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cEnedis, F-92079 Paris La Défense, France, leticia.de-alvaro@enedis.fr

Abstract

Volatile productions and consumptions generate a stochastic behavior of distribution grids and make its supervision difficult
to achieve. Usually, the Distributed Generators reactive powers are adjusted to perform decentralized voltage control. Industrial
controllers are generally equipped with a local affine feedback law, which settings are tuned at early stage using local data. A
centralized and more efficient tuning method should aim to maximize the probability that all the node voltages of distribution grids
remain within prescribed bounds. When the characteristics of the stochastic power forecasts are known, the centralized algorithm
allows to update the settings on a regular time basis. However, the method requires to solve stochastic optimization problem.
Assuming that stochastic variables have Gaussian distributions, a procedure is given which guarantees the convergence of the
stochastic optimization. Convex problems drastically reduce the difficulty and the computational time required to reach the global
minimum, compared to nonconvex optimal power flow problems. The linear controllers with optimized parameters are compared
to traditional control laws using simulations of a real distribution grid model. The results show that the algorithm is reliable and
moreover fast enough. Hence, the proposed method can be used to update periodically the control parameters.

Keywords: Confidence level optimization; control tuning; distribution network; stochastic power flow; convex optimization
problem; fractional programming problem

1. Introduction

When a distribution grid containscontains only loads, the
voltage decreases along the lines. However, when power
sources such as Distributed Generators (DG) with renewable
energies are inserted in a distribution network, reverse active
and reactive power flows appear which in turn may generate
voltage overshoots [1]. The risk of voltage overshoot can be
limited by controlling jointly the On load Tap Changer (OLTC)
of the HV/MV transformer and the DGs reactive powers. How-
ever, the consumption and production powers are stochastic and
vary during the course of the day. Hence, a traditional decen-
tralized droop-based control architecture with unchanging pa-
rameters generates sub-optimal control efforts.

A first range of solutions is real-time controllers which are
able to anticipate or cope with changing behaviors, such as
Model Predictive Controllers (e.g. [2]), adaptive droop con-
trollers (e.g.[3]), or Coordinated Voltage Control (e.g. [4]). In
practice, centralized and high sampling rate controllers are not
suitable for big-size grids when they embed limited communi-
cation and actuation technologies. A reasonable alternative is
to keep a decentralized structure with affine control laws and to
optimize droop parameters on a longer time span, this solution
agrees with the industrial communication system capacities of
the distribution grids. This method allows to reduce DG efforts

thanks to a global optimization and the use of forecasting.

Among the different optimization strategies, stochastic op-
timization has many interests: first, it can take uncertainties
into account. Then, it can optimize expectations, variances,
confidence levels and risks. Algorithms using confidence lev-
els take advantage of the stochastic nature of the variables and
are able to provide a likelihood of violation [5, 6], this is a
major benefit over robust methods which use only uncertainty
bounds [7, 8]. However, these algorithms only consider chance
constraints with a fixed confidence level p, whether applied to
droop gain synthesis (e.g. [4]), real-time control design [9, 10]
or Unit Commitment problems (see e.g. [11, 12, 13]). When
p is high, the system is more secure, albeit at a higher eco-
nomic cost. Very little is said in the literature on how to obtain
the best rate of service (called a max-p problem), that is to say
find the set of decentralized controllers parameters which max-
imizes the probability that all node voltages remain within the
prescribed bounds [14, 5]. The adjustment is mainly done ac-
cording to experience or conventions [15, 16].
In order to update droop gains within 15-60 minutes, it is neces-
sary to select an optimization algorithm that converge quickly to
a global optimum. This calls for the use of interior point meth-
ods which handle efficiently convex problems [17] and discards
Monte-Carlo methods for the optimization of large-scale grids
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Nomenclature

αii, βii, Q0
i Control parameters of the affine law of the DG at
node i

η, κ Confidence levels

S̃ Vector of complex powers (̃S = P̃ + jQ̃)

P̃l Vector of consumption active powers (P̃l =

[P̃l
1, ..., P̃

l
n]T )

P̃p Vector of production reactive powers (P̃p =

[P̃p
1 , ..., P̃

p
n ]T )

P̃ Vector of active powers (P̃ = [P̃1, ..., P̃n]T )

Q̃l Vector of consumption reactive powers (Q̃l =

[Q̃l
1, ..., Q̃

l
n]T )

Q̃p Vector of production reactive powers (Q̃p =

[Q̃p
1 , ..., Q̃

p
n ]T )

Q̃ Vector of reactive powers (Q̃ = [Q̃1, ..., Q̃n]T )

