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PATCHING OVER BERKOVICH CURVES AND QUADRATIC FORMS

VLERË MEHMETI

Abstract. We extend field patching to the setting of Berkovich analytic geometry and
use it to prove a local-global principle over function fields of analytic curves with respect
to completions. In the context of quadratic forms, we combine it with sufficient conditions
for local isotropy over a Berkovich curve to obtain applications on the u-invariant. The
patching method we adapt was introduced by Harbater and Hartmann in [18], and further
developed by these two authors and Krashen in [19]. The results presented in this paper
generalize those of [19] on the local-global principle and quadratic forms.

Résumé. Recollement sur les courbes de Berkovich et formes quadratiques.
Nous étendons la technique de recollement sur les corps au cadre de la géométrie ana-
lytique de Berkovich pour démontrer un principe local-global sur les corps de fonctions
de courbes analytiques par rapport à certains de leurs complétés. Dans le contexte des
formes quadratiques, nous le combinons avec des conditions suffisantes d’isotropie locale
sur une courbe de Berkovich pour obtenir des applications au u-invariant. La méthode de
recollement que nous adaptons a été introduite par Harbater et Hartmann dans [18], puis
developpée par ces deux auteurs et Krashen dans [19]. Dans ce texte, nous présentons
des résultats sur le principe local-global et les formes quadratiques qui généralisent ceux
de [19].

Introduction

Patching techniques were introduced as one of the main approaches to inverse Galois
theory. Originally of purely geometric nature, this method provided a way to obtain a
global Galois cover from local ones, see for example [17]. Another example is [28], where
Poineau used patching on analytic curves in the Berkovich sense, and consequently gen-
eralized results shown by Harbater in [15] and [16]. In [18], Harbater and Hartmann
extended the technique to structures over fields, while constructing a setup of heavily
algebraic flavor. Patching over fields has recently seen many applications to local-global
principles and quadratic forms, see for example [19] and [10]. In particular, in [19], Har-
bater, Hartmann, and Krashen (from now on referred to as HHK) obtained results on the
u-invariant, generalizing those of Parimala and Suresh [27], which were proven through
different methods. Another source for results on the u-invariant is Leep’s article [21].

In this paper, we use field patching in the setting of Berkovich analytic geometry. A
convenience of this point of view is the clarity it provides into the overall strategy. By
patching over analytic curves, we prove a local-global principle and provide applications
to quadratic forms and the u-invariant. The results we obtain generalize those of [19].

The author was supported by the ERC Starting Grant “TOSSIBERG”: 637027.
2010 Mathematics Subject Classification 14G22, 11E08.
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Because of the geometric nature of this approach, we believe it to be a nice framework for
potential generalizations in different directions, and in particular to higher dimensions.

Before presenting the main results of this paper, let us introduce some terminology.

Definition (HHK). Let K be a field. Let X be a K-variety, and G a linear algebraic
group over K. We say that G acts strongly transitively on X if G acts on X, and for any
field extension L/K, either X(L) = ∅ or G(L) acts transitively on X(L).

Our main results, the local-global principles we show, are:

Theorem. Let k be a complete non-trivially valued ultrametric field. Let C be a normal
irreducible projective k-algebraic curve. Denote by F the function field of C. Let X be
an F -variety, and G a connected rational linear algebraic group over F acting strongly
transitively on X.

Let V (F ) be the set of all non-trivial rank 1 valuations on F which either extend the
valuation of k or are trivial when restricted to k.

Denote by Can the Berkovich analytification of C, so that F = M (Can), where M
denotes the sheaf of meromorphic functions on Can. Then, the following local-global prin-
ciples hold:

• (Theorem 3.11) X(F ) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ Can.
• (Corollary 3.18) If F is a perfect field or X is a smooth variety, then:

X(F ) 6= ∅ ⇐⇒ X(Fv) 6= ∅ for all v ∈ V (F ),

where Fv denotes the completion of F with respect to v.

