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Abnormal Curves in a Zermelo Navigation Problem in the Plane
and the Fan Shape of Small Time Balls

B. Bonnard∗, O. Cots†, J. Gergaud‡, B Wembe§

July 24, 2020

Abstract

In this note, motivated by the Zermelo navigation problem in the flat plane, where the current field
is associated to a point vortex, we discuss the role of the abnormal curves in the shape of the small time
balls. Abnormal curves are occurring in the strong current domain in the vicinity of the vortex and form
with the hyperbolic geodesics the boundaries of the small time accessibility sets and give to the small time
balls a fan shape. Implications with the regularity of the value function are discussed.

Keywords: Helhmoltz-Kirchhoff N vortices model, Zermelo navigation problem, Geometric optimal con-
trol, Abnormal curves, Time minimal value function.

1 Introduction
Consider the Zermelo navigation problem in the plane, with a vortex singularity introduced in [5] and whose
dynamics is given in cartesian coordinates q := (x, y) ∈M := R2 \ {0} by

q̇(t) = F0(q(t)) + u1(t)F1(q(t)) + u2(t)F2(q(t)) (1)

where F0 is the current (or drift), and F1, F2 define the control directions associated to the heading angle α
of the ship:

F0(q) :=
µ

x2 + y2

Å
−y ∂

∂x
+ x

∂

∂y

ã
, F1(q) :=

∂

∂x
, F2(q) :=

∂

∂y
, µ > 0,

and where u := (u1, u2) is the control. The control is bounded by

‖u‖ :=
»
u21 + u22 ≤ 1

and for ‖u‖ = 1, it is related to the heading angle α by u = (cosα, sinα).
Following the control point of view [6], the Zermelo navigation problem is restated as a time minimal

control problem to steer q0 to q1 for any pair q0, q1 ∈ M . We refer to [2] for the differential geometric frame
in the case of a weak current and Randers metrics. More generally, our study will concern the local problem
and we can consider the general case in an open subset Ω of R2 where F0 is smooth, and the control directions
are associated to ‖u‖ ≤ 1 and where F1, F2 form an orthonormal frame for a Riemannian metric g so that
‖u‖ = 1 is the standard unit sphere. In this general frame, for q0 ∈ Ω we can encountered three cases:

• Weak current case if ‖F0(q0)‖g < 1;

• Strong current case if ‖F0(q0)‖g > 1;

• Intermediate current case in the transitional case ‖F0(q0)‖g = 1.
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The set of admissible controls U is the set of measurable mappings u from [0,+∞) to the unit closed
Euclidian ball. For u ∈ U we denote by q(·, q0, u) the trajectory of (1) associated to u, initiating at time 0
from q0 and defined on a domain [0, tf (u)]. The accessibility set from q0 in time tf ≥ 0 is denoted by

A(q0, tf ) := {q(tf , q0, u) | u ∈ U and q(·, q0, u) is defined on [0, tf ]}

and the accessibility set from q0 is A(q0) :=
⋃
tf≥0A(q0, tf ). In the case of system (1) associated to the vortex

problem, from [5], for each pair (q0, q1) in the punctured plane there exists a time minimal solution to steer
q0 to q1. Fixing q0 we define the time minimal value function

T (q0, q1) := inf
u∈U

tf s.t q(tf , q0, u) = q1.

Fixing q0, the sphere S(q0, r) with radius r is the set of points q1 which can be reached from q0 in minimum
time r, while the ball with radius r is B(q0, r) :=

⋃
r′≤r S(q0, r

′).
The objective of this note is to complete the results of [5] to describe the balls with a small radius. In

the weak current case, the result is well known but in the strong current case, the small time accessibility set
is bounded by the so-called abnormal curves and the ball has the shape of a fan. Our study is based on [4]
which describes the shape of the accessibility set in a neighborhood of a reference trajectory under generic
assumption. Following the Caratheodory-Zermelo-Goh point of view, our system is extended in the 3D-space,
where the control is taken as the derivative α̇ of the heading angle and the accessibility set is described in a
conic neighborhood of the heading angle of the reference curve. Also, in this approach, our analysis relies to
consider both time minimizing and maximizing trajectories.