Y Admittance matrix

Z Impedance matrix, Z = Y−1

1 Vector of 1s, dimension n

µX̃ , σX̃ Mean and standard deviation of the stochastic vari-
able X̃

Ĩ Vector of currents entering or exiting nodes (̃I =

[Ĩ1, ..., Ĩn]T )

Ṽ Vector of voltages, nodes 1 to n: Ṽ = [Ṽ1, ..., Ṽn]T

Ĩ0 Currents entering or exiting slack bus 0

Ṽ0 OLTC node voltage

Ṽerr
0 OLTC node voltage error

n + 1,G Number of nodes, number of DGs

PN
i DG nominal power at node i

Vre f
0 OLTC node voltage reference

wi Objective function weighting factors

x 7→ Φ(x) Standard Gaussian cumulative distribution func-
tion

x 7→ φ(x) Standard Gaussian probabilistic distribution func-
tion

DG Distributed Generator

OLTC On Load Tap Changer

[18, 19] which bear a high computational burden. However,
in general, chance constrained or max-p problems are not con-
vex [20]. The application to chance constrained droop control
synthesis in a power grid [4] has been handled with linear ap-
proximations. [5] considered piecewise affine laws (e.g. a dead
band) that are sometimes applied to DG control. It was shown
that the node voltages could be considered as combinations of
piecewise Gaussian variables, but the max-p problem was not
shown explicitly to be convex.

This paper proposes a generic stochastic algorithm which op-
timizes the DGs droop control parameters. The objective func-
tion and constraints can be defined as a weighted sum of squares
of expectations, variances, confidence levels or risk levels of
any voltages or DG powers. Moreover, it is shown that this al-
gorithm uses convex subproblems and converges very quickly.
Section II shows that, under decentralized affine control, the
grid voltages can be approximated accurately by a linear map-
ping of the control parameters and the stochastic powers or con-
sumptions, using the quasi-static linear grid model of [21]. In
section III, the max-p problem is recast into a generalized frac-
tional programming problem, that is to say find the minimax of
several fractions. Such a problem can be solved by a Newton-
like algorithm called Dinkelbach’s procedure [22, 23], and con-
siders subproblems that will be shown to be convex. A simula-
tion of a real distribution grid under optimal control is given in
section IV. This example will be used to assess numerically the
convexity of the optimization problem and the relevance of the

optimization procedure.

2. Simplified stochastic model of a distribution grid

2.1. Linear stochastic power flow model under linear control
In the paper, a subscript ()i will indicate the value of the

corresponding variable at node i, an exponent will refer to the
membership of the variable to a specific set which will be de-
fined in the text. A tilde (˜) placed on top of a symbol indicates
that the corresponding variable is stochastic. Usually, voltages
and powers in a distribution grid with n + 1 nodes are obtained
from a AC power flow (1, 2), which accounts for the power
balance at every node i.

P̃i = Vi

n∑
i=0

Ṽ jYi jcos(∆i − ∆ j − Θi j) (1)

Q̃i = Vi

n∑
i=0

Ṽ jYi jsin(∆i − ∆ j − Θi j) (2)

where P̃i, Q̃i, Ṽi,∆i are injected active and reactive powers, volt-
age and angle at node i, Yi j,Θi j are admittance matrix param-
eters. However, these models are nonlinear and their use in
an optimization algorithm is computationally prohibitive or no
convergence can be guaranteed. Instead, it is possible to use
quasi-static linear models which provide an estimation of the
nodes voltages (3) (Ṽ) as a function of load/production reac-
tive (P̃) and reactive (Q̃) powers with a remarkable accuracy.
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This linear model has been originally published in [21] and has
been extended in [24]. Paper [24] proposes a more general
model which considers networks with shunt elements, several
slack buses, and displays a larger validity domain. The practi-
cal performances and validity domain of this model have been
evaluated using an industrial distribution grid in [25].

Ṽ = AP̃ + BQ̃ + 1Ṽ0 (3)

where the reference angle is the voltage of the bus 0 (V0) which
refers to the secondary side of the HV/MV distribution trans-
former, and is controlled by an On Load Tap Changer (OLTC).
The theoretical upper bound of the voltage estimation error εi

(4) at the node i is given by:

|εi| ≤
4

V3
0

||Zi|| ||Z||∗ ||̃S|| (4)

where Z = Y−1 is the inverse of the admittance matrix Y and Zi

its ith row. The norm ||.|| refers to vector norm and the symbol
||.||∗ refers to the norm defined in (5).

||Z||∗ = max
h
||eT

h Z|| (5)

where eT
h is the h-th vector of the canonical base.

Simulations of real distribution networks have shown that the
real error is lower than 0.001 pu for 86% of configurations of
real networks. The theoretical error is below 0.01 pu [25]. A
simple estimation of current lines is obtained by the admittance
matrix and Ohm’s law (6).