The statement above remains true for affinoid curves if
√
|k×| 6= R>0, where

√
|k×|

denotes the divisible closure of the value group |k×| of k. Being a local-global principle
with respect to completions, the second equivalence evokes some resemblance to more
classical versions of local-global principles. The statement can be made to include trivially
valued base fields, even though in this case we obtain no new information (since one of
the overfields will be equal to F ).

We recall that for any finitely generated field extension F/k of transcendence degree 1,
there exists a unique normal projective k-algebraic curve with function field F. Thus, the
result of the theorem above is applicable to any such field F.

While HHK work over models of an algebraic curve, we work directly over analytic
curves. Remark that we put no restrictions on the complete valued base field k. Apart from
the framework, this is one of the fundamental differences with Theorem 3.7 of [19], where
the base field needs to be complete with respect to a discrete valuation. Another difference
lies in the nature of the overfields, which here are completions or fields of meromorphic
functions. Section 4 shows that the latter contain the ones appearing in HHK’s article,
and thus that [19, Theorem 3.7] is a direct consequence of the local-global principle stated
in Theorem 3.11. Moreover, we show the converse is true as well provided we choose a
“fine” enough model. The proof of the theorem above is based on the patching method,
but used in a different setting from the one of [19].

As a consequence, in the context of quadratic forms we obtain the following theorem,
which is a generalization of [19, Theorem 4.2].

Theorem. Let k be a complete non-trivially valued ultrametric field. Let C be a normal
irreducible projective k-algebraic curve. Denote by F the function field of C. Suppose
char(F ) 6= 2. Let q be a quadratic form over F of dimension different from 2.
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Let V (F ) be the set of all non-trivial rank 1 valuations on F which either extend the
valuation of k or are trivial when restricted to k.

Let Can be the Berkovich analytification of C, so that F = M (Can), where M is the
sheaf of meromorphic functions on Can.

(1) (Theorem 3.12) The quadratic form q is isotropic over F if and only if it is isotropic
over Mx for all x ∈ Can.

(2) (Corollary 3.19) The quadratic form q is isotropic over F if and only if it is
isotropic over Fv for all v ∈ V (F ), where Fv is the completion of F with respect
to v.

As mentioned in the introduction of [19], it is expected that for a “nice enough” field K
the u-invariant remains the same after taking finite field extensions, and that it becomes
2du(K) after taking a finitely generated field extension of transcendence degree d. Since
we work only in dimension one, this explains the motivation behind the following:

Definition. Let K be a field.

(1) [Kaplansky] The u-invariant of K, denoted by u(K), is the maximal dimension
of anisotropic quadratic forms over K. We say that u(K) = ∞ if there exist
anisotropic quadratic forms over K of arbitrarily large dimension.

(2) [HHK] The strong u-invariant of K, denoted by us(K), is the smallest real num-
ber m such that:
• u(E) 6 m for all finite field extensions E/K;
• 1

2u(E) 6 m for all finitely generated field extensions E/K of transcendence
degree 1.

We say that us(K) = ∞ if there exist such field extensions E of arbitrarily
large u-invariant.

The theorem above leads to applications on the u-invariant. Let k be a complete non-

archimedean valued field with residue field k̃, such that char(k̃) 6= 2. Suppose that either

|k×| is a free Z-module with rankZ|k×| = n, or more generally that dimQ
√
|k×| = n, where

n is a non-negative integer. This is yet another difference with the corresponding results
of HHK in [19], where the requirement on the base field is that it be complete discretely
valued, i.e. that its value group be a free Z-module of rank 1. We obtain an upper bound
on the u-invariant of a finitely generated field extension of k with transcendence degree

at most 1, which depends only on us(k̃) and n. More precisely, in terms of the strong
u-invariant:

Corollary (Corollary 6.2). Let k be a complete valued non-archimedean field. Suppose

char(k̃) 6= 2. Let n ∈ N.
(1) If dimQ

√
|k×| = n, then us(k) 6 2n+1us(k̃).