Combined with integrability results of the geodesic flow, due to the rotational symmetry in the vortex
problem, it will allow in a forthcoming article to classify the shape of the balls for general radii and to classify
the singularities of the value function.

2 Pontryagin maximum principle and geodesics classification
According to the Maximum Principle [9] and thanks to [5] every minimizing curves is a solution of the C∞
Hamiltonian dynamics on T ∗M given in canonical coordinates z = (q, p) by

ż(t) =
#—

H(z(t)) (2)

where p is the nonzero adjoint, where
#—

H :=
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

is the symplectic gradient associated to the true (or maximized) Hamiltonian H given by

H(z) := H0(z) +
»
H2

1 (z) +H2
2 (z),

where Hi(z) := p · Fi(q) is the Hamiltonian lift of Fi and where · denotes the scalar product. An extremal
is a solution t 7→ z(t) of

#—

H and the q-projection is called a geodesic. Note that H =: −p0 is constant along
any extremal and an extremal is called hyperbolic if p0 < 0, elliptic if p0 > 0 and abnormal (or exceptional) if
p0 = 0. Moreover, thanks to the Maximum Principle, hyperbolic (resp. elliptic) extremals are candidates to
the time minimal (resp. maximal) problem, while the time optimality status of the abnormal extremals have
been clarified in [4].

A brief recap adapted to the 2-dimensional Zermelo navigation problem is presented here. The first step,
using the Zermelo-Caratheodory-Goh point of view, is to parameterize the extremal controls by the derivative
of the heading angle α instead of α and this means to extend our system into the single-input (affine) system:

˙̃q = X(q̃) + v Y (q̃) (3)

with q̃ := (q, α), X(q̃) := F0(q) + (cosαF1(q) + sinαF2(q)) and Y (q̃) := ∂
∂α . In this prolongation, extremal

curves z = (q, p) extend into singular extremal curves z̃ := (q, α, p, pα) of (3) for the extended Hamiltonian

H̃ = p̃ · (X(q̃) + v Y (q̃))

with the constraint p · Y (q̃) = 0.
We assume the following:
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Assumptions 2.1 Take a reference extremal t 7→ z(t) on [0, tf ], z = (q, p) and let z̃ = (q̃, p̃) be its extension.
Besides, we assume the following: Along γ,

(A1) X, Y are linearly independent;

(A2) Y , [X,Y ] are linearly independent;

(A3) [Y, [X,Y ]] /∈ Span{Y, [X,Y ]}.

From (A3), p is unique up to a factor and the geodesic is strict and moreover singular control v can be
computed as a true feedback:

v = −D
′(q̃)

D(q̃)
,

where we denote:
D := det(Y, [Y,X], [[Y,X], Y ]),

D′ := det(Y, [Y,X], [[Y,X], X]).

Moreover, if we introduce D′′ := det(Y, [Y,X], X) we have:

Definition 2.1 Under assumptions (A1), (A2) and (A3), a geodesic is called:

• hyperbolic if DD′′ > 0,

• elliptic if DD′′ < 0,

• abnormal (or exceptional) if D′′ = 0.

They have the following interpretation: define the extremity mapping at time tf by Etf : v 7→ q̃(tf , q̃0, v)
(tf , q̃0 being fixed) and the extremity mapping E : v → q̃(·, q̃0, v) (only q̃0 being fixed), one has the following.

Proposition 2.2 Hyperbolic and elliptic extremals correspond to singularities of the extremity mapping (for
the L∞-norm on the set of inputs) for fixed tf , while abnormal (or exceptional) extremals correspond to
singularities of the extremity mapping.

Moreover, a precise description of the accessibility set in time tf can be obtained in a C0-neighborhood
of a reference singular extremal under generic assumptions that we described briefly. Dealing with the time
minimal control problem, one can assume that t 7→ z(t) is a one-to-one immersion so that the extension can
be identified to γ : t 7→ (t, 0, 0) and the singular control v can be taken as v ≡ 0, using a proper feedback.

