCODE-DCC/kentUtils
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MIN_INSERT_SIZE = 20, MAX_INSERT_SIZE=
1000, GET_ALL_INTERACTION_CLASSES = 1,
GET_PROCESS_SAM = 1, RM_SINGLETON =
1, RM_MULTI = 0, RM_DUP = 1, MAX_ITER
= 100,FILTER_LOW_COUNT_PERC = 0.02,
FILTER_HIGH_COUNT_PERC = 0, EPS =0.1. TAD
finding was performed using two methods: arrowhead
from the Juicer tool V1.5.3 [49] at the 10 kb resolution
using the matrix balancing normalization (arrowhead
-r 10000 -k KR option), and with Armatus V2.1 [55]
with default parameters and gamma=0.5 (Additional
file 1: Table S3). Graphical visualization of the matrices
was produced with the HiTC R/Bioconductor pack-
age v1.18.1 [48] (Additional file 1: Table S3). Export to
JuiceBox [84] was done through Juicer Tools V1.5.3 (Addi-
tional file 1: Table S3). These tools were called through
a pipeline implemented in Python. Because of the high
number of unassembled scaffolds (e.g., for goat) and/or
micro-chromosomes (e.g., for chicken) in our reference
genomes, only the longest 25 chromosomes were consid-
ered for TAD and A/B compartment calling. For these
processes, each chromosome was considered separately.
The Directionality Index (DI) was computed using

the original definition introduced by [50] to indicate
the upstream vs. downstream interaction bias of each
genomic region. Interaction matrices of each chromo-
some were merged across replicates and the score was
computed for each bin of 40 kb. CTCF sites were pre-
dicted along the genomes by running FIMO with the
JASPAR TFBS catalogue (see “ATAC-seq peak TFBS den-
sity” section).
A/B compartments were obtained using the method

described in [21] as illustrated in Additional file 1:
Figure S24: first, ICE-normalized counts, Kij, were cor-
rected for a distance effect with:

̂Kij = Kij − Kd

σ d ,

in which ̂Kij is the distance-corrected count for the bins
i and j, Kd is the average count over all pairs of bins at
distance d = d(i, j) and σ d is the standard deviation of
the counts over all pairs of bins at distance d. Within-
chromosome Pearson correlation matrices were then
computed for all pairs of bins based on their distance-
corrected counts and a PCA was performed on this
matrix. The overall process was performed similarly to
the method implemented in the R/Bioconductor package
HiTC [48]. Boundaries between A and B compartments
were identified according to the sign of the first PC (eigen-
vector). Since PCAs had to be performed on each chromo-
some separately, the average counts on the diagonal of the
normalized matrix were used to identify which PC sign
(+/−) should be assigned to A and B compartments for

each chromosome. This allowed a homonegenous assign-
ment across chromosomes to be obtained, without relying
on the reference annotation. In line with what was origi-
nally observed in humans, where the first PC was the best
criterion for separating A from B compartments (apart
from a few exceptions like chromosome 14 for instance
[21]), we also observed a good agreement between the
plaid patterns of the normalized correlation matrices and
the sign of the first PC (Additional file 1: Figure S24).
To estimate the robustness of A/B compartment call-

ing, the method was tested on each replicate separately
(four animals). Since the HiTC filtering method can dis-
card a few bins in some matrices, resulting in missing
A/B labels, the proportion of bins with no conflicting
labels across replicates was computed among the bins that
had at least two informative replicates (Additional file 1:
Figure S26).

Chromatin structure conservation across species To
get insight into chromatin structure conservation across
species, similar to what was done with chromatin accessi-
bility data (see above), we projected the 11,711 goat, 6866
chicken, and 14,130 pig 40 kb TAD boundaries to the
human GRCh38 genome using lastal followed by last-split
(-m1 and -no-split options, last version 956, http://
last.cbrc.jp/, using the same indexed GRCh38 softmasked
genome as was used for ATAC-seq, see above). For this
analysis we considered TADs from Armatus because of
the high number of boundaries that were identified by
the method. As expected from their length, TAD bound-
ary projections were highly fragmented (median 16, 2, and
19 blocks per projection representing 3%, 0.6%, and 3%
of the initial segment, for the best hit of goat, chicken,
and pig, respectively). In order to recover conserved seg-
ments, we chained the alignments using a python in-
house script (program available on demand, used with
stranded mode, coverage=0.4, score=3000, and
length_cutoff=5000). Doing so, we managed to
project 90% of the mammalian and 5% of the chicken
TAD boundaries onto the human genome. Similar to what
was done for ATAC-seq, for each projected TAD bound-
ary, its best hit (according to the chaining score) was
retained. The median length of those best hits repre-
sented 95% and 78% of the initial query size for mam-
mals and chicken respectively. Merging these best hits on
the human genome (using bedtools merge), we obtained
16,870 human regions with a median length of 44.6 kb
(similar to the initial TAD boundary size of 40 kb). Out
of those, 16,468 were considered non ambiguous (i.e.,
not coming from several TAD boundaries from the same
species) and were retained for further analyses. As was
found for the ATAC-seq peaks, the majority (65.6%) of the
hits were single species (similarity level 1), a substantial
percentage of them (34%) were 2 species hits (similarity