(2) If |k×| is a free Z-module with rankZ|k×| = n, then us(k) 6 2nus(k̃).

It is unknown to the author whether there is equality in the corollary above. This is
true in the particular case of n = 1 by using [19, Lemma 4.9], whose proof is independent
of patching. This way we recover [19, Theorem 4.10], which is the main result of [19] on
quadratic forms. It also provides one more proof that u(Qp(T )) = 8, where p is a prime
number different from 2, originally proven in [27].

Corollary (Corollary 6.4). Let k be a complete discretely valued field such that char(k̃) 6= 2.

Then, us(k) = 2us(k̃).
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The first section of this paper is devoted to proving that patching can be applied to
an analytic curve. To do this, we follow along the lines of the proof of [19, Theorem 2.5],
making adjustments to render it suitable to our more general setup. Recall that an analytic
curve is a graph (see [11, Théorème 3.5.1]). We work over any complete valued base field k

such that
√
|k×| 6= R>0. This condition is equivalent to asking the existence of type 3

points on k-analytic curves, which are characterized by simple topological and algebraic
properties. More precisely, a point of type 3 has arity 2 in the graph associated to the
curve, and its local ring with respect to the sheaf of analytic functions is a field if the
curve is reduced. Type 3 points are crucial to the constructions we make. Let C be
an integral k-analytic curve. Let U, V be connected affinoid domains in C, such that
W = U ∩ V is a single type 3 point. We show that given two “good” algebraic structures
over M (U), M (V ), and a suitable group action on them, they can be patched to give the
same type of algebraic structure over M (U ∪V ). The key step in proving this is a “matrix
decomposition” result for certain linear algebraic groups.

In the second part, our aim is to show that any open cover of a projective k-analytic
curve can be refined into a finite cover that satisfies conditions similar to those of the first
section, i.e. one over which we can apply patching. The refinement U we construct is
a finite cover of the curve, such that for any U ∈ U , U is a connected affinoid domain
with only type 3 points in its boundary. Furthermore, for any distinct U, V ∈ U , the
intersection U ∩ V is a finite set of type 3 points. A cover with these properties will be
called nice (cf. Definition 2.1). The existence of a refinement that is a nice cover will first

be shown for the projective line P1,an
k , and will then be generalized to a broader class of

k-analytic curves. We work over a complete ultrametric field k such that
√
|k×| 6= R>0.

The third section contains the main results of the paper. We show two local-global
principles (Theorem 3.11, Corollary 3.18) over fields of meromorphic functions of normal
projective k-analytic curves, and an application to quadratic forms (Theorem 3.12, Corol-
lary 3.19). In the simplest cases, the proofs use patching on nice covers and induction
on the number of elements of said covers. We first prove these results over a complete
ultrametric base field k such that

√
|k×| 6= R>0. This is then generalized for projective

curves to any complete ultrametric field using a descent argument that is based on results
of model theory. We also prove similar results for affinoid curves.

In the fourth section we interpret the overfields of HHK’s [19] in the Berkovich setting,
and show that [19, Theorem 3.7] is a consequence of Theorem 3.11. We show that the
converse is true as well provided one works over a “fine enough” model.

The purpose of the fifth part is to find conditions under which there is local isotropy
of a quadratic form q over analytic curves. The setup will be somewhat more general,
which is partly why it is the most technical section of the paper. The idea is to find a
nice enough representative of the isometry class of q to work with and then use Henselian-
ity conditions. The hypotheses on the base field become stronger here. Namely, we
require our complete valued non-archimedean base field k to be such that the dimension
of the Q-vector space

√
|k×| be finite (a special case beeing when |k×| is a free module

of finite rank over Z), and the residue characteristic unequal to 2. The restriction on the
value group is not very strong: when working over a complete ultrametric field k satisfying
this property, for every k-analytic space X and every point x ∈ X, the completed residue
field H(x) of x satisfies it as well.
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In the last part, we put together the local-global principle for quadratic forms and the
local isotropy conditions of the previous section to give a condition for global isotropy
of a quadratic form over an analytic curve. From there we deduce applications to the
(strong) u-invariant of a complete valued field k with residue characteristic different from 2,

and such that the dimension of the Q-vector space
√
|k×| is finite.

