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Discrete modelling frameworks of Biological networks can be divided in two distinct categories: Boolean and Multi-valued. Although Multi-valued networks are more expressive for qualifying the regulatory behaviours modelled by more than two values, the ability to automatically convert them to Boolean network with an equivalent behaviour breaks down the fundamental borders between the two approaches. Theoretically investigating the conversion process provides relevant insights into bridging the gap between them. Basically, the conversion aims at finding a Boolean network bisimulating a Multi-valued one. In this article, we investigate the bisimilar conversion where the Boolean integer coding is a parameter that can be freely modified. Based on this analysis, we define a computational method automatically inferring a bisimilar Boolean network from a given Multivalued one.

Introduction

Discrete network based modelling frameworks, seminally introduced by S. Kauffman [START_REF] Kauffman | Metabolic stability and epigenesis in randomly constructed genetic nets[END_REF][START_REF] Glass | The logical analysis of continuous, non-linear biochemical control networks[END_REF] and R. Thomas [START_REF] Thomas | Behaviour of Biological Biological Role of Feedback Loops and Practical Use of the Concept of the Loop-Characteristic[END_REF][START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda[END_REF] for regulation network modelling can be divided in two distinct categories: Boolean networks and Multivalued networks. In the former, the states of genes are modelled by Boolean values, with propositional logic as the modelling framework, whereas in the latter the state is extended to the integer domain, also called Multi-valued, using Presburger arithmetic as a modelling framework. It is often admitted that Multi-valued networks provide more expressiveness for modelling gene expression behaviour by distinguishing between more than two states (i.e., off or on) for specifying the regulatory activity. However, the ability to automatically convert a Multi-valued network to a Boolean one with the same dynamical behaviour weakens this distinction from an analytical standpoint since the analysis of the dynamics can be performed on the Boolean network directly.

More generally, the Boolean conversion of a Multi-valued network offers the opportunity to bridge the gap between the two modelling formalisms that enables to inherit, adapt and extend the theoretical results defined in a framework to the other [START_REF] Tonello | On the conversion of multivalued to Boolean dynamics[END_REF]. Moreover, this allows the use of software based on propositional logic that could prove computationally more efficient than the algorithms developed for Presburger arithmetic for the same problem. In particular, a wide spectrum of problems in modelling regulatory networks by symbolic characterization of stable states can be formalized as problems of logical valuation of variables satisfying a formula in the Boolean case (the SAT problem) or finding solutions complying to a set of linear constraints for the integer case (integer linear programming, ILP). The work [START_REF] Fadi | Generic ILP versus specialized 0-1 ILP: An update[END_REF] provides an experimental comparison of ILP and SAT solvers applied to the SAT problem.

By considering these opportunities, the issue is thus to investigate methods for converting Multi-valued networks to Boolean, while preserving the dynamical behaviour. This conversion is primarily based on an encoding of integers by Boolean profiles, establishing the equivalence between the two kinds of values. The challenge is to extend this equivalence to state transitions in order to certify the behavioural integrity.

In [START_REF] Didier | Mapping multivalued onto Boolean dynamics[END_REF], G. Didier, E. Remy and C. Chaouya extensively study the conditions for the conversion of Multi-valued networks to Boolean ones using Van Ham code [START_REF] Van | How to deal with variables with more than two levels[END_REF] (Section 4). To overcome the potential limitation of Van Ham code restraining the dynamics to a sub-region of the Boolean state space, A. Fauré and S. Kaji study the conversion based on Summing code (Section 4), which provides several alternative Boolean profiles for encoding an integer, such that the resulting Boolean dynamics is deployed on the whole Boolean state space [START_REF] Fauré | A circuit-preserving mapping from multilevel to Boolean dynamics[END_REF]. Following similar motivations, E. Tonello also studies the conversion based on this code [START_REF] Tonello | On the conversion of multivalued to Boolean dynamics[END_REF]. These research works elegantly pave the formal foundation of the Multivalued to Boolean network conversion. However, the results are intrinsically dependent on a specific coding, the Summing code, and are mainly designed for the asynchronous mode. Therefore, it appears interesting to generalise this approach by distinguishing the properties that purely relate to the conversion process from those depending on the code for highlighting the foundations of this process.

The behavioural equivalence is formally defined by the reachability preservation property, namely: whenever an integer state is reachable from another one, the equivalent Boolean state of the former is also reachable by the equivalent Boolean state of the latter, and conversely. Reachability preservation relies on the existence of a bisimulation [START_REF] Sangiorgi | Introduction to bisimulation and coinduction[END_REF] between both networks, parametrised by the Boolean-to-integer coding. While preserving the reachability is essential, it also appears desirable to extend the preservation to structural properties of the interactions and other properties related to equilibrium. In this article, we study the network conversion by regarding it as a bisimulation process applied to any Boolean coding of the integers. Based on this study, we propose an algorithm inferring the formulas of a Boolean network behaviourally equivalent to the input Multi-valued network.

After recalling the main notions of Multi-valued networks (Section 2), we examine the bisimulation properties between the dynamics of the networks and the admissibility conditions for stating a bisimulation between a Multivalued and Boolean networks (Section 3) with regard to different codings (Section 4). Then, we study the extension of the properties preserved by conversion (Section 5). Finally we define a method inferring a Boolean network bisimilar to the Multi-valued one whatever the coding procedure (Section 6).

Notations. We use the following notations:

Set: The complement of a subset EzE I , E I E is denoted by ¡E I . A
singleton teu is denoted by its element e. formally defined as: s ryÞ Ñvs szty Þ Ñ s y u ty Þ Ñ vu. The distance on states is defined as: dps, s I q °n i1 |s y i ¡ s I y i |.

Multi-valued networks

A Multi-valued network xg, Y y defined on a set of variables Y is a dynamical system on integer states where the evolution function g :

N Y Ñ N Y is composed of a collection of local evolution functions g pg 1 , ¤ ¤ ¤ , g n q, n |Y |.
The evolution function is defined for a variable y i Y as follows:

g i psq 6 9 9 9 9 9 9 9 9 8 9 9 9 9 9 9 9 9 7

1 if C 1 psq ¤ ¤ ¤ l if C l psq ¤ ¤ ¤ L if C L psq 0 otherwise (1)
where C l is the guard of level l. The application g i psq equals level l if and only if the guard C l psq is the first satisfied condition with respect to the reading order. Y always corresponds to a set of integer variables. w B X represents a Boolean state whereas s N Y a Multi-valued one. The Multi-valued dynamics where in which transitions modify the current level by 1 only (i.e., ds ÝÑ s I , dy i Y : dps y i , s I y i q ¤ 1) is said unitary stepwise.

Model

Equilibrium. A state s is an equilibrium, if it can be reached1 infinitely once met:

ds I N Y : s ÝÑ ¦ s I ùñ s I ÝÑ ¦ s. (2) 
An attractor is a set of equilibria that are mutually reachable and a stable state is an attractor of cardinality 1. Figure 1 shows an example of a Multi-valued network and the resulting dynamics for the asynchronous mode with two stable states that are respectively 13 and 00.

Interaction graph. An interaction graph xY, y portrays the interdependencies of the variables in the network xg, Y y. An interaction y i y j exists whenever changing the value of y i may lead to a change in the value of y j : y i y j def hs, s I N Y : s y i $ s I y i s ¡y i s I ¡y i g j psq $ g j ps I q.