Ĩ = A′P̃ + B′Q̃ + Ĩ0 (6)

The linear model in (4) includes stochastic active P̃ and reac-
tive Q̃ powers which can be split respectively in consumptions
P̃l and Q̃l and productions P̃g and Q̃g as described in (7) and (8).
The nature of the network itself (lines, equipment, controllers,
etc.) is deterministic. However, the forecasting of the system
state can take uncertainties errors into account. For example,
Fig. 1 provides the most probable forecasts of a consumption
for a 24 hour span and the corresponding uncertainties.
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Figure 1. Stochastic distribution of forecasting error of PV production

The power terms are split into consumption and production
terms in (7, 8) and the forecasting errors are provided by histor-
ical data.

P̃ = P̃l + P̃g (7)

Q̃ = Q̃l + Q̃g (8)

An example of the distribution of the power forecasting error
for a PV production is given in Fig.2, which can be clearly ap-
proximated by a Gaussian distribution. In the literature, similar
PDF are found in [26, 27] and in Fig. 3.
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Figure 2. Stochastic distribution of forecasting error of PV production

Figure 3. Error of wind power forecasting [27]

Fig.3 shows two examples of the short-term (e.g. daily) wind
power forecasting error probability density functions (PDF),
which histograms can be approximated by Gaussian distribu-
tions. Likewise, stochastic consumptions and productions pow-
ers and OLTC voltage error can be modeled as Gaussian vari-
ables [28].

In distribution networks, the actuators dedicated to voltage
control are the OLTC and the distributed generators reactive
powers. The voltage Ṽ0 is controlled by the OLTC which se-
lects the appropriate tap according to the voltage reference Vre f

0
which is prescribed by the distribution transformer [2]. The
OLTC voltage Ṽ0 is defined by (9):

Ṽ0 = V0
re f + Ṽerr

0 (9)

The error voltage comes mainly from quantization (tap se-
lection) and is modeled by the Gaussian variable Ṽerr

0 =

N (0, 0.052) [5].
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Contrary to the OLTC, the DGs are scattered all over the dis-
tribution grid. The structure of the DG reactive power indus-
trial controllers can be either linear or piecewise linear of local
measurements such as the DG node voltage and the DG active
power production. The matrix representation of the reactive
power control is given by equation (10).

Q̃g = αṼ + βP̃g + Q0 (10)

The matrix α ∈ Rn×n is a diagonal matrix for which the G diago-
nal terms αii represent the adjustable slopes Q/V of the reactive
power affine controllers of the G nodes which have active gen-
erators. All other elements of the matrix α are equal to zero, and
zero diagonal elements correspond to nodes for which there is
no reactive power control. The matrix β ∈ Rn×n is defined as the
same way and represents the adjustable slopes Q/P. The vec-
tor Q0 ∈ Rn represents the constant part of the affine controllers
in the same way, where the G adjustable terms correspond to
the G nodes with controlled DGs.

The vectors of adjustable control parameters, which is the de-
cision variables in the optimization problem introduced in sec-
tion 3, be noted xα ∈ RG, xβ ∈ RG, xQ ∈ RG, respectively for
the slopes and constant parameters of the G affine control laws.

Next, replacing (10) into equation (3) yields:

(I − Bα)Ṽ = AP̃ + B(βP̃g + Q0 + Q̃l) + 1Ṽ0 (11)

Note that in equation (11), P̃g, P̃l, Q̃l, Ṽ0 are independent
stochastic variables, Q0,α,β are respectively a vector and a di-
agonal matrix with each G adjustable deterministic parameters.

If all variables which are fed to the linear model (3) are as-
sumed to be Gaussian and independent, Gaussian nodes volt-
ages are obtained, which means and standard deviations can be
determined analytically without any iteration.

2.2. Voltages as linear models of control parameters
Solving equation (11) to obtain Ṽ requires to invert a matrix

that will distribute nonlinearly the control parameters α over
the stochastic powers P̃ and Q̃l. Such nonlinear coupled terms
are difficult to handle easily by classical optimization routines.

Lemma 1. Assume that P̃, Ṽ0, Q̃l have Gaussian distributions.
If ||Bα|| � 1 and ||BαB|| � 1 (Schatten 2-norm) then the node
voltages exhibit a Gaussian distribution and are linear func-
tions of the control parameters α, β and Q0:

Ṽ = AP̃+BQ̃l +1Ṽ0 +BαAP̃+BβP̃g +Bα1Ṽ0 +BαBQ̃l +BQ0

(12)

Proof. The first assumption allows to use a first order Taylor
expansion (I − Bα)−1 ' (I + Bα). Replacing into (11) brings
Ṽ = (I + Bα)(AP̃ + BβP̃g + BQ̃l + BQ0 + 1Ṽ0). Using the
second assumption to neglect the term BαBQ0 and BαBβP̃g

yields equation (12). The expression of Ṽ is clearly a linear
combination of the independent stochastic variables (P̃, Q̃l, Ṽ0)
and a linear combination of the control parameters (α,β,Q0).
Note that only G elements of each control vector are nonzero.

