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Abnormal Geodesics in 2D-Zermelo Navigation
Problems in the Case of Revolution and the Fan Shape

of the Small Time Balls

B. Bonnard1, O. Cots∗, J. Gergaud2,∗, B. Wembe3,∗

Abstract

In this article, based on two cases studies, we discuss the role of abnormal
geodesics in planar Zermelo navigation problems. Such curves are limit curves
of the accessibility set, in the domain where the current is strong. The problem
is set in the frame of geometric time optimal control, where the control is the
heading angle of the ship and in this context, abnormal curves are shown to
separate time minimal curves from time maximal curves and are both small
time minimizing and maximizing. We describe the small time minimal balls.
For bigger time, a cusp singularity can occur in the abnormal direction, which
corresponds to a conjugate point along the nonsmooth image. It is interpreted
in terms of regularity property of the time minimal value function.

Keywords: Geometric optimal control, Zermelo navigation problems,
Abnormal geodesics, Singularity of the value function in the abnormal
direction.
2010 MSC: 49K15, 49L99, 53C60, 58K50

1. Introduction

A Zermelo navigation problem in the plane can be stated using [6] as a time
minimal control problem described by the dynamics

q̇(t) = F0(q(t)) +

2∑
i=1

ui(t)Fi(q(t)) (1)
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where q = (x, y) are the coordinates, Fi being C∞-vector fields and u = (u1, u2)
is the control, bounded by ‖u‖ =

√
u21 + u22 ≤ 1. The vector field F0 is called

the current (or drift) while the control fields F1 and F2 define a Riemannian
metric g, taking {F1, F2} as an orthonormal frame. If ‖u‖ = 1, one can set
u = (cosα, sinα) and α is the heading angle of the ship.

This type of problems originated from a historical example in the frame of
calculus of variations, due to Carathéodory and Zermelo and where a rather
complete analysis was presented in Refs. [10, 15]. This historical example is one
of the motivations of this article. In this example, the dynamics is described by
the pair

F0(q) = y
∂

∂x
, g = dx2 + dy2,

where g is the Euclidean metric. Taking an arbitrary metric and considering
the weak current case ‖F0‖g < 1, with ‖·‖g the norm associated to the metric
g, this problem leads to a Zermelo navigation problem in Finsler geometry [2].

More recently, in [4], a Zermelo navigation problem was analyzed in details,
associated to the evolution of a passive tracer, where the current is related to
a vortex, centered at the origin of the reference frame. This problem comes at
the origin from hydrodynamics [1]. Moreover, it is a toy model for the N-body
problem, in the frame of Hamiltonian dynamics [12]. In this case, the system
evolves on the punctured plane R2 \ {0}, the current being given by

F0(q) =
k

(x2 + y2)

(
−y ∂

∂x
+ x

∂

∂y

)
where k > 0 is the circulation parameter and the control fields being given by
g = dx2 + dy2. Using polar coordinates q = (r, θ) one has

F0(q) =
k

r2
∂

∂θ

and the Euclidean metric takes the form

g = dr2 + r2 dθ2.

These two cases can be set in the same geometric frame by considering in a
coordinate system q = (r, θ), a Zermelo navigation problem, where the current
is in the form

F0(q) = µ(r)
∂

∂θ
(2)

and where the metric is given by

g = dr2 +m2(r) dθ2, m(r) > 0.

Such a metric was the object of many studies in the context of mechanics and
Riemannian geometry and it is called a metric of revolution in Darboux co-
ordinates (r, θ), where the lines r = constant are the parallels and the lines
θ = constant are the meridians [5]. Note that in (2), the current is along the
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parallels only, which is sufficient to cover the two founding examples. We refer
to [11] for a case study in the differential geometric frame, in the case of a weak
current, that is Randers problems in Finsler geometry [2], assuming ‖F0‖g < 1.
In this article, we focus on the case of a strong current, that is ‖F0‖g > 1. It was
already the case studied in details in the historical example. On the opposite,
in the vortex problem [4], the analysis was concentrated on the situation where
at the initial point, the current is weak but the tracer can reach the vicinity of
the vortex where the current is strong.