(3)

The signed interaction graph xY, , σy refines the nature of the interactions by signing the arcs with σ : p q Ñ t¡1, 0, 1u to represent a monotone relation between the source and target variables of the interaction (4); either increasing (label 1, denoted I I ), or decreasing (label ¡1, denoted I ¡ I ), or neither (label 0, denoted I ¨I), and formally defined as:

y i y j def y i y j ds, s I N Y : s y i ¤ s I
y i s ¡y i s I ¡y i ùñ g j psq ¤ g j ps I q y i ¡ y j def y i y j ds, s I N Y : s y i ¤ s I y i s ¡y i s I ¡y i ùñ g j psq ¥ g j ps I q (4)

Network bisimulation

By definition [START_REF] Sangiorgi | Introduction to bisimulation and coinduction[END_REF], bisimulation between the dynamics of networks preserves the reachability, thereby maintaining the trajectories and the attractors in both ways. Definition 1 illustrated in Figure 2 1. (forward simulation) for any two Boolean states w, w I dom ψ and m M X , w m ÝÑ f w I implies ψpwq µpmq ÝÑ g ψpw I q: dw, w I dom ψ, dm M X : w m ÝÑ f w I ùñ ψpwq µpmq ÝÑ g ψpw I q;

2. (backward simulation) for any two Multi-valued states s, s I N Y , for any w B X such that ψpwq s, and for any n M Y , s n ÝÑ g s I implies that there exists a w I B X and an m M X such that ψpw I q s I , µpmq n and w m ÝÑ f w I :

ds, s I N Y , dw B X , dn M Y : ψpwq s s n ÝÑ g s I ùñ hw I B X , hm M X : µpmq n ψpw I q s I w m ÝÑ f w I ¨.
Two networks B and N complying to definition, it is worth noticing that they however differ in the following point: all the transitions on the integer state space should fulfill (1.2) whereas only the transitions defined on the domain of ψ, dom ψ, should comply to (1.1). dom ψ circumscribes the admissible region [START_REF] Fauré | A circuit-preserving mapping from multilevel to Boolean dynamics[END_REF][START_REF] Tonello | On the conversion of multivalued to Boolean dynamics[END_REF], where each Boolean state encodes an integer state and each transition is bisimilar to a Multi-valued one. Hence, no transitions from a state located in the admissible region can escape from this region, thus avoiding aberrant cases exemplified in [START_REF] Tonello | On the conversion of multivalued to Boolean dynamics[END_REF]. From (1.2), we deduce that ψ is a surjective partial function defined on B X but it is not necessary injective and thus not bijective. Hence, the preimage of an integer state is a set: ψ ¡1 psq tw B X | ψpwq su.

The issue is to determine the conditions on a Boolean network enabling a bisimulation with a Multi-valued network. These conditions depend on a general relation between the integer and Boolean function including the mode.

From global to local bisimulation discovery

Integer states are coded by the Boolean states in which the Boolean variables storing the code constitute the support of the integer variables. The support function associates each subset of integer variables to its support:

p ¤ : 2 Y Ñ 2 X
. This function has the following properties: 1) the Boolean variables are exactly the supports of the integer variables, 2) the supports are pairwise disjoint, and 3) they are modular in the sense that the union of the supports is the support of the union of the integer variables: 1q X p Y and, 2q dy i , y j Y : y i $ y j ðñ p y i p y j r and,

3q dY I , Y " Y : { Y I Y " x Y I x Y ". (5) 
For example, the state s py 1 ,y 2 q p0, 1q is encoded by w p00, 01q by using the classical binary code or the Gray code. The variables of the Boolean network will be therefore the variables supporting the Boolean code of the integer variables of Y (X p Y ). The states of said Boolean variables are respectively: w x y 11 0, w x y 12 0, w x y 21 0, w x y 22 1. Note that there are two kinds of indices: one for the multivalued variables, and the other for the Boolean variables of the corresponding supports.

We consider henceforth that ψ fits all supports, i.e., ψ

W Y B x W Ñ N W ¨.
The function ψ transforms the Boolean state of the support into an integer state in a modular manner, by decoding distinct sub-parts of a Boolean state separately, so that the decoding of the whole integer state is the union of the local decoding results:

dW Y, dw B p Y : ψpw x W q ψpwq W . (6) 
From [START_REF] Kauffman | Metabolic stability and epigenesis in randomly constructed genetic nets[END_REF][START_REF] Sangiorgi | Introduction to bisimulation and coinduction[END_REF] we deduce the following relation on two disjoint sets of variables representing the modularity of the decoding:

ψpw { W W I q ψpw x W qψpw y W I q ψpwq W ψpwq W I, W W I r, W, W I Y.
Moreover, the mode of the converted Boolean network must be compatible with the modularity of the coding. A mode is local-to-support when the parallel updates of the Boolean variables operate inside supports only, namely M is local-to-support if and only if: dm M, hy i Y : m p y i . The asynchronous mode is always local-to-support and the parallel localto-support mode is the gathering of the supports: tp y i u y i Y .

Within the framework, inferring a Boolean network bisimilar to a multivalued one is reduced to the discovery of a Boolean network in bisimulation with a local multivalued network xg i , Y y where only the state of a single variable evolves. A Boolean network in bisimulation with the entire multivalued network results from the union of Boolean networks in bisimulation with local multivalued networks (Proposition 1). Hence, for each g i , we focus on the discovery of the appropriate evolution function of the support f p y i and the determination of the admissible modes for enabling the bisimulation. Proposition 1. Consider the multivalued network N xg, Y, 1 Y y and the family pB i q y i Y of Boolean networks over the supports of the variables in Y :

B i xf p y i , X, M y i y, M y i 2 p y i .
Then the following holds:

dy i Y : xf p y i , X, M y i y xg i , Y, 1 y i y ¨ùñ xf, X, ¤ y i Y M y i y xg, Y, 1 Y y.
where f pf p y i q y i Y and g pg i q y i Y are the global evolution functions collecting their respective local evolution functions.

According to the definition of a transition (Section 2) and to Proposition 1, to establish a bisimulation relation between a multivalued transition function f and a Boolean transition function g, it suffices that the local integer evolution function applied to the decoding g i ¥ ψpwq coincide with the Boolean evolution function ψ ¥f p y i pwq or, more generally, with the evolution taken under a local-to-support mode:

ψ ¥ f g ¥ ψ Global function ψpf m pwq w p y i zm q g i ¥ψpwq, m p y i Local-to-support mode ( 7 
)
If ψ is a bijective function then ( 7) is expressed as f ψ ¡1 ¥g ¥ψ, which corresponds to the conjugated evolution function defined in [START_REF] Didier | Mapping multivalued onto Boolean dynamics[END_REF].

Theorem 1 shows that Property ( 7) is necessary and sufficient to ascertain that a multivalued network bisimulates a Boolean network with a local-to-support mode.

Theorem 1. Let N xg i , Y, 1 y i y be a multivalued network, B xf p y i , p
Y , M y a Boolean network with M a local-to-support mode, and ψ : B p

y i Ñ N y i , a
surjective function, Property 7 is met between the evolution functions of B and N if and only if B ψ N .