It is well known that the sum of independent Gaussian vari-
ables is also Gaussian. Hence, assuming that P̃, Q̃l, Ṽ0 have
Gaussian distributions, Ṽ also has a Gaussian distribution.

3. Confidence level optimization of decentralized control
parameters

3.1. From a confidence level to a generalized fractional pro-
gramming problem

The goal of the paper is to keep the same standard affine re-
active power control structure given equation (10) and find the
optimal control parameters xα ∈ RG, xβ ∈ RG, xQ ∈ RG. The
optimization procedure assumes that the distribution of stochas-
tic variables Ṽ0 and P̃ on an hourly or a daily basis are Gaussian
and known a priori. The generic optimization objectives used
to tune the control parameters are:

• the minimum probability that voltages remain within pre-
scribed bounds [Vmin; Vmax] is maximized ;

• the minimum probability that powers (P̃g, Q̃g) remain
within prescribed domain is maximized ;

• the sum of voltage variances is minimized ;

• the sum of squares of DG reactive powers expectations is
minimized.

The maximization of the minimum probability that voltages
remain within prescribed bounds [Vmin; Vmax] is defined in (13):

max
xα,xβ,xQ

min
i=1···n

{pi | P(Vmin ≤ Ṽi ≤ Vmax)) ≥ pi} (13)

where P is a probability measure. This problem can be written
under the standard max-p confidence level optimization pro-
gram (14), for which p is a joint probability level that corre-
sponds to a service rate:

max
xα,xβ,xQ

{p | P(Vmin ≤ Ṽi ≤ Vmax)) ≥ p} ∀i = 1 · · · n (14)

Alternately, maximizing a confidence level is equivalent to min-
imizing the rate of failure 1− p, that is the probability of voltage
over or undershoot:

min
xα,xβ,xQ

{1− p | P(Vmin ≤ Ṽi ≤ Vmax)) ≥ p} ∀i = 1 · · · n (15)

The max-p problem is related to chance-constrained prob-
lems found in the literature which consider the probabilistic in-
equality in (15) as a constraint with a specified rate of failure
1 − p or confidence level p.

The challenge addressed in this paper is to show the conver-
gence of the optimization problem. Variances and square of ex-
pectation are quadratic functions of the parameters and, hence,
are convex. However, the convergence of the constrained max-
p problem cannot be proved directly as discussed in the next
paragraph.

In specific cases, according to the structure of the constraints
and the nature of the probability density functions, it is possi-
ble to show the convexity of chance-constrained problems or
to propose resolution methods which ensure a convergence to-
wards a global optimum [20, 29]. However, there is a chal-
lenge to handle max-p problems when random (even Gaussian)
and decision (control) variables cannot be decoupled (which
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is typically the case here as equation (12) displays bilinear
terms). In this case, the max-p problem has to consider a priori
non-convex and non-linear multiple objectives, and a specific
method has to be developed to solve the problem. In a first
step, it will be recalled that a max-p problem can be recast in
a generalized fractional programming problem [22], along with
a specific application of this transformation to the confidence
level optimization problem of equation (12). Then, it will be
shown that this problem, while being not convex, can be solved
using a Newton-like procedure which converges to the global
minimum. This procedure involves the resolution of subpro-
grams, which will be shown to be convex in the specific case
considered in the paper, which will allow the use of efficient
convex optimization algorithms [17].

Proposition 1. [29] Let c̃ a random vector with multivariate
normal distribution, S a regular region of Rn (i.e. not empty
and bounded), then the problem max

x∈S
P(̃cT x ≥ M) is equivalent

to

max
x∈S

−M + c̄T x
√

xTVx
(16)

where c̄,V are respectively the mean and covariance matrix of
c̃.

In the literature, a problem such as (16), which consists of
maximizing the ratio of two functions f (x), g(x) of the deci-
sion vector is called a fractional programming problem. Hence,
Proposition 1 states the equivalence between a stochastic op-
timization problem and a fractional optimization programming
problem, which in this case appears to be concave. When it
comes to find the maximum of minimum of several fractions,
the problem is called a generalized fractional programming
problem which is more complicated to handle because the de-
nominator is not the same for all fractions, and is in general
neither concave nor convex.

λ = min
x∈S

{
max
i=1···m

fi(x)
gi(x)

}
(17)

where S is a nonempty subset of Rn, and fi, gi, i = 1 · · ·m are
continuous functions with gi(x) > 0,∀x ∈ S .