To present our contribution, we must introduce the following concepts from
geometric optimal control. The set of admissible controls U is the set of mea-
surable mappings u from [0 ,+∞) to the unit closed Euclidean ball: ‖u‖ ≤ 1,
endowed with the L∞-norm topology. We denote by q(·, q0, u) the response of
the dynamics (1) associated to u, with q(0) = q0. Let tf ≥ 0, the accessibility
set from q0 in time tf is defined by A(q0, tf ) = {q(tf , q0, u) | u ∈ U} (if q(·, q0, u)
is defined on the whole [0 , tf ]) and this gives the accessibility set from q0 defined
by A(q0) = ∪tf≥0A(q0, tf ). Thanks to existence theorems in optimal control, in
many cases (and in particular in the two cases studies), for each q0, q1 provided,
(q0, q1 6= 0 in the vortex case), there exists a time minimal solution to trans-
fer q0 to q1, and from the Maximum Principle [13], candidates as minimizers
are geodesic curves. If such a theorem holds, fixing q0, the time minimal value
function is given by:

T (q1) = inf {tf | q(tf , q0, u) = q1 and u ∈ U}

and the sphere S(q0, r) of radius r is the set of points q1 which can be reached
from q0 in minimum time r, while the ball of radius r is the set B(q0, r) =⋃
r′≤r S(q0, r

′).
The aim of this article is double. First of all, and based on [3] we provide the

geometric frame from optimal control theory to analyze such Zermelo navigation
problems and we make a focus on the role of abnormal geodesics (the limit curves
in Carathéodory terminology) in such problems. One ingredient is to introduce
the Carathéodory-Zermelo-Goh transformation which amounts to parameterize
the geodesics using as accessory control the derivative of the heading angle. This
allows to evaluate the accessibility set and its boundary filled by the geodesics,
in the abnormal directions, as the image of the extremity mapping, using semi-
normal forms. In particular the tangent model can be easily described. The
second step is to extend this analysis to larger time as shown by the two cases
studies. A singularity can occur along the abnormal geodesic corresponding to
a cusp point and associated to a concept of conjugate point along nonsmooth
abnormal geodesic, extending the concept of conjugate point in the smooth case,
introduced in [3]. This leads to describe the regularity of the time minimal value
function (from generic point of view) in both normal and abnormal cases. See
[8, 9] for the relation with singularities of semi-concave functions.

The organization of this article is as follows. In section 2, we introduce the
geometric frame from optimal control to analyze in a general case the time min-
imal solutions, in the context of Hamiltonian dynamics, using the Maximum
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Principle [13]. This provides the parameterization of both time minimal and
time maximal solutions, which is crucial to understand the role of abnormal
geodesics. We introduce the Carathéodory-Zermelo-Goh transformation which
amounts to extend our dynamics to a single-input affine system, and therefore
to use the results from [3], in particular to construct the tangent model in order
to clarify the role of abnormal geodesics. This from a geometric point of view, in
relation with Lie algebraic computations. This allows to evaluate the extremity
mapping in the abnormal directions, image of the exponential mapping, and its
boundary using the concept of Jacobi field. In section 3, using the symmetry
of revolution, the geodesics curves can be parameterized, thanks to integra-
bility properties. This is the tool to compute the sphere and ball of general
radii and to describe the time minimal value function. In particular, this allows
to analyze in a more general context two important features observed in the
historical example: the existence of a cusp singularity for abnormal geodesics
(related to a phenomenon of self-intersections of neighboring geodesics) and the
non-continuity of the value function. In the conclusion we present a program of
further studies related to this note. First, models of singularities of the value
function are described, and this can be used in a more general context, since
integrability is not a crucial issue in our study. Second, Zermelo navigation prob-
lems with symmetry of revolution are an important geometric object of study,
in the frame of integrable Hamiltonian dynamics, in relation to mathematical
physics.

2. Maximum Principle and evaluation of the accessibility set in the
regular geodesic case

2.1. Maximum Principle

Consider the Zermelo navigation problem whose dynamics is described by
(1). To formulate the Maximum Principle [13], we introduce the pseudo-Hamiltonian
associated to the cost (extended) system:

H(z, u) = H0(z) + u1H1(z) + u2H2(z) + p0

where z = (q, p), p = (px, py) being the adjoint vector, Hi(z) = p · Fi(q) being,
for i = 0, 1, 2, the Hamiltonian lift of the vector field Fi (· denotes the standard
inner product) and p0 is a constant.