Bisimulation admisibility

Theorem 1 states the equivalence between bisimilarity and Property 7 for local-to-support modes, including the parallel mode updating all the variables of the support. In this section, we extend this result to a larger family of modes that are admissible with respect to the parallel mode. Informally, a modality m is m 0 -admissible if, for any Boolean state w, running f on w under m or under m 0 yields (possibly different) states belonging to the same preimage under ψ. Definitions 2 and 3 detail this compatibility formally. Both definitions assume the Boolean network B xf, p Y , M 0 y operating in mode M 0 and the Multi-valued network N xg i , Y, 1 y i y. Definition 2. A mode component m M is m 0 -admissible with respect to the functional bisimulation B 0 ψ N denoted by adm ψ pm, m 0 q, if the following holds:

dw B p Y : ψpf m 0 pwq w ¡m 0 q ψpf m pwq w ¡m q.
Notice that it follows directly from the definition that admissibility is an equivalence relation on modalities. Admissibility is defined on the modalities composing a mode and can be lifted from modalities to modes in a natural way: Definition 3. A mode M is M 0 -admissible with respect to the functional bisimulation B ψ N , denoted by adm ψ pM, M 0 q, iff the following conditions hold:

1. dm 0 M 0 , hm M : adm ψ pm, m 0 q; 2. dm M, hm 0 M 0 : adm ψ pm, m 0 q. Y , M y with adm ψ pM, M 0 q functionally bisimulates N as well:

w w I w P f m 0 f m ψpwq ψpw I q ψpw P q ψ ψ
dM 2 p Y : B ψ N adm ψ pM, M 0 q ùñ B I ψ N.
This result allows us to prove the bisimilarity of a network with another mode providing that Property [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda[END_REF] holds and the mode is admissible. As B ψ N and M is an admissible mode we conclude from Theorem 2 that B I ψ N .

Boolean coding

The coding procedure characterizes a function ψ mapping a Boolean profile to an integer. We study two fundamental codes that are suitable for asynchronous Boolean dynamics: the Summing code and the Gray code. Table 1 shows both codings for encoding levels ranging from 0 to 3.

Summing code. For the Summing code, the integer corresponding to a Boolean state w is the sum of the states of the Boolean support variables:

ψpw p y i q p y ik p y i w p y ik .
The size of the support is linear in the maximal level, |p y i | L, and different encodings are possible for the same integer. The number of different codes for an integer 0 ¤ l ¤ L is L l ¨. Van Ham code [START_REF] Van | How to deal with variables with more than two levels[END_REF] is a sub-case of the Summing code in which the unitary stepwise evolution restricts the filling of 1 from left to right. This code is emphasized in bold in Table 1.

Gray code. The Gray code associates Boolean states differing in only one position to consecutive integers. The coding function is bijective and constructs the integer value from a Boolean state by first transforming a Gray code profile into its equivalent binary code and then by computing the integer from this coding2 :

ψpw p y i q | p y i | ķ1 2 | p y i |¡k . k à j1 w p y ij .
The support size is logarithmic in the maximal level:

|p y i | rlog 2 pL 1qs. 0 1 2 3 p0, 1, 0q p1, 1, 0q p0, 0, 0q p1, 0, 0q p0, 1, 1q p1, 1, 1q p0, 0, 1q p1, 0, 1q -Summing code - p0, 0q p0, 1q p1, 1q p0, 1q
-Gray code - The Summing code is defined on the whole Boolean state space (i.e.,

dom ψ B p Y ).
The Gray code can be also defined on the whole Boolean space when the maximal number of levels is L 2 k ¡ 1. Van Ham code, on the other hand, never covers the entire Boolean space, except when the maximal level is 1. All these codings associate the integer 0 to the 0 Boolean profile. Furthermore, they all fulfil the neighbourhood preserving property (8) defined in [START_REF] Didier | Mapping multivalued onto Boolean dynamics[END_REF] and stressing that the distance of 1 between two integer states should map to a distance of 1 between the corresponding Boolean states, and conversely:

ds, s I N Y : dps, s I q 1 ùñ hw ψ ¡1 psq, hw I ψ ¡1 ps I q : dpw, w I q 1 dw, w I dom ψ : dpw, w I q 1 ùñ dpψpwq, ψpw I qq 1.

(

) 8 
These codes are individual representatives of families of linear and logsize codes which can be obtained by a permutation π on the integer states, i.e., ψ I π¥ψ. This permutation may notably relax the neighbourhood preserving property. In the literature, the study of the Multi-valued-to-Boolean network conversion has been carried out extensively for the Summing and Van Ham codes [START_REF] Didier | Mapping multivalued onto Boolean dynamics[END_REF][START_REF] Fauré | A circuit-preserving mapping from multilevel to Boolean dynamics[END_REF][START_REF] Tonello | On the conversion of multivalued to Boolean dynamics[END_REF]. Although the Gray code is bijective and provides the most compact binary representation of integers, it has never been studied for the conversion purposes according to our knowledge.

Extensions of property preservation

Although bisimulation preserves the essential property of reachability, it appears desirable to preserve additional properties for performing an accurate analysis of dynamics on the Boolean network directly. These additional properties pertain to the nature of equilibria and the interaction graph.

Preservation of stability of the equilibria

By definition of the bisimulation, the equilibria of a Multi-valued network match with the equilibria of a bisimilar Boolean network, and conversely. However, when some equilibria are stable states, their nature may differ: a stable state of the Multi-valued network can be represented by a cyclic attractor over Boolean profiles, all coding for the same integer (Figure 4). Nevertheless, any cyclic attractor will still be bisimulated by a cyclic attractor since, by definition of coding, a transition between two different integer states is always simulated by a transition with two different Boolean profiles. Figure 4 shows an example where the self-loop of stable state 2 is simulated by a cyclic attractor over the three Boolean profiles coding for it (right-hand side network). Indeed, for any integer level, the synchronous dynamics allows reaching any of its codings from any other one. This case is however not encountered for stable state 3 coded by a single Boolean profile. The occurrence of such situations also depends on the concrete Boolean function, as shown by the middle network that preserves the stability. Even though in the former case the stable state is represented by a cyclic attractor, it is worth noticing that the original level 2 can be recovered from the states encompassed by the attractor since tψp101q, ψp011q, ψp110qu t2u.

Maintaining the stability matters for the analysis performed on the Boolean dynamics. In particular, the symbolic computation of stable states will fail to find state 2 as equilibrium from the Boolean network since this state is represented by a cyclic attractor. Therefore, such cases should be ruled out to ensure a matching analysis of the dynamics on the two networks. To preserve the stability of equilibria, we basically have to prevent reaching a code of an integer level l from another code also encoding for l. This depends on the mode and on the Boolean function (cf. Figure 4). The expected outcome can be expressed as follows for a mode M :

dw dom ψ, dm M : w m $ f m pwq ùñ ψpwq $ ψpf m pwq w ¡m q. (9)
We examine two effective conditions for satisfying (9) that are independent of the specification of the Boolean network. A simple one working whatever the mode and the Boolean function is to remove the self-loops, and thus establish bisimulation between reflexive reductions of the state graphs of both networks, instead of operating on the original state graphs. The equilibrium stability then remains preserved since no circuits can simulate a self-loop and the important features of the reachability are not altered. Another more explicit condition, based on the code and the sizes of modalities, forbids the access by a transition to another Boolean profile coding for the same integer. dy i Y, ds y i N y i , dw, w I ψ ¡1 ps y i q :

w $ w I ùñ dpw, w I q ¡ maxt|m| | m M u, then the equilibrium stability ( 9) is preserved.

Consequently, if ψ is a bijection, the stability of equilibria is preserved since every integer level is coded by a single Boolean profile. On the other hand, the asynchronous mode preserves the stability under the Summing code, since distances between two Boolean profiles coding for the same integer are at least 2.

Preservation of regulation

A Boolean network bisimulating a Multi-valued network is regulatorypreserving if it is possible to unambiguously recover the signed interaction graph of the Multi-valued network (migs), xY, , σy, from the signed Boolean interaction graph of the bisimilar Boolean network (bigs), x p Y , , σ B y.