Conventions. Throughout this paper, we use the Berkovich approach to non-archimedean
analytic geometry. A Berkovich analytic curve will be a separated analytic space of pure
dimension 1.

A valued field is a field endowed with a non-archimedean absolute value. For any valued

field l, we denote by l̃ its residue field.
We call boundary, and denote it by ∂(·), the topological boundary. We call Berkovich

relative boundary (resp. Berkovich boundary), and denote it by ∂B(·/·) (resp. ∂B(·)),
the relative boundary (resp. boundary) introduced in [2, Definition 2.5.7] and [3, Defini-
tion 1.5.4].

A Berkovich analytic space which is reduced and irreducible is called integral in this
text. Thus, an integral affinoid space is an affinoid space whose corresponding affinoid
algebra is a domain.

Throughout the entire paper, we work over a complete valued base field k.

Acknowledgements. I am most grateful to Jérôme Poineau for the numerous fruitful dis-
cussions and helpful remarks. Many thanks to Philippe Satgé for the chaotic yet beneficial
mathematical exchanges we had. My gratitude also goes to Antoine Ducros for pointing
out an argument that made it possible to get rid of the hypothesis

√
|k×| 6= R>0. Finally,

many thanks to the referee for a very careful reading, leading to a great improvement of
this paper.

1. Patching over Berkovich Curves

The purpose of this section is to prove a matrix decomposition result under conditions
which generalize those of HHK’s article [19, Section 3, Theorem 3.2]. As a consequence,
we obtain a generalization of vector space patching on analytic curves. Let us start by
fixing a somewhat more extensive framework, in which our proof works.

Setting 1. Let Ri, i = 1, 2, be an integral domain endowed with a non-archimedean sub-
multiplicative norm | · |Ri , with respect to which it is complete. Set Fi = Frac Ri, i = 1, 2.
Let F be an infinite field embedded in both F1 and F2. Let F0 be a complete ultramet-
ric field with non-trivial valuation, such that there exist bounded morphisms Ri ↪→ F0,
i = 1, 2. Suppose the image of F1 is dense in F0. Let Ai be an Ri-module, such that Ai ⊆ Fi.
Suppose Ai is finitely generated as an Ri-module, i.e. that there exists a surjective Ri-
linear morphism ϕi : Rnii � Ai for some positive integer ni, i = 1, 2. Let us endow Ai
with the quotient semi-norm induced from ϕi. Assume that Ai is complete and the mor-
phism Ai ↪→ F0 is bounded for i = 1, 2. Remark that this implies that the semi-norm
on Ai is a norm. Suppose the induced map π : A1 ⊕ A2 → F0 is surjective. Finally,
suppose the norm of F0 is equivalent to the quotient norm induced by the surjective mor-
phism π : A1⊕A2 � F0, where A1⊕A2 is endowed with the usual max semi-norm | · |max.

As in [2], a morphism f : A → B of semi-normed rings is said to be admissible if the
quotient semi-norm on A/ ker(f) is equivalent to the restriction to f(A) of the semi-norm
on B. Thus, in the setting above, we suppose that the morphism π is admissible.
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Before giving the motivating example for Setting 1, we need to recall Berkovich mero-
morphic functions.

Definition 1.1. Let X be a good k-analytic space (in the sense of Berkovich). Let S be the
presheaf of functions on X, which associates to any analytic domain U the set of analytic
functions on U whose restriction to any affinoid domain in it is not a zero-divisor. Let
M− be the presheaf on X that associates to any analytic domain U the ring S(U)−1O(U).
The sheafification M of the presheaf M− is said to be the sheaf of meromorphic functions
on X.