Then, one has:

Proposition 2.3 In the hyperbolic (resp. elliptic) case, the reference trajectory γ is time minimizing (resp.
maximizing) with respect to all trajectories contained in a tubular neighborhood if the final time tf is less
than the first conjugate time t1c. A conjugate time corresponding to a singularity of the exponential mapping
expq0 : (t, p0) 7→ Π(exp t

#—

H(q0, p0)) with Π(q, p) := q. In the exceptional case, the reference extremal is time
minimizing and time maximizing.

Moreover one has a precise description of the accessibility set in the tubular neighborhood given by Figure 1.
In particular for t > t1c, the fixed time extremity mapping becomes open.

In the abnormal case, the abnormal reference trajectory corresponds to a singularity of the extremity
mapping and the projection in the singular direction (note that the singular direction depends on the case) is
given by Figure 2.

Note due to the small dimension, conjugate points cannot occur and the extremity mapping is never open.
In higher dimension, conjugate points can occur either if the fixed time extremity mapping becomes open or
in the generic case if the extremity mapping becomes open, see Figure 3.
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Figure 1: Projection of the fixed time accessibility set in the singular direction.

t
abnormal

hyperbolicelliptic

Figure 2: Projection of the accessibility set in the singular direction.

tabnormal

hyperbolicelliptic

t < t1c

t1c t

hyperbolic elliptic
t > t1c

t1c

Figure 3: Case n > 3: generic conjugate point t1c in the abnormal case.

3 Spheres with small radius

3.1 Notations and definitions
The geodesics are parameterized by t and the initial heading angle α. Fixing q0 and t > 0 we denote by expq0,t
the exponential mapping expq0,t : α 7→ Π(exp t

#—

H(q0, p0(α))) where Π(q, p) = q is the q-projection. A conjugate
point along a reference geodesic is a point where the exponential mapping is not an immersion and taking the
set of first conjugate points they will form the conjugate locus C(q0). A cut point is the first point where the
geodesic loses optimality and they will form the cut locus Σ(q0). The separating set L(q0) is the set of points
where two minimizing geodesics starting from q0 are intersecting.
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3.2 Ball and sphere of directions
One consider the smooth Zermelo navigation problem. One can assume that g is the Euclidian metric and F0

is vertical at the initial point q0 which can be identified to q0 = 0. The ball of directions at q0 is defined by
the set

F (q0) := {F0(q0) + u | ‖u‖ ≤ 1} , (4)

whose boundary is a circle in our context. We have three cases:

Case 1: Strong current case (Figure 4). In this case the cone of directions is a translation of the unit
sphere and we have two abnormal directions defined by {−α1, α1} corresponding to the tangents to the circle
from the initial point identified to 0. The upper part corresponds to the hyperbolic directions and the lower
part to the elliptic directions.

F0

α

abnormal

hyperbolic

elliptic

‖u‖ = 1
0

Figure 4: Strong current case.

Cases 2-3: Weak and intermediate current cases (Figure 5). In the intermediate current case the
abnormal directions degenerate into the single point 0 and we have only an hyperbolic sector. In the weak
drift case, we have only hyperbolic directions.

F0

α

hyperbolic

0

F0

α

hyperbolic

0

Figure 5: Weak (left subgraph) and intermediate (right subgraph) current cases.

3.3 Small balls and spheres
For small times, the ball of directions F (q0) gives the shape of the small balls and spheres and it is in accordance
with the results of Section 2 about the properties of the extremity mapping.

First case: weak current drift. It corresponds to a Randers problem in the plane, in the frame of the
Finsler geometry, see [1].

Proposition 3.1 In the weak current case, the exponential mapping for small time t is a diffeomorphism from
the unit circle to the sphere with radius r and it is represented on Figure 6.
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Figure 6: Small sphere and ball for Randers metrics.