Retrieving migs from bigs is divided in two steps: retrieving the interaction graph and finding the signs.

Interaction graph retrieval. The structure of migs is retrieved from the quotient graph of bigs defined on the support of the integer variables, called the support interaction graph (sig) xtp y i u y i Y , y, where an interaction between two Boolean support variables induces an interaction between the supports they belong: 

As a consequence, the topological structure of migs is the same as that of sig by merely replacing the supports by the integer variables they support (Proposition 3). In fact, sig essentially provides an intermediary representation used for recovering the interactions of migs and their signs.

Proposition 3. Let N be a Multi-valued network and B a Boolean network.

If N is bisimilar to B then migspN q is isomorphic to sigpBq.

Sign retrieval. The sign of an interaction is determined by bigs once the conversion is achieved (see Figures 5,6). Therefore the issue is to deduce from the signs of the interactions between the Boolean variables the signs of the corresponding interactions in migs. The recovery procedure is based on a set of reference Boolean variables, considered as markers of sign, covering all the supports such that the signs of the interactions between these variables are the same as the signs of the interactions between the integer variables they support. Y is a set of markers of sign if and only if:

1. The sign σ of an interaction between any two Boolean variables in

M p Y p
Y is the same as the sign of the interaction between the integer variables that they support:

dp y i k , p y j r M p Y : p y i k σ p y j r ðñ y i σ y j .
2. All integer variables have markers:

dy i Y : M p Y p y i $ r.
To operationally identify the markers from a code, we define a codebased marker condition (11) directly linking the markers to the code for the asynchronous mode. This condition asserts the monotony of the coding for markers with respect to the integer and Boolean orders by stipulating that an integer coded by a Boolean profile is less than another coded by this Boolean profile where a marker value is substituted by 1 (Lemma 2). Y be a set of Boolean variables complying to (4.2). If:

dp y i k M p Y , dw dom ψ : ψpwq ¤ ψpw r p y ik Þ Ñ1s q (11)
then M p Y fulfils Definition (4.1) and M p Y is a set of markers.

Therefore, the goal is to determine for each integer variable the set of markers by checking (11) for a given coding. For the Summing code all the Boolean variables are markers, and for the Gray code the variables storing the most significant bit indexed by 1 ( p y i 1 ) are the markers. Y ;

• Gray code:

M p Y tp y i 1 | y i Y u.

Inference of Boolean formulas

An analytical definition of the Boolean network function is given by [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda[END_REF]. Although the function ψ ¡1 ¥ g ¥ ψ is closed on Boolean states when ψ is bijective characterizing a Boolean network, the Boolean formulas are not explicitly defined. The lack of Boolean formulas makes the analysis harder in practice, notably by preventing the characterization of the interaction graph directly from formula specifications. Moreover, the analytical definition does not hold when ψ is not bijective, since ψ ¡1 returns a set of Boolean profiles. To circumvent this limitation, the strategy is to infer the Boolean network bisimilar to a Multi-valued network directly from the specification of the latter [START_REF] Fadi | Generic ILP versus specialized 0-1 ILP: An update[END_REF]. As it is sufficient to find a bisimilar Boolean network for each local Multi-valued evolution function g i (Proposition 1), the algorithm will act on each function of integer variables independently. In this section we define a method inferring the formulas f i,k for each support variable p y i k of y i such that the reflexive reduction of the resulting Boolean network is bisimilar to the reflexive reduction of the initial Multi-valued network, the code being a parameter of this method. Due to the reflexive reductions, this method preserves the nature of the stable states (Section 5.1). For simplicity, the inference is presented for the asynchronous mode, but it can be applied to any local-to-support mode. This point is discussed at the end of the section.

The definition of a formula f i,k for a support variable is divided in two stages: The conversion of the guard into a Boolean form, and the derivation of the admissibility condition for guard validation. The examples use the Summing code which is the most complex coding for the inference.

Boolean conversion of the guard. Basically, the guard of level l I must also be satisfied in the Boolean network to simulate a transition shifting the current level l to l I . The conversion of a Multi-valued guard to a Boolean guard gathers the codes of the state profiles fulfilling the conditions of level l I , i.e., C l I y i ts p y i q | C l I psqu where p y i q is the set of regulators of y i . As all these integer states satisfy the guard C l I , their Boolean codes should also satisfy the Boolean guard C l I B defined as3 :

C l I B ª sC l I y i ¤ ¥ © y j p y i q ª w x y j ψ ¡1 psy j q mintermpw x y j q . ( 12 
)
For example, in the case of the Multi-valued network from Figure 1, the states fulfilling the conditions to reach level 2 for y are px 1, y 1q for the transition from level 1 to 2 for y, or px 0, y 3q for the transition from level 3 to 2. The code for x is ψ ¡1

x p0q tp0qu, ψ ¡1

x p1q tp1qu and the codes for y are respectively for 1 and 3: ψ ¡1 y p1q tp0, 0, 1q, p0, 1, 0q, p1, 0, 0qu and ψ ¡1 y p3q tp1, 1, 1qu. Hence, the Boolean guard of level 2 for y is: Guard admissibility condition. The generation of the Boolean guard is however insufficient for obtaining the final formula because some support variables shift to 0 during the transition even though the guard is satisfied, meaning that a direct evaluation of the Boolean guard would shift them to 1. For example, in Figure 1, shifting from 3 to 2 for y is bisimilar to p1, 1, 1q p y 2 ÝÑ p1, 0, 1q. In this case, we need to shift the state of p y 2 to 0 although the guard is satisfied with s x 0. We thus need to characterize the situations in which the transition necessarily shifts the value of a support variable to 1. This restricts the set of admissible encodings triggering the guard, outside of which the transition always shifts the support variable state to 0.

C 2 B px1,y1q
Let s y i ÝÑ s I be an integer unitary stepwise transition with s y i l and s I py i q l I such that |l ¡ l I | 1, and p y i be the support of y i ( p

y i k p y i ),
we denote by w ÝÑ w I the asynchronous Boolean transition bisimilar to s y i ÝÑ s I . Two cases where p y i,k 1 should be considered depending on the encoding of the levels: p y i,k is shifted from 0 to 1 during the transition (i.e., w p y i,k 0 and w I pp y i,k q 1), or p y i,k remains as 1 (i.e., w p y i,k 1 and w I pp y i,k q 1).

In both cases, we characterize for each Boolean variable the set of codes corresponding to the initial level l such that p y i k is either shifted to or remains at 1. The initial level l is determined from the target level l I by considering that it is either l I ¡1, l I or l I 1 by definition of an unitary stepwise transition.