If the Gaussian characteristics of the power and consump-
tions distributions are known, a main result of this paper can
be stated which recasts the max-p problem into the general-
ized fractional programming problem (18), which unfortunately
turns out to be non-convex. However, it will be seen later that
it can be solved by a procedure which embeds convex subprob-
lems.

Proposition 2. The max-p problem
max

xα,xβ,xQ
{p | P(Ṽi ≥ Vmin)) ≥ p},∀i = 1 · · · n

can be recast into the generalized fractional programming
problem P given in (18) or in (19).

P : max
xα,xβ,xQ

min
i=1···n

µṼi
− Vmin

σṼi

(18)

P : min
xα,xβ,xQ

max
i=1···n

Vmin − µṼi

σṼi

(19)

Proof.

max
xα,xβ,xQ

{p | ∀i = 1 · · · n , P(Ṽi ≥ Vmin) ≥ p}

⇐⇒ max
xα,xβ,xQ

{
min
1≤i≤n

{
P(Ṽi ≥ Vmin)

}}
⇐⇒ max

xα,xβ,xQ

min
1≤i≤n

P(
Ṽi − µṼi

σṼi

≥
Vmin − µṼi

σṼi

)




⇐⇒ max
xα,xβ,xQ

min
1≤i≤n

1 − Φ

Vmin − µṼi

σṼi


⇐⇒ max

xα,xβ,xQ

min
1≤i≤n

−Φ

Vmin − µṼi

σṼi


⇐⇒ max

xα,xβ,xQ

max
1≤i≤n

Φ

Vmin − µṼi

σṼi


⇐⇒ max

xα,xβ,xQ

max
1≤i≤n

Vmin − µṼi

σṼi


⇐⇒ max

xα,xβ,xQ

min
1≤i≤n

µṼi
− Vmin

σṼi


Also, the formulation can use the maximization of the minimum
confidence level (18) use the minimization of the maximum risk
(19).

In the same way, the max-p problem considering the upper
bound Vmax can be recast in a second generalized fractional pro-
gramming problem (20).

Proposition 3. The max-p problem
max

xα,xβ,xQ
{p | P(Ṽi ≤ Vmax)) ≥ p},∀i = 1 · · · n

can be recast into the generalized fractional programming
problem P given in (20) or (21).

P : max
xα,xβ,xQ

min
i=1···n

Vmax − µṼi

σṼi

(20)

P : min
xα,xβ,xQ

max
i=1···n

µṼi
− Vmax

σṼi

(21)

These two generalized fractional programs are intentionally
not merged because the full problem does not result into a
unique generalized fractional program. Hence, it will be impos-
sible to solve both programs at the same time using convex or
fast optimization algorithms. This means that one has to choose
whether all voltages -at the same time - should not exceed the
upper bound or whether all voltages should remain above the
lower bound. In practice, the main problem for the kind of
networks which are considered in our study is to avoid over-
shoots; moreover, the criterion involves the voltage variance,
which should yield a probability of occurrence of undershoots
smaller than that of overshoots.

3.2. Solving the optimization problem using the generalized
Dinkelbach’s procedure

There exists a number of methods to solve generalized frac-
tional programming problems, including specific interior point
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methods [30], a method of centers [31], or branch and bound
algorithms [32]. However, the standard procedure is a Newton-
like algorithm called Dinkelbach’s procedure which has been
generalized to multiple fractions by [22]. When the numera-
tor is convex and the denominator is concave, the problem is
more easily tractable as seen later on, even if, regardless of the
concavity and the convexity of fi, gi, the objective function of a
fractional (generalized or not) program is, in general, not con-
cave nor convex. This assumption holds, as will be demon-
strated later, for the voltage max-p problem of equation (14).
The generalization of the approach designed by Dinkelbach for
a single ratio (17), consists of finding a solution of F(λ) = 0
where

F(λ) = min
x∈S

{
max
i=1···n

( fi(x) − λgi(x))
}

(22)

Dinkelbach’s procedure relies on the fact that fi(x) − λgi(x)) is
affine in λ and hence F(λ) is concave in λ, and calls a Newton
method which will be called Procedure 1:

Procedure 1. Dinkelbach’s procedure :

Step 1: Initialize λ1 = max
i=1···n

( fi(x0)/gi(x0)), x0 ∈ X, k = 1

Step 2: Determine an optimal solution xk of

Pk : F(λk) = min
x∈S

{
max
i=1···n

( fi(x) − λkgi(x))
}

Step 3: If F(λk) = 0, xk, λk are the optimal values and STOP

Step 4: else λk+1 := max
i=1···n

( f (xk)/g(xk)), k ⇐ k + 1; Goto Step

2;

The convergence of the algorithm and the equivalence of
finding a root to Dinkelbach’s procedure with the generalized
fractional problem have been proven in the literature under mild
assumptions.