The maximized (or true) Hamiltonian is given by the maximization condition

H(z) = max
‖u‖≤1

H(z, u),

and since F1, F2 form a frame, we have

Proposition 2.1. 1. The maximizing controls are given by

ui(z) =
Hi√

H2
1 +H2

2

, i = 1, 2. (3)

4



2. The maximized Hamiltonian is given by

H(z) = H0(z) +
√
H2

1 +H2
2 + p0 = 0

3. Candidates as time minimizers (resp. maximizers) are solutions of the
Hamiltonian dynamics:

ż(t) =
#—

H(z(t)), (4)

with
#—

H =
∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p

and p0 ≤ 0 (resp ≥ 0) in the time minimal (resp. maximal) case.

Definition 2.1. An extremal is a solution z(·) = (q(·), p(·)) of (4) and a
projection of an extremal is called a geodesic. It is called strict if p is unique
up to a factor, normal if p0 6= 0 and abnormal (or exceptional) if p0 = 0. In the
normal case it is called hyperbolic (resp. elliptic) if p0 < 0 (resp. p0 > 0).

Next we relate geodesic curves to singularities of the extremity mapping,
which is an important issue in our analysis, see [3] for a general context and
details.

Definition 2.2. Restrict the control domain to the set ‖u‖ = 1. Let q(·, q0, u)
be the response of u, with q(0) = q0. Fixing q0, the extremity mapping is the
map: Eq0,· : u 7→ q(·, q0, u) and the fixed time extremity mapping (at time T )
is the map: Eq0,T : u 7→ q(T, q0, u).

Proposition 2.2. Take a reference extremal z(·) = (q(·), p(·)) on [0, T ], where
the corresponding control is given by (3). If we endow the set of controls (valued
in ‖u‖ = 1) with the L∞-norm topology we have:

1. In the normal case, u is a singularity of the fixed time extremity mapping,
that is the image of the Fréchet derivative is not of maximal rank.

2. In the abnormal case, u is a singularity of the extremity mapping.

Definition 2.3. Let t 7→ q(t) be a response of (1). It is called regular if it
is a one-to-one immersion. From the Maximum Principle, the geodesics are
parameterized by the initial heading angle α0 and fixing q(0) = q0, the exponen-

tial mapping is expq0,t : α0 7→ Π(exp(t
#—

H)(q0, α0)) where Π : (q, p) 7→ q is the
q-projection. Take a strict normal geodesic q(·), a conjugate point along q(·)
is a point where the exponential mapping is not an immersion and taking all
such geodesics, the set of first conjugate points will form the conjugate locus
C(q0). The cut point along a given geodesic is the first point where the geodesic
loses optimality and they will form the cut locus Σ(q0). The separating line
L(q0) is the set of points where two minimizing geodesics starting from q0 are
intersecting.
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2.2. Carathéodory-Zermelo-Goh transformation and evaluation of the accessi-
bility set

In the historical example [10], Carathéodory integrated the dynamics of the
heading angle α to parameterize the geodesics. This corresponds to the Goh
transformation in optimal control and this will be crucial in our study to set
Zermelo navigation problems in the Lie algebraic frame.

Definition 2.4. Consider the control system (1), with q = (x, y) and ‖u‖ = 1.
One can set u = (cosα, sinα), α being the heading angle of the ship. Denote
q̃ = (q, α), X(q̃) = F0(q) + cosαF1(q) + sinαF2(q) and Y (q̃) = ∂

∂α . This leads
to prolongate (1) into the single-input affine system:

˙̃q = X(q̃) + v Y (q̃) (5)

and the derivative of the heading angle v = α̇ is the accessory control.

We refer to [3] for a presentation of such a transformation in a general
context. In this prolongation, the extremal curves z = (q, p) extend to singular
extremal curves associated to (5) with coordinates z̃ = (q̃, p̃) = (q, α, p, pα).
This leads to define the extended Hamiltonian:

H̃(z̃, v) = p̃ · (X(q̃) + v Y (q̃)) + p0.

From [3], using the Maximum Principle we obtain the following parameterization
of the geodesic curves. Let γ be a reference geodesic for the extended system
defined on [0, T ]. We assume the following:

(A0) The q-projection of γ is regular.

Computing the Lie bracket with the convection [X,Y ](q̃) = ∂X
∂q̃ (q̃)Y (q̃) −

∂Y
∂q̃ (q̃)X(q̃), then forward computations give that under assumption (A0) the
following holds along γ.