We define the set of codes for the initial level such that p y i k is shifted from 0 to 1 during the transition (ψ is implicitly restricted to ψ : B p

y i Ñ N y i ): Ψ 0Ñ1 pl I , p y i k q tw p y i dom ψ | h maxp0, l I ¡ 1q ¤ l ¤ minpl I 1, Lq : ψpw p y i q l w p y ik 0 ψpw p y i r p y ik Þ Ñ1s q l I u.
Similarly, we define the set of codes for which a shift from 1 to 0 occurs:

Ψ 1Ñ0 pl I , p y i k q tw p y i dom ψ | h maxp0, l I ¡ 1q ¤ l ¤ minpl I 1, Lq : ψpw p y i q l w p y ik 1 ψpw p y i r p y ik Þ Ñ0s q l I u.
Finally, we define the set of codes where p y i k is 1 in both l and l I :

Ψ 1Ñ1 pl I , p y i k q tw p y i dom ψ | h maxp0, l I ¡ 1q ¤ l ¤ minpl I 1, Lq, hw I p y ik ψ ¡1 pl I q : ψpw p y i q l w p y ik 1 w I p y ik 1u.
The set of Boolean states coding for level l, always reaching state 1 and never a state 0 for p y i k in a transition to a code of level l I , is defined as:

Ψ Ñ1 pl I , p y i k q Ψ 0Ñ1 pl I , p y i k q pΨ 1Ñ1 pl I , p y i k qzΨ 1Ñ0 pl I , p y i k qq .
Note that the set difference in the previous equation is not necessarily empty. Indeed, there may exist a pair of states w p y i and w I p y i , with ψpw p y i q l and ψpw I p y i q l I , such that w p y ik w I p y ik 1, but for which ψpw p y i r p y ik Þ Ñ0s q l I also holds. We need to exclude such states w p y i from Ψ Ñ1 pl I , p y i k q, because they still allow reaching a Boolean profile coding for l I by setting p y i k to 0. The resulting transition is bisimilar to an integer transition, and thus must be kept.

The guard admissibility condition G of C l I B is thus defined as the disjunction of the minterms of the admissible codes:

G Ψ Ñ1 pl I , p y ik q ª cΨ Ñ1 pl I , p y ik q mintermpcq. (13) 
In our running example, consider the levels that potentially reach level 2 in a unitary stepwise transition (levels 1, 2, and 3). The final simplified formulas of the code admissibility conditions G Ψ Ñ1 p2,p y k q , 1 ¤ k ¤ 3, for each support variable are detailed in Table 2.

From these conditions (Table 2), we deduce that the asynchronous transitions from level 3 coded by p1, 1, 1q to level 2 all set to 0 one of the Boolean support variables. Indeed, the update of p y 1 to 0 leads to p0, 1, 1q and similarly for p y 2 , p1, 0, 1q and p y 3 , p1, 1, 0q that all represent a Summing code of level 2.

G Ψ Ñ1 p2,p y 1 q py 1 2y 2 q py 2 2y 3 q p2y 2 y 3 q G Ψ Ñ1 p2,p y 2 q py 1 2y 3 q p2y 1 y 3 q py 2 2y 3 q G Ψ Ñ1 p2,p y 3 q py 1 2y 2 q p2y 1 y 2 q p2y 2 y 3 q

Table 2: Guard admissibility condition for level 2 of the support variables of y.

Boolean formula of a support variable. The final formula f i,k for a support variable p y i,k can be understood as the Boolean version of the guards restricted to the codings admissible for their triggering, defined as:

f i,k ª 1¤l¤L C l B G Ψ Ñ1 pl, p y ik q ¨. ( 14 
)
The Boolean network gathers the formulas defined by (14) for each support variable. For the running example (Figure 1), the final Boolean network provides a clean description of the formulas once simplified for the Summing code (Figure 5) and the Gray code (Figure 6), that differ due to the codings. Theorem 4 demonstrates the correction of the conversion method. 20 Extension to other modes. The method can be applied to any local-tosupport mode but the admissible region may be reduced compared to the asynchronous mode. This reduction is caused by the decrease of the update capacity allowed by the mode. Hence, by Definition 1, this implies selecting the appropriate codes for always reaching a code supporting an unitary stepwise transition for each update according to the mode components. For the running example, by using the parallel local-to-support mode with the Summing code, M ttxu, tp y 1 , p y 2 , p y 3 uu, all the Boolean variables of p y are updated jointly allowing to reach a single code instead of reaching the different codes of the same integer by separate updates of variables. Thus, the coding is reduced to Van Ham coding.

Moreover, the trajectories starting from a state located outside the admissible region always end in the admissible region and no supplementary equilibra are thus created (Proposition 4). This property generally holds for any coding that partially covers the Boolean state space.

In conclusion, the domain of ψ may thus be reduced for a surjective decoding function such as the Summing code without altering the asymptotic dynamics, but remains unchanged for a bijective decoding. Complexity of the algorithm. Assume that the Multi-valued network has n variables reaching at most level L, the upper bound on the number of regulators for a variable is r, the maximal number of support variables is m, and the maximal bound of code variants is c. Then the complexity of the Boolean guard is in OpnL r rcmq and the complexity of computing the guard admissibility condition is in OpnLcmq. Thus the complexity of the algorithm is dominated by the complexity of computing the Boolean guard. Accordingly, the computation time mainly depends on the maximal level and the number of regulators. The algorithm is efficient in practice since the maximal level and the number of regulators often remain tractable on real biological network models.

Conclusion

Bisimulation is at the core of the Multi-valued-to-Boolean network conversion process with the coding as a parameter. Although bisimulation preserves reachability, more features are expected to be preserved in order to directly perform analysis on the Boolean network. These features pertain to the nature of the equilibria and to the regulation of the variables. We propose a method whose outcome is a Boolean network explicitly defined by its Boolean formulas, with equilibria of the same nature as in the bisimilar Multi-valued network. The interaction graph of the Multi-valued network can be recovered from this Boolean network for any coding. In particular, we show that the Gray code providing the shortest Boolean representation has the same properties as the Summing code, usually considered standard for this conversion.

Such automatic conversion sketches a pipeline where the Multi-valued network becomes an input specification for modelling only, while the bulk of the analysis is performed on the Boolean network. Such pipeline suggests that the Boolean framework is central and sufficient for biological network modelling, thus calling to focus theoretical efforts on this framework since the results will benefit to both categories of discrete models via this pipeline.

A perspective research direction would concern the study of bisimulation between Boolean networks. As bisimulation formally represents a form of behavioural equivalence, we could investigate the global properties of families of bisimilar Boolean networks in order to discover general rules governing their behaviour. g i ¥ ψpwq s ¡y i as ψpwq s by hypothesis; ψpf m pwq w p y i zm q s ¡y i from ( 7), true d by hypothesis; ψpf m pwqw p y i zm qψpw y ¡y i q from (6) and ψpwq s; ψpf m pwqw p y i zm qψpw ¡ p y i q by definition of the support (5); ψpf m pwq w p y i zm q w ¡ p y i q from (6); ψpf m pwq w p y i zm¡ p y i by definition of the support (5); ψpf m pwq w ¡m q by (T1). Thus, we conclude that ψpw I q s I implies that w I f m pwq w p In conclusion, if Property 7 is verified then networks N and B are bisimilar with respect to ψ.

p ðù q Assume that N ψ B. Hence, for all transitions w m ÝÑ f w I such that w, w I dom ψ, there exist s, s I N Y such that s ÝÑ g i s I and s ψpwq, s I ψpw I q.

From the bisimulation, we deduce that: s I ψpw I q by hypothesis; ψpf m w ¡m q by definition of w m ÝÑ f w I ; ψpf m w p y i zm¡ p y i q by (T1); ψpf m w p y i zm w ¡ p y i q from (5); ψpf m w p y i zm q ψpw ¡ p y i q by (5), ( 6); ψpf m w p y i zm q s ¡y i as s ψpwq by hypothesis.

From the definition of a transition, we deduce the following:

s I g i psq s ¡y i as s ÝÑ g i s I by hypothesis; g i ¥ ψpwq s ¡y i as s ψpwq by the bisimulation hypothesis.

As ¡y i y i r because ¡y i Y zy i , we can simplify the equation by removing s ¡y i in both part, leading to: ψpf m w p y i zm q g i ¥ ψpwq for all w dom ψ, which defines Property [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda[END_REF].