http://last.cbrc.jp/
http://last.cbrc.jp/
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level 2), and seventy one of them (0.4%) were 3 species hits
(similarity level 3).
To estimate the structural impact of each TAD bound-

ary, we used the local interaction score as used by [51]
and [52] and sometimes referred to as “interaction ratio”
or “insulation profile”. Within a sliding window of 500 kb
along the genome (step=10 kb), the insulation score ratio
is defined as the proportion of read pairs that span across
the middle of the window. The score ratio is reported
at the middle position of the window and represents the
local density of the chromatin contacts around this point.
This proportion is expected to be maximal in regions with
many local interactions (typically TADs) and minimal
over insulators (typically TAD boundaries). Intuitively, a
TAD boundary with a low interaction score (which indi-
cates strong insulation properties) has a good capacity
to prevent interactions that cross it while a TAD with a
relatively high interaction score has a “weak” insulation
strength. Here, only valid interactions (“valid pairs”) in
in cis (inter-chromosomal contacts were not considered
in the ratio) were considered after applying all HiC-Pro
QC and filters. Computing a ratio among all read pairs
that have both reads within the sliding window reduces
the impact of potential biases (read coverage, restriction
site density, GC content, etc.). Consequently, the interac-
tion profiles from the 4 replicates along the genome of
each species were highly similar (not shown), allowing to
merge them in order to assign each TAD boundary a sin-
gle score per species. For orthologous TAD boundaries,
the scores from different species could be used to com-
pute pairwise correlations. Human data were obtained
from http://aidenlab.org/data.html [47] for the GM12878
cell line (ENCODE batch 1, HIC048.hic file from https://
bcm.app.box.com/v/aidenlab/file/95512487145). The .hic
file was parsed by the Juicer tool (“dump” mode with
options “observed KR”) to compute the correspond-
ing interaction score as described above. The LiftOver
tool was used to convert the genomic positions of
the human TAD boundaries (version hg19 vs. hg38)
before comparing the interaction scores with livestock
species.
The number and proportion of genes (all or only

the orthologous ones) in each compartment type was
computed using bedtools map (-distinct option on
the gene ID field). Orthologous genes were taken from
Ensembl as previously described. Under the indepen-
dence assumption of compartment assignment between
species, the expected proportion of orthologous genes
with “triple A” (resp. with “triple B”) assignments between
species is equal to the product of the observed frequen-
cies for A (resp. for B) compartments in the three species.
The observed frequencies of “triple A” and “triple B”
assignments in orthologous genes was compared to this
expected proportion using a χ2 goodness-of-fit test.

Multi-assay integration
ATAC-seq vs. RNA-seq correlation: intra- and inter-
sample analysis For each ATAC-seq peak that over-
lapped a promoter region (1 kb upstream of the TSS,
as suggested in Fig. 4) its less-normalized read count
value (see differential analysis) was associated with the
TMM-normalized expression of the corresponding gene
from the reference annotation. Intra- and inter-sample
correlations were then investigated: within each sam-
ple, genes were ranked according to their expressions
and the distribution of the corresponding ATAC-seq val-
ues was computed for each quartile (Additional file 1:
Figure S18). Across samples, the Pearson correlation
coefficient was computed for each gene using only
the samples for which both the ATAC-seq and the
RNA-seq normalized values were available (e.g., n =
10 for pig, Additional file 1: Figure S19–20). Simi-
lar results were obtained with Spearman correlations
(not shown).

Chromatin accessibility and gene expression in A/B
compartments To compute the general chromatin acces-
sibility in A and B compartments, we first computed the
average of the normalized read count values across all
liver samples for each ATAC-seq peak. For each compart-
ment, the mean value of all contained peaks was then
reported and the resulting distributions for all A and B
compartments were reported (Fig. 8).
The same approach was used to assess the general

expression of genes in A and B compartments, using the
average of the normalized expression values from the liver
samples. Difference between A and B distributions was
tested for statistical significance using a Wilcoxon test.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12915-019-0726-5.

Additional files are available in the Additional file section and on the
FR-AgENCODE website www.fragencode.org.

Additional file 1: Additional file 1: Supplementary figures (S1-S26) and
tables (S1-S15).

Additional file 2: Reference genes and transcripts (structure, expression)
of the 4 species. Archive content:

• bos_taurus.gtf
• bos_taurus.refgn.tpm.tsv
• capra_hircus.gtf
• capra_hircus.refgn.tpm.tsv
• gallus_gallus.gtf
• gallus_gallus.refgn.tpm.tsv
• sus_scrofa.gtf
• sus_scrofa.refgn.tpm.tsv

http://aidenlab.org/data.html
https://bcm.app.box.com/v/aidenlab/file/95512487145
https://bcm.app.box.com/v/aidenlab/file/95512487145
https://doi.org/10.1186/s12915-019-0726-5
www.fragencode.org
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Additional file 3: Orthologs between the 4 livestock species. We used
Biomart to retrieve the 1 to 1 orthology relationships between chicken, pig
and cattle and added goat via gene name. The human gene id is given for
reference.