(A1) X, Y are linearly independent.

(A2) Y , [X,Y ] are linearly independent and the reference geodesic is strict.

(A3) From Legendre-Clebsch condition we have: [[Y,X], Y ] /∈ Span{Y, [Y,X]}.

Hence from [3], the control v associated to γ can be computed as the feedback

v(q̃) = −D
′(q̃)

D(q̃)
,

where we denote
D = det(Y, [Y,X], [[Y,X], Y ]),

D′ = det(Y, [Y,X], [[Y,X], X]).

Moreover, introducing
D′′ = det(Y, [Y,X], X),

we have the following.
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Proposition 2.3. We have:

• hyperbolic geodesics are contained in DD′′ > 0,

• elliptic geodesics are contained in DD′′ < 0,

• abnormal (or exceptional) geodesics are located in D′′ = 0.

The important application is to use the fine computations of [3] to evaluate in
our problem the extremity mapping in the neighborhood of a reference geodesic
curve γ, using semi-normal forms, for the action of the feedback group. This
gives evaluation of the accessibility sets and their boundaries, filled by geodesic
curves. For the details we refer to the previous reference in a more general
dimensional setting.

2.2.1. Semi-normal forms

We proceed as follows. For a reference geodesic curve t 7→ γ(t) on [0, T ],
under the action of the feedback group, one can identify γ to t 7→ (t, 0, 0) and it
can be taken as the response of v ≡ 0.

Normalization are obtained in the jet spaces of (X,Y), in the neighborhood
of γ. This is convenient to distinguish normal and abnormal cases.

Normal Case. We can choose coordinates q̃ = (q1, q2, q3) such that the system
takes the form:

X =

1 +

3∑
i,j=2

ai,j(q1)qiqj

 ∂

∂q1
+ q3

∂

∂q2
+ ε1,

Y =
∂

∂q3
,

(6)

with a33 < 0 (resp. a33 > 0) in the hyperbolic (resp. elliptic) case.

Abnormal Case. We can choose coordinates q̃ = (q1, q2, q3) such that the
system takes the form:

X = (1 + q2)
∂

∂q1
+

1

2
a(q1)q22

∂

∂q3
+ ε2,

Y =
∂

∂q2
.

(7)

Again see [3] for details of the computation and description of ε1, ε2. Taking
εi = 0 and q1 = t in (6), (7), one can evaluate the accessibility set and its
boundary and compute conjugate points (in the regular case) to deduce the
optimality status of the reference geodesic.
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2.2.2. Optimality status: normal case

Using the normalization in (6) one sets: q1(t) = t + w1(t) and projection
of the accessibility set in w1-direction is represented on Fig. 1. Note that hy-
perbolic and elliptic geodesics amount respectively to minimize and maximize
the w1-coordinate. If t > t1c (first conjugate time) the fixed extremity mapping
becomes open.

t

w1

0 t1c

elliptic case

t

w1

0 t1c

hyperbolic case

Figure 1: Projection of the fixed time accessibility set on the w1-coordinate; t1c: first conjugate
time.

We have:

Proposition 2.4. Under the assumptions, in the hyperbolic (resp. elliptic) case,
the reference geodesic γ is time minimizing (resp. maximizing) with respect to
all trajectories of the system, contained in a conic neighborhood of the reference
curve, if the final time is stricly less than the first conjugate time t1c.

2.2.3. Optimality status: abnormal case

In this case, one must estimate the time evolution of the accessibility set and
its boundary. It is represented on Fig. 2. The reference geodesic is γ : t 7→ (t, 0, 0)
and is associated to v ≡ 0. We fix t along the reference curve and let a time tf
in a neighborhood of t. Using the model, we compute geodesics such that :

q1(tf ) = t, q2(tf ) = 0,

and the associated cost is given by

q3(tf ) =

∫ tf

0

1

2
a(q1)q22 dt.

Note that if we restrict to geodesics, this amounts to use the Jacobi (variational)
equation, along the reference geodesic. One has:

q3(tf ) = α(t− tf )2 + o(t− tf )3 (8)
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tf

q3

abnormal

hyperbolicelliptic

t

Figure 2: Projection of the accessibility sets on the q3-coordinate in the abnormal case.