Lemma 1. That admissibility for modes is reflexive and symmetric follows directly from Definition 3. To show transitivity of admissibility for modes, consider three arbitrary modes M 1 , M 2 , M 3 2 p Y , such that both adm ψ pM 1 , M 2 q and adm ψ pM 2 , M 3 q (with respect to the functional bisimulation B ψ N ).

We can show that clause (1) of Definition 3 is satisfied for modes M 1 and M 3 in the following way:

adm ψ pM 1 , M 2 q adm ψ pM 2 , M 3 q ùñ dm 2 M 2 , hm 1 M 1 : adm ψ pm 1 , m 2 q dm 3 M 3 , hm 2 M 2 : adm ψ pm 2 , m 3 q ¨Definition 3 (1) ùñ dm 3 M 3 , hm 2 M 2 , hm 1 M 1 : adm ψ pm 2 , m 3 q adm ψ pm 1 , m 2 q ùñ dm 3 M 3 , hm 1 M 1 : adm ψ pm 1 , m 3 q,
where the last transition is done by the symmetricity and transitivity of admissibility for modalities. Showing that clause (2) of Definition 3 is satisfied for M 1 and M 3 can be done symmetrically, which implies adm ψ pM 1 , M 3 q and the transitivity of admissibility for modes. ÝÑ f w P ψpw I q ψpw P q M is M 0 -admissible ùñ hm 0 M 0 , hw P dom ψ ψpwq µpm 0 q ÝÑ g ψpw P q ψpw I q ψpw P q B ψ N ùñ hm 0 M 0 , hw P dom ψ ψpwq µpm 0 q ÝÑ g ψpw I q.

Remark that since N is only allowed to update one variable, y i , µpm 0 q can only be equal to ty i u. Clause (2) (backward simulation): Take any two integer states s, s I N Y and an arbitrary Boolean state w B X . Since N is only allowed to update y i , we can carry out the following deduction: ψpwq s s y i ÝÑ g s I ùñ hw I B X , hm 0 M 0 : µpm 0 q ty i u ψpw I q s I w m 0 ÝÑ f w I B ψ N ùñ hw I B X , hm 0 M 0 , hw P B X , hm M : µpm 0 q ty i u ψpw I q s I w m 0 ÝÑ f w I ψpw P q ψpw I q w m ÝÑ f w P

M is M 0 -admissible ùñ hw P B X , hm M : ψpw P q s I w m ÝÑ f w P . dy i Y, ds y i N p y i , dv, v I ψ ¡1 ps y i q : v $ v I ùñ γ dpv, v I q, where γ stands here for the greatest cardinality of M components, γ maxt|m|, m M u, we deduce that: dpw, w I q ¤ |m| ¤ γ dpv, v I q, meaning that the transition cannot be achieved between codes of the same integer by hypothesis, thus leading to: dw, w I B p Y , dm M : w $ w I w m ÝÑ w I ùñ ψpwq $ ψpw I q,

As w I f m pwq w ¡m by definition of a transition, this statement is equivalent to [START_REF] Tonello | On the conversion of multivalued to Boolean dynamics[END_REF], concluding that the equilibrium stability is preserved. First we demonstrate two properties (L2.a) and (L2.b) used in the proof:

• w I p y ik 1: in this case w p y i belongs to Ψ Ñ1 pl I , p y i k q by definition, meaning that w admissible for the guard. Thus we have:

f i,k pwq C B l I pwq C Ψ Ñ1 pl I , p y ik q pwq 1.

• w I p y ik 0: in this case w p y i does not belong to Ψ Ñ1 pl I , p y i k q by definition meaning that w is not admissible for the guard. Thus we have:

f i,k pwq C B l I pwq C Ψ Ñ1 pl I , p y ik q pwq 0.

In both cases, f i,k provides the expected result. f returns the appropriate result regarding a pair w, w I encoding the pair s, s I . If s $ s I then there exists a Boolean support variable p y i k , 1 ¤ k ¤ |p y i | such that: ψpf i,k pwqw ¡ p y ik q s I , corresponding to the following condition: f i,k pwq $ w p y ik . Otherwise (s s I ) any index k satisfies ψpf i,k pwqw ¡ p y ik q s I . Notice that this part is not sufficient for proving bisimulation, since we may have f i,j pwq w I B) Property ( 7) is satisfied. Let s y i ÝÑ s I be a Multi-valued asynchronous transition such that s $ s I , then there exist w, w I B p Y such that ψpwq s, ψpw I q s I , by construction of f (A). Moreover, we have: ψpwq $ ψpw I q, leading to w $ w I , as ψ is a function. Thus, a Boolean support variable p y i k verifies that w p y ik $ w I p y ik , as g and f are neighbourhood preserving [START_REF] Thomas | Behaviour of Biological Biological Role of Feedback Loops and Practical Use of the Concept of the Loop-Characteristic[END_REF]. In this case, we have: w I f i,k pwq w ¡ p y ik from (A). Thus, we have the following equalities:

3Figure 1 :

 1 Figure 1: A Multi-valued network with the interaction graph (below) and the asynchronous dynamics (right), with the self-loops removed.

Definition 1 .

 1 formally defines functional bisimulation, which depends on a partial function ψ : B X Ñ N Y decoding a Boolean state to an integer state. Given a Boolean network B xf, X, M X y and a Multi-valued network N xg, Y, M Y y, a pair of functions pψ, µq, with ψ : B X Ñ N Y a partial function and µ : M X Ñ M Y a total function, form a bisimulation if and only if the following properties hold:

  Definition 1 with respect to ψ are said bisimilar, noted B ψ N . Although, (1.2) and (1.1) are similar in their

Figure 2 :

 2 Figure 2: Illustration of a bisimulation pψ, µq between a Boolean and a Multi-valued network. ψ ¡1 psq and µ ¡1 pnq denote the preimages of s and n under ψ and µ respectively.

Figure 3 :

 3 Figure 3: Illustration of m 0 -admissibility adm ψ pm, m 0 q of a modality m with respect to the bisimulation B ψ N .

Corollary 1 .

 1 Let B xf, p Y , M y, B I xf, p Y , M I y be two Boolean networks, ψ : B p Y Ñ N Y a surjective function, and N xg i , Y, 1 y i y a Multi-valued network. If Property 7 holds for B, N , and ψ, and if adm ψ pM, M I q, then B I ψ N. Proof. If Property 7 holds then we deduce that B ψ N from Theorem 1.

Figure 4 :

 4 Figure 4: Stability loss during bisimulation -synchronous mode.

Proposition 2 .

 2 Let B xf, p Y , M y be a Boolean network bisimilar to a Multi-valued network N xg, Y, 1 Y y, with M a local-to-support mode. If the following holds:

y i k p y i , hp y j r p y j : p y i k p y j r .

  

Lemma 2 .

 2 Let N xg, Y y be a Multi-valued network bisimulating an asynchronous Boolean network B xf, p Y , 1 p Y y, and M p Y p

Theorem 3 .••

 3 Let N xg, Y y be a Multi-valued network in bisimulation with an asynchronous Boolean network B xf, p Y , 1 p Y y. The sets of markers M p Y are respectively for the codes: Summing code: M p Y p Y ; Van Ham code: M p Y p

Figure 5 :

 5 Figure5: A Boolean network bisimilar to the Multi-valued network in Figure1, its interaction graph (right), and its asynchronous dynamics for the Summing code without the self-loops (below).

Theorem 4 .