Proposition 4. [22] If S is compact, the sequence λk , if not
finite, converges linearly to the optimal value, and each subse-
quence of xk converges to an optimal solution of the generalized
fractional problem.

Hence, Dinkelbach’s procedure is an efficient algorithm pro-
vided that the subproblem Pk, which has to be considered at
each step, can be solved sufficiently fast. The next subsection
shows that, in our case, Pk turns out to be convex.

3.3. Convexity of the subproblems

Proposition 5. The subproblem Pk : F(λk) =

min
xα,xβ,xQ

{
max
i=1···n

((µṼi
− Vmax) − λkσṼi

)
}

is convex in xα, xQ.

Proof. σ2
Ṽi

is a norm so it is convex. (µṼi
− Vmax) is an affine

function of xα, xβ, xQ. As λk+1 := max
i=1···n

µṼi
−Vmax

σṼi
< 0, (µṼi

−

Vmax) − λkσṼi
is convex in xα, xβ, xQ. The maximum of a set of

convex functions is convex itself, which completes the proof.

Now, Dinkelbach’s procedure can be easily applied, as a con-
vex subproblem has to be solved at each step. Procedure 2
summarizes the algorithm which solves the optimal confidence
problem (14):

Procedure 2. Optimal confidence level procedure :

Step 1: Compute the voltages means and standard devia-
tions with (12) and initialize Dinkelbach’s procedure

Step 2: Follow the steps of Procedure 1 and solve Pk with
a method dedicated to convex problems. A numer-
ical criterion can allow to STOP the algorithm, for
example if |F(λk)| < ε, where ε is a prescribed value.

In this paper, a standard interior point method, which is a
convex optimization algorithm, was used and implemented in
Matlab.

To sum up, the complete flowchart is detailed in Fig. 4.

Grid

Initialization

A, B, V0

α, β, Q0

Stochastic
Power flow

(I−Bα)Ṽ = AP̃+B(βP̃g +Q0 + Q̃l) + 1Ṽ0

Lemma 1

Ṽ = AP̃+BQ̃l+1Ṽ0+BαAP̃+BβP̃g+Bα1Ṽ0+
BαBQ̃l +BQ0

Objective function

max
xα,xβ,xQ

min
i=1···n

{pi | P(Vmin ≤ Ṽi ≤ Vmax)) ≥ pi}

Proposition 2-3

max
xα,xβ,xQ

min
i=1···n

µṼi
−Vmin

σṼi

Dinkelbach’s procedure

αopt, βopt, Q0
opt

Figure 4. Flowchart of the optimization procedure

4. Practical application to an industrial distribution grid

4.1. Presentation of the grid and optimization problem

The methodology is applied on one of the 27 feeders of a real
distribution grid. This 9 km long feeder has 168 nodes, 35 loads
(distributed over 26 nodes). The consumption of loads and the
production of DGs are respectively 3.1 MW (and 2.1 MVAr)
and 8.2 MW. These values correspond respectively to 50 % of
the maximal consumption and 60 % of the nominal production.
The feeder has 7 generators, and the sum of DG nominal powers
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Figure 5. Mixed feeder

is 13.6 MW. The initial network is modified, as two generators
receive an extra 3 MW active power (see Fig.5).

The OLTC initial reference voltage is kept at the industrial
choice Vre f

0 = 1.03 pu. The goal of the study is to optimize
the DGs controllers settings in order to comply with regulatory
standards without adding extra devices to the grid or reinforce-
ment.

The means and standard deviations of parameters uncertain-
ties are given in Table 1.

Uncertainty Mean Std
Prevision uncertainty of the

-0.30 % 2.98 %
global grid consumption ( Preal−Ppredict

P∗max
)

Consumption spreading
50 %

uncertainty
Wind power production

1.71 % 18.10 %
uncertainty ( Preal−Ppredict

P∗max
)

Solar power production
0.30 % 11.56 %

uncertainty ( Preal−Ppredict

P∗max
)

OLTC uncertainty 0.005pu

Table 1. Stochastic input parameters

Q̃g = αṼ + βP̃g + Q0 (23)

One must find the control parameters xα, xβ, xQ of the 7 gener-
ators which optimize the criterion (24):

max
xα,xβ,xQ

ω1 min
i=0···n

ηi + ω2 min
i=0···n

κi

−
ω3

n

n∑
i=0

Var(Ṽi) −
ω4

G

n∑
i=0

E[Q̃p
i ]

PN
i

2

(24)

where

• ηi are the confidence level for which every voltage Ṽi, i =

1 · · · 168 lies in the contractual domain, here [0.95; 1.05]
pu,

• κi are the confidence level that the DG powers of each of
the 7 DGs remain in the contractual PQ domains,

• Var(Ṽi) is the voltage variance at node i,

• E[ Q̃p
i

PN
i

]2 is the expectation of the DG control effort at node

i when the node hosts a DG; power PN
i is the DG nominal

power.