Second case: strong drift case. In this case, according to the cone of directions, the small balls have a
fan shape represented on Figure 7.

ä

ä

ä

ä

abnormal

hyperbolic

elliptic

S(0, r)

time maximizing

0

Figure 7: Small sphere and ball for the strong current case.

Proposition 3.2 In the strong current case, the exponential mapping for a small time is a diffeomorphism
from the unit circle onto its image, which is formed on the the upper part by the extremities of the hyperbolic
trajectories, the lower part being the extremities of the elliptic trajectories, the two parts being separated by the
two points corresponding to the abnormal trajectories. Hyperbolic and abnormal points correspond to the time
minimizing trajectories, while elliptic points correspond to time maximizing trajectories. sector.

Remark 3.3 This result is in accordance with the geometric analysis of the accessibility set in time t near
the reference extremal and corresponds to the three cases presented on Figure 8.

boundary boundary

abnormal

elliptic hyperbolic

Figure 8: Boundary of the small time accessibility set in time t.
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4 The historical Caratheodory-Zermelo model
The main features of the weak current case were already given in the historical work which describes the global
minimizing solutions. The objectives of this section is to provide the geometric optimal control frame, see [6].

4.1 The case of revolution
One can consider a general Zermelo navigation problem with a rotational symmetry described in normal
coordinates by the pair:

F0(q) := µ(y)
∂

∂x
, g := m2(y)dx2 + dy2

where µ and m > 0 are smooth functions. Hence the system

˙̃q = X(q̃) + v Y (q̃)

gives the following:

X(q̃) = (µ(y) + cos(α))
∂

∂x
+

sin(α)

m(y)

∂

∂y
and Y (q̃) =

∂

∂α
.

Straighforward computations lead to:

[Y,X](q̃) = − cosα

m(y)

∂

∂x
+ sinα

∂

∂y
,

[[Y,X], Y ](q̃) =
sinα

m(y)

∂

∂x
+ cosα

∂

∂y
,

[[Y,X], X](q̃) =
m′(y)

m2(y)
(1 + µ(y) cosα)

∂

∂x
+ µ′(y) cosα

∂

∂y
.

and

D(q̃) = − 1

m(y)
, D′(q̃) = − cosα

m(y)
µ′(y)− m′(y)

m(y)
(1 + µ(y) cosα) sinα, D′′(q̃) = −m

′(y)

m(y)
(1 + µ(y) cosα).

Hence, the dynamics is given by:

ẋ = µ(y) + cosα,

ẏ =
1

m(y)
sinα,

α̇ = −µ′(y) cos2 α− m′(y)

m(y)
(1 + µ(y) cosα) sinα.

(5)

Moreover, the condition
∂H

∂α
= 0,

where H is the non-maximized Hamiltonian H = H0 +H1 cosα+H2 sinα, gives the Clairaut relation:

px =
m(y)

tanα
py = cst.

Since H = −p0 is constant one gets

µ(y) + p0
m(y)

px tanα
= −2 cosα.

Hence, we deduce the following:

Proposition 4.1 In the case of revolution, the dynamics (5) can be integrated by quadratures.

7



4.2 Historical example
Using the previous section, one can get the geodesics parameterization of the Caratheodory-Zermelo case. One
has:

X(q̃) = sin(α)
∂

∂x
+ (y + cos(α))

∂

∂y
and Y (q̃) =

∂

∂α
.

The dynamics reduces to:
ẋ = y + cosα, ẏ = sinα, α̇ = − cos2 α. (6)

We obtain:

Proposition 4.2 For a given initial point q0 = (x0, y0, α0), the solution q(t, q0) = (x(t, q0), y(t, q0), α(t, q0))
of the previous system is given by:

α(t, q0) = − arctan(t+ c), with c = − tanα0,

y(t, q0) = −p
0

px
− 1

cosα(t)
,

x(t, q0) =
1

2
ln

Å
cosα(t)

1 + sinα(t)

ã
+

tanα(t)

2 cosα(t)
− p0

px
t− 1

2
ln

Å
cosα0

1 + sinα0

ã
+

tanα0

2 cosα0
+ x0.