 4 Given a neighbourhood preserving Boolean coding ψ such that 0 is coded by the 0 Boolean profile, the inference by (14) from a Multi-valued unitary stepwise network N xg, Y, 1 Y y produces a Boolean network B xf, p Y , 1 p Y y such that the reflexive reductions of both networks are bisimilar: N $ ψ B $ .

Proposition 4 .

 4 Let f be an evolution function defined according to (14) from a Multi-valued unitary stepwise network N xg, Y, 1 Y y. Let B xf, p Y , M y be the corresponding Boolean network with M a local-to-support mode, and ψ a decoding function such that N $ ψ B $ . All the states of the Boolean space eventually reach a state in the admissible region: dw B p Y , hw I dom ψ : w ÝÑ f w I .

•

  B simulates N . Let s y i ÝÑ g s I be a transition in the model of N . As ψ : B p Y Ñ N Y is surjective, there exist two Boolean states w, w I B p Y such that: ψpwq s and ψpw I q s I . We prove that we can select w I in the preimage of s I so that a transition w m ÝÑ f w I exists in the model of the Boolean network B. Firstly, let us characterize s I based on w. s I g i psq s ¡y i by definition of transition (Section 2);

y

  i zm . Hence, by definition of a transition, we have w m ÝÑ f w I , meaning that B simulates N .

Theorem 2 .

 2 Consider the Boolean network B xf, p Y , M 0 y and the Multivalued network N xg i , Y, 1 y i y, related by the bisimulation B ψ N . Pick an M 0 -admissible mode M 2 p Y and consider the Boolean network B I xf, p Y , M y. We will show that B I bisimulates N , B I ψ N , by directly checking clauses (1) and (2) of the definition of bisimulation (Definition 1). Clause (1) (forward simulation): Take two Boolean states w, w I dom ψ such that w m ÝÑ f w I for some m M . We can then write the following deduction: w m ÝÑ f w I ùñ hm 0 M 0 , hw P dom ψ w m 0

2 pYProposition 2 .

 22 The two previous paragraphs show that the clauses of the definition of bisimulation (Definition 1) are satisfied for the Boolean network B I , running under mode M , and for the Multi-valued network N , meaning that B I ψ N . The associated function mapping the modalities of B I to those of N is the unique total function Ñ ty i u (i.e., the same as for the bisimulation B ψ N ). By definition of a transition (Section 2), we have: dw, w I B p Y , dm M : w m ÝÑ w I ùñ dpw, w I q ¤ |m|,As by hypothesis,

Lemma 2 .

 2 let N be an asynchronous Multi-valued network bisimulating an asynchronous Boolean network B with: migspN q xY, , σy, and bigspBq x p Y , , σ B y, as their respective signed interaction graphs; let M p Y p Y be a set of Boolean variables complying to (11), we prove Statement (4.1) by considering that Statement (4.2) holds.

2. s I y i 0 :

 0 By definition of the Multi-valued dynamics (1), no guards are satisfied. The conjunction of the guards for all levels is unsatisfiable, thus by definition of the part related to the guard in f i,k (12), we deduce that f i,k pwq 0 by (14), which is the expected result as 0 is encoded by a Boolean profile filled with 0 leading to w I p y ik 0 for all k.

p y ij w py

  ij by definition of the asynchronous dynamics, thus also leading to a transition w p y ij ÝÑ w by definition. This transition does not simulate the transition s y i ÝÑ s I when s $ s, motivating the proof of the bisimulation restricted to the reflexive reduction. However a Multi-valued self-loop (s s I ) is simulated by a self-loop in the Boolean network by construction of f .

  The set of parts of E is noted 2 E tE I | E I Eu.

State: A state s is an application from variables Y to a domain of values D, i.e., s ty 1 Þ Ñ d 1 , . . . , y n Þ Ñ d n u and D Y pY Ñ Dq denotes the state space defined on variables Y . The restriction/projection of a state s D Y on W Y is denoted s W D W . This notation also holds for function on states, i.e., dom g W D W . A substitution within a state s is the replacement of the value of a variable of s by another value,

Table 1 :

 1 Example of codes for levels ranging from 0 to 3. The states correspond to the variable profiles pp y i1 , p

y i2 , p y i3 q. The links connect codes differing by 1, and the codes in bold correspond to

Van 

Ham sequence.

  Hence the set of markers M p

	Definition 4 (Markers of sign). Let xg, Y y a Multi-valued network bisimu-lating a Boolean network xf, p Y y with xY, , σy and x p Y , , σ B y as their
	respective signed interaction graphs. M p	
	variables of p Y defined by:	Y is a subset of Boolean

Y p

ÝÑ ¦ denotes the reflexive and transitive closure of ÝÑ.

`is the exclusive or, xor.

The minterm of a state is a conjunction of the variables such that the unique interpretation satisfying it is the state itself, e.g., mintermpx 1 0, x 2 1q x 1 ^x2 .

Figure 6: A Boolean network bisimilar to the Multi-valued network in Figure 1, its interaction graph (below), and its asynchronous dynamics for the Gray code without the self-loops (right).

Bisimilar reflexive reduction. Under the asynchronous mode, some support variables may maintain their value inducing self-loops that are not bisimilar to any transition in the integer dynamics. In the running example, shifting y from 2 to 3 is bisimilar to p1, 0, 1q p y 2 ÝÑ p1, 1, 1q, which modifies the value of p y 2 . However, any of the Boolean variables may be updated in asynchronous dynamics leading to two self loops on p y 1 and p y 3 for maintaining the state of these variables at 1. Obviously, these self-loops are not bisimilar to the integer state transition since the variation of the integer state from 2 to 3 is carried out by one transition only. No alternatives preventing these additional self-loops in the Boolean network are possible since any one of the Boolean variables may be updated, but the state must not change for p y 1 and p y 3 . This situation explains why our method operates on reflexive reductions of the networks, effectively discarding these extra self-loops. Also notice that this transformation can only be performed if the integer level 0 is coded by the 0 Boolean profile, meaning that the behaviours of the Multi-valued and Boolean networks match when no guards are satisfied.

The reflexive reduction of a network N is denoted N $ .

Appendix

Proposition 1. The global Boolean transition relation is the union of the local transition relations that are bisimilar to the local Multi-valued relations. As the union of bisimilar relations is bisimilar to the union relation, we deduce that the global Boolean relation is bisimilar to the global Multi-valued relation.

Theorem 1. We prove that Property [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda[END_REF] p ùñ q Assume that Property [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda[END_REF] is met for the local-to-support mode M , i.e., dm M : m p y i ψpf m pwq w p y i zm q g i ¥ ψpwq.

• N simulates B. Let w m ÝÑ f w I , m M , be a transition in the model of B such that w, w I dom ψ. We define the transition ψpwq ÝÑ ψpw I q by application of ψ on w and w I . We have: ψpw I q ψpf m pwq w ¡m q by definition of a transition (Section 2); ψpf m pwq w p y i zm¡ p y i q by (T1);

ψpf m pwq w p y i zm q ψpw ¡ p y i q from (5) and ( 6); g i ¥ ψpwq ψpw ¡ p y i q from (7), true by hypothesis.