ω1, ω2, ω3, ω4 > 0 are weighting factors between the ser-
vice rates η, the DG specifications λ, voltages variances and
control efforts. In this case, the weighting factors used are
ω = (0.995; 0.995; 1; 0.0005). These values are discussed in
the subsection 5.3.

Moreover, the confidence levels ηi, δi that the constraints re-
spectively on DG powers and line currents are respected should
exceed a contractual value. All the mandatory constraints are
summed up in equation (25).

ηi > ηs ∀ nodes (25a)
κi > κs ∀ DGs (25b)
δl > δs ∀ lines (25c)

where ηs, κs, δs are contractual values. It is recalled that voltage
bounds, current bounds and power bounds are specified either
in Grid Codes or in datasheets. The 95% confidence level is not
an objective, but only a constraint. It ensures that the probabil-
ity that the system complies with all regulations or constraints
is high enough. Today, this confidence level is not explicitly
specified in Grid Codes. Hence, this level is chosen arbitrarily,
but the 95% value is commonly found in chance-constrained
problems that are met in the literature.

It is interesting to note that the selection of weights
ω1, ω2, ω3, ω4 is important as the objectives are clearly antag-
onistic. For example, decreasing the control efforts contradicts
with maximizing the worst PQ confidence level κi, which calls
for a study of a Pareto barrier.

4.2. Results

It is impossible to prove formally the convexity of a problem
using numerical simulations, but, similar to the Monte Carlo
method, running a high number of simulations with random
starting points makes it possible to infer, in practice, whether
the problem is convex. This subsection displays the results of a
numerical study of the convexity and the convergence speed of
the proposed optimization problem using this industrial exam-
ple.

The optimization problem (24) is more complex than the the-
oretical max-p programming problem, but can nevertheless be
solved by the same approach as in section 3.2, and is therefore
convex. Using a standard PC equipped with Intel Core pro-
cessor i7-4810MQ and 16 Go RAM, and Matlab2016b interior
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point routines, procedure 2 solves the optimization problem ap-
plied on a feeder within 30 seconds. The optimization applied
on the full industrial grid in which the feeder belongs to, with
3446 nodes, 27 feeders and 21 DGs is achieved in 8-12 min-
utes. This computational time is consistent with the industrial
time range and an hourly update of DGs control parameters.

The objective function tolerance is 10−2, which means that
the search algorithm stops when the decrement of the objec-
tive function between two consecutive iterations is below this
value. The numerical study of the convexity was achieved by
running 1000 optimizations using random starting points. As
a result, all optimizations converge in less than 10 iterations
and all the solutions are grouped around the objective func-
tion value 0.9005. Fig.6 presents the histogram of the objective
function values and displays the domain B = [0.9005 − 0.5 ×
10−2; 0.9005 + 0.5 × 10−2] which is centered on the most prob-
able solution 0.9005 and which width equals the tolerance. As
the number of iterations is small, this study shows that the con-
vex optimization algorithm can reach the global minimum quite
accurately and fast.

Objective function values

0
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20

30

40

h
is
to
g
ra
m

in
%

0.896 0.898 0.9060.9040.9020.900

Domain B

Figure 6. Histogram of objective function value

Figure 7. Confidence level for PQ diagrams

Fig. 7 shows an example of a confidence level that the DG

power comply with the PQ domain specifications, as a function
of parameters xα, xβ. One can see that a region of the param-
eters set is able to reach at least 95% confidence levels. This
figure shows the feasible region created by this constraint is
convex. This result can be extended to the feasible region cre-
ated by all the constraints (25).

The results from the optimization problem that minimizes
(24) s.t. (25) can be compared with classical control tuning
methods. The first method assumed no reactive power control
that is Q̃p = 0. A second method uses a maximum tan(φ)
for all DGs that is, for all generators, Q̃p = −0.35P̃p, and
αii = Q0

i = 0. This control law yields the minimum voltages
variances. The third control law assumes that the reactive pow-
ers of all DGs achieve a maximal effort Q̃p = −0.35pu, and
yield the minimum voltages expectations.

Figure 8. Voltage 95 % confidence levels along the feeder

Reactive power Reactive power

Figure 9. PQ diagrams and PQ 95 % confidence levels with optimal
parameters

Fig. 8 presents the confidence levels that the voltages along
the feeder lie in the contractual interval for all three methods
and the optimization problem. Fig. 9 shows 95 % confidence
intervals of PQ and QV diagrams. Finally, Table 2 show the
values of means and standard deviations of voltages at the mid-
dle and end of the feeder and Table 3 displays the subcriteria for
each classical and optimized controller parameter, that is mini-
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mal confidence levels, control efforts and voltage variances.