Additional file 4: Reference DE genes (all combinations): the archive
contains four folders, one for each species (bos_taurus,
capra_hircus, gallus_gallus, sus_scrofa). Each folder
contains itself two subfolders, one for each model:
diffcounts.nominsum (Model 1) and diffcounts.cdvsliver
(Model 2). Results of Model 1 are given in:

• refgenes.counts.min2tpm0.1.normcounts.diff.
readme.idx

• refgenes.counts.min2tpm0.1.normcounts.diff.
cd4.cd8.bed

• refgenes.counts.min2tpm0.1.normcounts.diff.
cd4.liver.bed

• refgenes.counts.min2tpm0.1.normcounts.diff.
cd8.liver.bed

Results of Model 2 are given in:

• refgenes.counts.min2tpm0.1.normcounts.diff.
readme.idx

• refgenes.counts.min2tpm0.1.normcounts.diff.
cd.liver.bed

All bed files contain the coordinates and id of the genes found to be
differentially expressed between the two conditions. The file also contains
the normalized read counts of those genes in the different samples as well
as the adjusted pvalue, logFC and normLogFC (see readme.idx file for more
details).

Additional file 5: FR-AgENCODE genes and transcripts (structure,
expression, positional and coding classes).

• bos_taurus_cuff_tpm0.1_2sample_complete.gff
• bos_taurus_cuff_tpm0.1_2sample_trid_

4posclasses_3codingclasses_booleans.tsv
• bos_taurus.frag.gnid.posclasslist.

codclasslist.tsv
• bos_taurus.fraggn.tpm.tsv
• capra_hircus_cuff_tpm0.1_2sample_complete.gff
• capra_hircus_cuff_tpm0.1_2sample_trid_

4posclasses_3codingclasses_booleans.tsv
• capra_hircus.frag.gnid.posclasslist.

codclasslist.tsv
• capra_hircus.fraggn.tpm.tsv
• gallus_gallus_cuff_tpm0.1_2sample_complete.

gff
• gallus_gallus_cuff_tpm0.1_2sample_trid_

4posclasses_3codingclasses_booleans.tsv
• gallus_gallus.frag.gnid.posclasslist.

codclasslist.tsv
• gallus_gallus.fraggn.tpm.tsv
• sus_scrofa_cuff_tpm0.1_2sample_complete.gff
• sus_scrofa_cuff_tpm0.1_2sample_trid_

4posclasses_3codingclasses_booleans.tsv
• sus_scrofa.frag.gnid.posclasslist.

codclasslist.tsv
• sus_scrofa.fraggn.tpm.tsv

Additional file 6: Four livestock species FR-AgENCODE gene orthology.

Additional file 7: FR-AgENCODE DE genes (all combinations). The archive
has the same structure than de.refgn.tar.gz with names starting
with cuffgenes instead of refgenes.

Additional file 8: lncRNAs (information from FEELnc, orthology, structure,
etc). Archive content:

• bos_taurus.lncrna.TPM0.1in2samples.classif.
tsv

• capra_hircus.lncrna.TPM0.1in2samples.classif.
tsv

• ConservedLncRNABySynteny_73_19_6.xlsx
• gallus_gallus.lncrna.TPM0.1in2samples.

classif.tsv
• sus_scrofa.lncrna.TPM0.1in2samples.classif.

tsv

Additional file 9: ATAC-seq peaks (coordinates, quantification, positional
classification): the archive contains four folders, one for each species
(bos_taurus, capra_hircus, gallus_gallus, sus_scrofa).
Each folder contains the following six files:

• mergedpeaks_allinfo_gn_frag.tsv
• mergedpeaks_allinfo_tr_frag.tsv
• mergedpeaks_allinfo_tr_ref.tsv
• mergedpeaks_allinfo_gn_ref.tsv
• mergedpeaks.peaknb.allexp.readnb.bed.readme.

idx
• mergedpeaks.peaknb.allexp.readnb.bed

Additional file 10: DA ATAC-seq peaks (all combinations). The archive has
the same structure as de.refgn.tar.gz with names starting with
mergedpeaks.peaknb.allexp.readnb instead of
refgenes.counts.min2tpm0.1.

Additional file 11: Four livestock species ATAC-seq peak orthology.

Additional file 12: Hi-C TADs and A/B compartments: the archive contains
three folders, one for each species (capra_hircus, gallus_gallus,
sus_scrofa). Each folder contains the following two files:

• compartments.bed
• mat.40000.longest25chr.tad.consensus.bed

Additional file 13: Three livestock species TAD boundary orthology.
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