α being a positive invariant, given by the Jacobi equation.
Note that the model (7) shows clearly that the abnormal curve is a limit

curve, as observed by Carathéodory. In the n-dimensional case, conjugate points
along the abnormal curve can be computed and correspond to points where the
extremity mapping becomes open. But clearly from (8) this cannot occur in the
3d-case.

In particular one has:

Proposition 2.5. Under our assumptions, in the abnormal (exceptional) case
the reference geodesic is time minimizing and time maximizing, with respect to
all trajectories contained in a conic neighborhood of the reference curve.

2.3. Small time balls and spheres in the strong current case

One consequence of our previous analysis is to recover the fan shape of the
small time balls, in the case of a strong current and described in the historical
example.

We proceed as follows.

2.3.1. The tangent model

We assume that ‖F0(q0)‖g > 1 with F0(q0) taken horizontal and pointing in
the right direction and we assume that the metric g is given by F1(q0) = ∂

∂x ,

F2(q0) = ∂
∂y with q = (x, y). The ball of directions at q0 is defined by:

F (q0) = {F0(q0) + u | ‖u‖ ≤ 1} .

It is represented on Fig. 3 and its boundary is a translation of the unit circle.
The two abnormal directions are associated to the heading angles {−α, α} and
correspond to the tangent of the unit circle. These heading angles split the unit
circle in two, the right part corresponds to hyperbolic directions and the left
part to elliptic directions.
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F0(q0)

abnormal (α)

abnormal (−α)

hyperbolic

elliptic‖u‖ = 1

q0

Figure 3: Strong current case: ball of directions.

2.3.2. Small spheres and balls

Using Section 2.2, one gets the following.

Proposition 2.6. In the strong current case for a small time, the exponential
mapping is a diffeomorphism from the unit circle onto its image, which is formed
on one part by the extremities of the hyperbolic trajectories, the other part being
the extremities of the elliptic trajectories, the two parts being separated by the
two points corresponding to the abnormal trajectories. Hyperbolic and elliptic
geodesics correspond respectively to time minimizing and time maximizing tra-
jectories, while abnormal geodesics are time minimizing and time maximizing.

The sphere and the ball with small radius are represented on Fig. 4 and in
particular this gives the fan shape of the corresponding balls. The contact of
the hyperbolic sector with the abnormal curve can be obtained as in section
2.2.3 using the micro-local model where the abnormal geodesic is normalized
to the horizontal line. A more precised representation can be obtained in the
rotational case, since the geodesic flow is Liouville integrable, which leads to
the exact computation of the exponential mapping. This point of view will be
developped in the next section.

3. The cusp singularity in the abnormal direction and regularity of
the time minimal value function

We refer to [4, 10] for the occurence of the cusp singularity in both examples,
which motivate the study of this stable singularity. The problem is set in the
family of problems with rotational symmetry, which covers the two case studies.

3.1. The geometric frame and integrability properties

Recall that in Dardoux coordinates (r, θ), we consider a metric of the form
g = dr2+m2(r) dθ2 and a current F0(q) = µ(r) ∂∂θ . With such a metric, F1 = ∂

∂r
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ä

ä

ä

ä

abnormals

hyperbolic

elliptic

S(q0, r)

time maximizing

q0

Figure 4: Small sphere (plain black line) and ball (delimited by the abnormals and the sphere)
for the strong current case.

and F2 = 1
m(r)

∂
∂θ form an orthonormal frame. Using the Carathéodory-Zermelo-

Goh extension one gets with q̃ = (r, θ, α) (α being the heading angle):

X = cosα
∂

∂r
+

(
µ(r) +

sinα

m(r)

)
∂

∂θ
.

Straighforward computations give:

[Y,X](q̃) = sinα
∂

∂r
− cosα

m(r)

∂

∂θ
,

[[Y,X], Y ](q̃) = cosα
∂

∂r
+

sinα

m(r)

∂

∂θ
,

[[Y,X], X](q̃) =

(
−µ′(r) sinα+

m′(r)

m2(r)

)
∂

∂θ
.

Hence we have:

D(q̃) =
1

m(r)
,

D′(q̃) = −µ′(r) sin2 α+
m′(r) sinα

m2(r)
,

D′′(q̃) = µ(r) sinα+
1

m(r)
.