Proof 1

α̇ = − cos2 α⇒ α̇

cos2 α
= −1⇒ tanα(t) = −(t+ c)⇒ α(t) = − arctan(t+ c), with c = − tanα0.

On the other hand,
H = −p0 ⇒ ypx +

»
p2x + p2y = −p0

⇒ pxy(t) = −p0 − |px|
»

1 + tan2 α(t)

⇒ y(t) = −p
0

px
− 1

cosα(t)
,

(7)

re-injecting y in ẋ = y + cosα gives us

ẋ(t) = −p
0

px
− 1

cosα(t)
+ cosα(t)

and integrating this equation leads to

x(t) =
1

2
ln

Å
cosα(t)

1 + sinα(t)

ã
+

tanα(t)

2 cosα(t)
− p0

px
t− 1

2
ln

Å
cosα0

1 + sinα0

ã
+

tanα0

2 cosα0
+ x0.

Abnormals and cusp point: In the abnormal case one has p0 = 0, then:

H = −p0 ⇒ y px = −‖p‖ ⇒ y0 px = −1 ⇒ px = − 1

y0
,

i.e
α1
a = arccos

Å
− 1

y0

ã
, α2

a = − arccos

Å
− 1

y0

ã
.

We have a cusp point if and only if ẋ(tcusp) = ẏ(tcusp) = 0 i.e pycusp = 0 and ycusp = ±1. Hence, ycusp = 1
if y0 > 0 and ycusp = −1 if y0 < 0.

As illustrated in the figure 10, the cusp point along an abnormal is the limit of a sequence of self-intersections
along hyperbolic curves contained in a neighborhood of this abnormal.
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abnormals

hyperbolic

q
0

with t
1
<t

2

t
2

t
1

Figure 9: Illustration of the flow of geodesics. On this figure one can see an hyperbolic curve which loses its
optimality when intersecting the abnormal for the second time (this highlights the non-continuity of the value
function along this abnormal up to the cusp point).

hyperbolics

cusp

self-intersections

Figure 10: This figure highlights the cusp point along the abnormal which can be seen as the limit of self-
intersections that occur along hyperbolic geodesics in a neighbourhood (in the sense of the initial alpha angle)
of this abnormal.

5 Conclusion
In this short paper, Zermelo navigation problem in the plane has been set in the frame of geometric optimal
control. The sphere of small radius have been described in the case of weak current, this corresponds to the
Finsler case, similar to the Riemannian case. If the current is strong, the small ball has a fan shape with two
limit directions corresponding to the abnormal geodesics.

The historical Caratheodory-Zermelo [7] is analyzed in this frame. Thanks to the integrability properties of
the geodesics flow the problem can be analyzed in full details. One can observe two interesting new phenomena
which correspond to stable situations. First of all, when meeting the collinearity set, the abnormal direction
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presents a cusp singularity and normal geodesics in a micro-local sector have self-intersections. Second, due
to the existence of the abnormal geodesics, the value function is not in general continuous.

0 < t < t1

t1 < t < t2

t = t2

t = t1

ä

ä

A

C

D

B

L0 s

T

t1

t2

sA sB sC sD

Figure 11: Discontinuity of the time minimal value function T . Let consider two times 0 < t1 < t2, with t1
small and t2 large enough. (Left) Balls of radii t1 and t2 with the corresponding spheres. The value function
T is discontinuous at B, at the intersection of the right abnormal of length t1 and a hyperbolic extremal of
length t2. (Right) The time minimal value function T along the line L parameterized by s and such that the
coordinates value sA, sB , sC and sD correspond respectively to the points A, B, C and D. One can see the
discontinuity of T at sB .

ä

ä

ä

ä

ä

ä

self-intersections cusp

abnormal

Figure 12: Abnormal with cusp singularity as limit case of self-intersecting normal extremals.
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