Method
Mid-feeder voltages End-Feeder voltages

Mean (pu) Std (pu) Mean (pu) Std (pu)

Q = 0, V0 = 1.02pu 1.0364 0.00588 1.0399 0.00644

Q = −0.35, V0 = 1.02pu 1.0300 0.00585 1.0323 0.00640

Q = −0.35P, V0 = 1.02pu 1.0323 0.00565 1.0349 0.00608

Optimized parameters 1.0345 0.00570 1.0378 0.00621

Table 2. Optimized non-optimal voltage means and standard deviations

Method

Node Voltage

min
i

(ηi)
∑
i

E[ Q̃p
i

PN
i

]
end of feeder Global Objective

Mean Std function value

(pu) (pu)

Q = 0, V0 = 1.02pu 1.0399 0.00644 93.1 % 0 0.9199

Q = −0.35, V0 = 1.02pu 1.0323 0.00640 99.7 % 0.35 0.8106

Q = −0.35P, V0 = 1.02pu 1.0349 0.00608 99.2 % 0.2243 0.8688

Optimized
1.0382 0.00626 97.5 % 0.1270 0.9005

linear law

Table 3. Values of subcriteria

4.3. Discussion : Weighting factors selection
Fig. 8 shows that, without any reactive power control, the

node voltages are unable to meet their specifications. Typically,
at the end of the feeder, the overvoltage risk is 6.9 % whereas is
should not exceed 5 %. Traditional control laws are not flexible
and generate very secure working conditions (more than 99
% minimum confidence level at the lowest voltage node) at
the expense of high DG control efforts. Typically, in the case
study, control efforts from minimum tan(φ) and maximum
reactive power are respectively twice and three times that of
the proposed optimized settings. It is interesting to note that
using the minimum tan(φ) law allows to minimize the voltage
variance as expected. Note that indeed, the optimal strategy
maximizes the objective function, with the exception of the
zero reactive power control strategy, which main objective
consists to prevent constraints violations.
The optimal strategy is indeed able to realize a compromise
between subcrteria which depends on the weighting factors
ω1, ω2, ω3, ω4, showing good results on variances and confi-
dence levels while requiring a reasonable control effort. The
weighting factors ωi can be tuned by different methods, for
example by drawing a Pareto barrier. An illustration given
in Fig. 10 is done between the DG efforts criteria and the
maximum risk that voltages lies out the domain [0.95; 1.05] pu
(max
i=0···n

1 − ηi = 1 − min
i=0···n

ηi). This figure allows to choose the

values of ω1 and ω4. The same study has been done for all
weighting factors, in our case ω = (0.995; 0.995; 1; 0.0005).

5. Conclusion

The insertion of intermittent renewable sources into distribu-
tion grids generates bidirectional power flows and violations of

0 2 4 6 8 10 12 14
10−3

0

20

40

60

80

100

S
u
m

o
f
sq
u
a
re
s
o
f
D
G

eff
o
rt

ex
p
ec
ta
ti
o
n
s

Pr(V =2 [0:95; 1:05])

Figure 10. Pareto barrier

the voltage specifications when only local controllers are op-
erating. The design of an accurate linear stochastic model of
the grid allows to represent the stochastic nature of the powers
and voltages. Using this model, it is possible to find the so-
lution of a centralized optimization problem which yields the
appropriate parameters of the affine laws of the DG reactive
power controller. The optimal criterion realizes a trade-off be-
tween the risk of voltage overshoot or that the powers leave
a prescribed PQ domain and the control efforts required from
the DGs. It is shown, using a real industrial feeder, that this
method yields a good confidence level, and thus a good operat-
ing performance, at a reasonable energetic cost. An algorithmic
procedure is given to solve this complex problem which is re-
laxed and transformed in a sequence of convex subproblems.
Contrary to classical OPF formulations, the present convex for-
mulation allows to guarantee a simple and fast resolution.
The methodology is realistic as it allows to update the control
hourly, the optimal supervisor requiring only a simplified model
of the system and the characteristics of the stochastic laws
of the productions and consumptions (assuming to be Gaus-
sian). Moreover, the industrial control structure is kept and,
after the occurrence of an update, the controllers continue to
operate in a decentralized way, which does not require inter-
communication. The algorithm is able to complete an update
in less than 10 minutes, which is not prohibitive as for Monte
Carlo methods. Future work will focus on more complicated in-
dustrial control laws, for example which consider a dead-band.
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