So that conditions (A2) and (A3) are satisfied, in particular every geodesic is
strict. But the collinearity condition (A1) can be violated at points where

cosα = µ(r) +
sinα

m(r)
= 0.
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The dynamics is given by

ṙ = cosα,

θ̇ = µ(r) +
sinα

m(r)
,

α̇ = µ′(r)m(r) sin2 α− m′(r) sinα

m(r)
.

(9)

The following is useful.

Proposition 3.1. The dynamics (9) can be integrated by quadrature.

Proof. The pseudo-Hamiltonian takes the form:

H = pr cosα+ pθ

(
µ(r) +

sinα

m(r)

)
+ p0. (10)

Moreover, from the maximization condition one has:

∂H

∂α
= 0,

which gives the Clairaut relation:

pr sinα =
pθ
m(r)

cosα.

So, (pr, pθ/m(r)) and (cosα, sinα) are parallels and thanks to this, one has

(pr, pθ/m(r)) = λ(cosα, sinα), with λ =
(
p2r +

p2θ
m2(r)

)1/2
. Plugging such pr

into (10) allows us to define the following implicit relation between α and r:

pθ

(
µ(r) +

1

m(r) sinα

)
+ p0 = 0. (11)

for α 6= 0 [π]. By homogeneity one can fix λ(0) = 1 and have (pr0 , pθ/m(r0)) =
(cosα0, sinα0). So that, one gets pθ = m(r0) sinα and from the maximized
Hamiltonian one deduces p0 = −1− pθµ(r0).

Equation (9) can be solved by quadrature. From geometric control point
of view, it amounts to compute first the control using the integration of the
heading angle, r being given by equation (11). Then, θ can be obtained using a
further quadrature. In the case where α0 = 0 [π], one has:

α = α0, r(t) = ±t+ r0, and θ(t) =

∫ t

0

µ(r) dt.

This result can be applied to our two cases studies, to give a model of the
cusp singularity. We shall present it in our frame, with the historical model.
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3.2. Computations in the historical example

We consider now the historical example presented in the introduction. We
consider the following coordinates q̃ = (x, y, γ) = (θ, r, π/2 − α), where r, θ
and α are understood in the sense of the previous section. In this historical
example the functions µ(·) and m(·) are given by µ(y) = y and m(y) = 1. In
this representation, the dynamics takes the following form:

ẋ = y + cos γ, ẏ = sin γ, γ̇ = − cos2 γ. (12)

Straighforward computations using the previous section leads to

D(q̃) = 1, D′(q̃) = cos2 γ and D′′(q̃) = y cos γ + 1,

and thanks to Proposition 2.3 we can parameterize abnormal, hyperbolic and
elliptic extremals.

• Abnormal case. The abnormal geodesics are contained in D′′ = y cos γ+
1 = 0. Hence, given an initial condition (x0, y0, γ0) such that |y0| ≥ 1, the
associated geodesic is abnormal if γ0 ∈ {γ1a, γ2a} with

γ1a = arccos

(
− 1

y0

)
and γ2a = − arccos

(
− 1

y0

)
.

If the current is strong, that is if |y0| > 1, then γ1a 6= γ2a and we have two
abnormals. Else, if |y0| = 1 there is only one abnormal, and if |y0| < 1
(this correspond to a weak current) there is no abnormals.

• Normal case. The hyperbolic (resp. elliptic) geodesics are contained in
DD′′ = D′′ > 0 (resp. DD′′ = D′′ < 0). Hence, given an initial condition
(x0, y0, γ0):

– if |y0| < 1, then y0 cos γ0+1 > 0 and thus the corresponding geodesic
is hyperbolic.

– for |y0| = 1, if the geodesic is normal, then it is hyperbolic.

– for |y0| > 1, if the geodesic is normal, then it is either hyperbolic
or elliptic depending on the sign of y0 cos γ0 + 1. Note that the
hyperbolic and elliptic geodesics are separated by the abnormals as
illustrated in Fig. 3.

To complete the discussion about the historical example, we give the inte-
gration of the system.

Proposition 3.2. Let (x0, y0, γ0) be the initial condition, the corresponding
solution (x(t), y(t), γ(t)) is given as follows.