Set s ψpwq and s I ψpw I q. Then s ¡y i ψpw ¡ p y i q, because w ¡ p y i is the Boolean encoding of the rest of the state s ¡y i . We finally have:

ψpwq ÝÑ ψpw I q s ÝÑ g i psq s ¡y i s y i ÝÑ g i s I , which defines a transition of ÝÑ g i with the asynchronous mode

Proof. Assume that:

dw, w I dom ψ :

1. w p y ik w I p y ik : in this case w w I leading to ψpwq ψpw I q since ψ is a function, thus satisfying ψpwq ¤ ψpw I q. 

by hypothesis, we conclude from (11) that ψpwq ¤ ψpw r p y ik Þ Ñ1s q. This inequality is equivalent to ψpwq ¤ ψpw I q. dw, w I dom ψ : 

Moreover, as ψ is a function defined on supports, we have:

In conclusion, the following statement holds:

Now we prove that Statement 4.1 is satisfied. The proof is given for positive interaction.

p ùñ q By definition (3), a positive interaction, p y i k p y j r is defined as:

From (L2.b), we can rewrite this statement as:

dw, w I dom ψ : ψpw p y i q ¤ ψpw I p y i qψpw ¡ p y i q ψpw I ¡ p y i q ùñ f j,r pwq ¤ f j,r pw I q. Let v f j,r pwq w ¡x y j r and v I f j,r pw I q w I ¡x y j r , as f j,r pwq ¤ f j,r pw I q by hypothesis, we conclude that: ψpvq ¤ ψpv I q from (L2.a), thus leading to:

dw, w I dom ψ : ψpw p y i q ¤ ψpw I p y i q ψpw ¡ p y i q ψpw I ¡ p y i q ùñ ψpf j,r pwq w ¡x y j r q ¤ ψpf j,r pw I q w I ¡x y j r q.

As N and B are bisimilar, Property (7) holds. By application of this property we have: ψpf j,r pwqw ¡x y j r q g j ¥ψpwq and similarly for w I . Thus we deduce that:

dw, w I dom ψ : ψpw p y i q ¤ ψpw I p y i q ψpw ¡ p y i q ψpw I ¡ p y i q ùñ g j ¥ ψpwq ¤ g j ¥ ψpw I q. Finally, as codom ψ N Y by definition, we can rewrite the previous statement as follows by setting, s ψpwq, s I ψpw I q : ds, s I N Y : s i ¤ s I i s ¡i s I ¡i ùñ g j psq ¤ g j ps I q, that defines the positive interaction on migs(N): y i y j .

p ðù q Assume that an interaction y i y j exists and there exist two Boolean variables p

y j with no positive interactions between these variables, i.e., p y i k σ p y j r ùñ σ $ . We give a proof for the case σ ¡; the proof for σ 0 is similar.

From definition of the interactions (3), we deduce that: hw, w I dom ψ : w p y ik ¤ w I p y ik w ¡ p y ik w I ¡ p y ik f j,r pwq ¡ f j,r pw I q.

From Property (L2.b), we can rewrite the previous statement as:

hw, w I dom ψ : ψpw p y i q ¤ ψpw I p y i q ψpw ¡ p y i q ψpw I ¡ p y i q f j,r pwq ¡ f j,r pw I q.

Let v f j,r pwq w ¡x y j r and v I f j,r pw I q w I ¡x y j r , as f j,r pwq ¡ f j,r pw I q by hypothesis, we conclude that: ψpvq ¡ ψpv I q from (L2.a), thus leading to:

dw, w I dom ψ : ψpw p y i q ¤ ψpw I p y i q ψpw ¡ p y i q ψpw I ¡ p y i q ùñ ψpf j,r pwq w ¡x y j r q ¡ ψpf j,r pw I q w I ¡x y j r q.

As N and B are bisimilar, Property (7) holds. By application of this property we have: ψpf j,r pwqw ¡x y j r q g j ¥ψpwq and similarly for w I . Thus we have:

hw, w I dom ψ : ψpw p y i q ¤ ψpw I p y i qψpw ¡ p y i q ψpw I ¡ p y i qg j ¥ψpwq ¡ g j ¥ψpw I q. As codom ψ N Y by definition, we can rewrite the previous statement as follows by setting, s ψpwq, s I ψpw I q : hs, s I N Y : s i ¤ s I i s ¡i s I ¡i g j psq ¡ g j ps I q, that contradicts the existence of a positive interaction y i y j , which is false by hypothesis.

The proof for negative interaction follows the same scheme. Thus, we conclude that Statement 4.1 is satisfied. Theorem 3. We prove that (11) holds for a set of Boolean variables belonging to a support p y i .

Let p y i k be a Boolean variable of this set, two cases occur: either w p y ik 0, or w p y ik 1. For the latter, w is left untouched by substitution leading to ψpwq ψpw r p y ik Þ Ñ1s q since ψ is a function, thus fulfilling (11). Hence, we address the case when w p y ik 0 in the proofs.

Summing code. The following property holds when w p y ik 0:

thus, we have:

We conclude that: ψpwq ψpw r p y ik Þ Ñ1s .

Van Ham code. Van Ham code is a sub-code of the Summing code, thus complying to its results.

Gray code. Let p y i 1 be a Boolean variable carrying the most significant digit, we separate p y i 1 from the other variables in the definition of ψ: ψpwq

Hence, when w p y i1 0, we deduce that ψpw r p y i1 Þ Ñ1s q 2 | p y i |¡1 ψpwq, leading to ψpwq ψpw r p

Thus we conclude that p Y is the set of markers for the Summing and Van

Ham code, while tp y i 1 | y i Y u are the markers for Gray code by application of Lemma 2.

Theorem 4. We first show that the computation of the Boolean function f defined by ( 14) is correct with respect to the integer function g and the asynchronous mode (A). Next (B), we examine the satisfaction of Property [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda[END_REF]. Finally we demonstrate the bisimulation of the reflexive reduction for both networks (C).

A) The construction of f is correct. Let s y i ÝÑ s I be a Multi-valued transition, such that s I y i g i psq l I and s I y j s y j for all 1 ¤ j ¤ n, j $ i, by definition of the asynchronous dynamics. We have: maxpl I ¡1, 0q ¤ s y i ¤ minpl I 1, L i q since the evolution is unitary stepwise. There exist two Boolean states w, w I B p Y such that ψpwq s as codom ψ N Y . We check that for all p y i k p y i if f i,k pwq w I p y ik then ψpw I q s I and w ¡ p y ik w I ¡ p y ik , thus proving the correction of f i,k . The fact that w ¡ p y ik w I ¡ p y ik is a direct consequence an asynchronous transition updating one variable only.

Two cases are considered qualifying whether s I y i $ 0 or s I y i 0. For each, we examine whether the target state of the support variable p y i k is 0 or 1. Let us consider the following cases: 1. s I y i $ 0: By definition of a Multi-valued network (1) C l Ipsq is necessary satisfied as l I s I y i $ 0. Let Rpy i q be the set of regulators of y i , we have: s Rpy i q C Rpy i q,l I. Hence, we deduce that w p = ψpf i,k w p y i z p y ik ¡ p y i q from (T1);

= ψpf i,k w p y i z p y ik w ¡ p y i q from (5); = ψpf i,k w p y i z p y ik qψpw ¡ p y i q by (5), ( 6); = ψpf i,k w p y i z p y ik q s ¡y i as s ψpwq. As s I g i psq s ¡y i by definition of a transition, we deduce by simplification of s ¡y i that: g i psq g i ¥ ψpwq ψpf i,k w p y i z p y ik q, concluding that Property [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda[END_REF] Y by definition of a mode, the cancellation process terminates at state 0 p Y , which is always in the admissible region since 0 p y i , dy i Y, is the sole code for the integer value 0, regardless of the variable

In conclusion, the trajectories starting from any w B p Y eventually end up in a state in the admissible region dom ψ.