• For γ0 = ±π/2 one has:

γ(t) = γ0, y(t) = ±t+ y0 and x(t) = ± t
2

2
+ y0t+ x0.
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• For γ0 ∈ (−π/2, π/2), one has:

γ(t) = atan (tan γ0 − t), y(t) = y0 +
1

cos γ0
− 1

cos γ(t)
,

x(t) =
1

2

[
ln

∣∣∣∣ cos γ

1 + sin γ

∣∣∣∣]γ(t)
γ0

+
1

2

[
tan γ

cos γ

]γ(t)
γ0

+

(
y0 +

1

cos γ0

)
t+ x0.

• For γ0 ∈ (−π,−π/2) ∪ (π/2, π], one has:

γ(t) = π + atan (tan γ0 − t), y(t) = y0 +
1

cos γ0
− 1

cos γ(t)
,

x(t) =
1

2

[
ln

∣∣∣∣ cos γ

1 + sin γ

∣∣∣∣]γ(t)
γ0

+
1

2

[
tan γ

cos γ

]γ(t)
γ0

+

(
y0 +

1

cos γ0

)
t+ x0.

Cusp points in the abnormal directions. The integration of the system
allows us to compute the cusp points in the abnormal directions. A cusp point
denoted (xcusp, ycusp, γcusp) occurs along an abnormal geodesic at time tcusp
when ẋ(tcusp) = ẏ(tcusp) = 0. This gives

tcusp = tan γ0, γcusp = 0 [π] and ycusp = sign (y0) .

Finally, xcusp is deduced from the analytical expressions given above.

Synthesis: Cusp singularity and regularity of the value function. The
geometric features of the model, see also Figs. 5 and 6, are the following.

• The abnormal geodesic with the cusp singularity is the limit curve of the
micro-local sector, formed by self-intersecting hyperbolic geodesics, see
Fig. 5.

• The abnormal geodesic is optimal up to the cusp point. Hence it corre-
sponds to a concept of conjugate point along the nonsmooth abnormal
geodesic.

• Carathéodory [10] already described the following phenomenon. Due to
the loss of local accessibility associated to the limit geodesic, the time
minimal value function is not continuous. This is clear from Fig. 6. To
reach from the initial point q0 a point B at right of the limit curve, one
must use a self-intersecting normal geodesic so that at the intersection
with the abnormal geodesic, the time is longer along the normal than
along the abnormal geodesic. We also observe that in this sector, the
normal geodesic is optimal up to the intersection point with the abnormal
geodesic.
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Figure 5: (Left) We display (in red) hyperbolic geodesics that started from the initial point
q0 = (−2, 0) portrayed in black, in the whole conic neighborhood delimited by the two ab-
normals (in green). (Right) We display (in blue) elliptic geodesics from the same initial point
and with the same sector.
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Figure 6: (Left) The initial point is q0 = (−2, 0). The abnormal geodesic with the cusp
singularity is in green while the others geodesics in red are hyperbolic. We can see that the
cusp singularity is the limit of self-intersecting hyperbolic geodesics. Besides, to reach the
point B from q0, one has to use a hyperbolic self-intersecting geodesic. When this hyperbolic
geodesic intersects the abnormal, the time is longer along the hyperbolic than the abnormal.
At this intersection, the hyperbolic geodesic ceases to be optimal. (Right) The time minimal
value function along the dashed segment from the left subgraph. The discontinuity occurs
at the intersection between the hyperbolic and abnormal geodesics. It is represented by the
green dot, which is the time along the abnormal geodesic.

4. Conclusion

In this article, the results of [3] are applied to planar Zermelo navigation
problems to give a neat analysis of the role of abnormal geodesics as limit curves
of the accessibility set and to describe the fan shape of the balls with small
radius. Generic singularities of the time minimal value function associated to
normal directions are all well known due to earlier Withney classification [14],
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see also [15] for the Hamiltonian frame. But based on the two case studies,
we describe and provide a mathematical model of a (stable) singularity in the
abnormal direction. This corresponds to a cusp singularity of the abnormal
geodesics, taken as a limit points of self-intersecting normal geodesics. Moreover,
in this situation, the time minimal value function in not continuous. Our study
completes the contribution of [4] devoted to the calculation of spheres with
general radius, in the vortex case, when at the initial point the current is weak.
It is a further step to analyze general navigation problems in the plane, in
the case with a symmetry of revolution, combining geometric methods with
numerical simulations. Also it can serve as models to analyze singularities of
the exponential mapping in the non integrable case. In particular in the normal
case using (6) and in the abnormal case using (7) and (12). Besides, this gives
the corresponding models of the singularities of the value function.
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