We notice that for any x ∈ X, Mx is the total ring of fractions of OX,x. In particular,
if OX,x is a domain, then Mx = Frac OX,x. We make note of the following, well known,
fact:

Lemma 1.2. Let X be an integral k-affinoid space. Then, M (X) = Frac O(X).

By replacing the fraction field of O(X) with its total ring of fractions, the statement
remains true when removing the condition of integrality on X.

Proof. Since O(X) is an integral domain, Frac O(X) ⊆ M (X) by the definition of M .
Let f ∈ M (X). The sheaf fO ∩ O ⊆ M is non-zero and coherent, so by Kiehl’s
Theorem, it has a non-zero global section x. Then, there exists y ∈ O(X)\{0}, for
which f = x

y ∈ Frac O(X).

�

Another result that will be needed throughout this paper is the following:

Lemma 1.3. Let C be a normal irreducible k-analytic curve. Let U, V be affinoid domains
of C, such that U ∩ V = {η}, where η is a point of type 3. Then, the images of M (U)
and M (V ) in M ({η}) are dense.

Proof. Let us start by remarking that the set of poles of a meromorphic function is a divisor
and as such consists of only rigid points. This implies that a meromorphic function cannot
have a pole on any non-rigid point (including η), which is why it makes sense to evaluate
it at η.

That {η} is an affinoid domain of U (resp. V ) can be checked directly from the definition
of an affinoid domain. By the Gerritzen-Grauert theorem (see [30]), we obtain that it is a
rational domain in U (resp. V ). Then, by the easy implication of Corollary 2.2.10 in [2],
the meromorphic functions on U (resp. V ) with no poles in {η} are dense in O({η}).
Seeing as η is a type 3 point, O({η}) = M ({η}) = H(η) - the completed residue field of η.
Finally, this implies that the image with respect to the restriction morphism of M (U)
(resp. M (V )) in M ({η}) is dense. �

The example of Setting 1 we will be working with is the following:

Proposition 1.4. Let C be a normal irreducible k-analytic curve. Set FC = M (C). Let D
be an effective divisor of degree n on C. Take two connected affinoid domains U, V in C,
such that W := U ∩ V =: {η}, where η is a type 3 point. Set RU = O(U), FU = Frac RU ,
RV = O(V ), FV = Frac RV , and FW = O(W ). Set AU = O(D)(U), AV = O(D)(V ).

For large enough n such that H1(C,O(D)) = 0, the conditions of Setting 1 are satisfied
with R1 = RU , R2 = RV , A1 = AU , A2 = AV , F = FC , and F0 = FW .
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Proof. As U, V,W are connected affinoid domains of a normal analytic curve, they are
integral, so RU , RV ,O(W ) are integral domains that are all complete with respect to non-
Archimedean norms. As W is a single type 3 point, O(W ) is a field and so O(W ) = FW .
Moreover, since O(W ) = H(η), the normed ring FW is a complete ultrametric non-trivially
valued field. As U, V and W are integral, by Lemma 1.2, M (U) = FU , M (V ) = FV , and
M (W ) = FW . This shows the existence of embeddings of FC into FU , FV , and FW . The
restriction morphisms RU , RV → FW are bounded by construction. From Lemma 1.3,
FU , FV have dense images in FW .

Notice that for Z ∈ {U, V,W}, O(Z) ↪→ O(D)(Z) ↪→ M (Z). In particular, this
means that O(D)(W ) = O(W ) = M (W ). Since O(D) is a coherent sheaf, AU
(resp. AV ) is a finite RU -module (resp. RV -module). The completness of AU (resp.
AV ) follows from the fact that ideals of affinoid algebras are closed. The mor-
phism O(D)(U) = AU ↪→ FW = O(D)(W ) is the restriction morphism of the sheaf O(D),
so it is bounded. The same is true for AV ↪→ FW .

If U ∪ V is not the entire C, it is an affinoid domain thereof (see [11, Théorème 6.1.3]).
By Tate’s Acyclicity Theorem [2, Chapter 2, Proposition 2.2.5],

0→ H0(U ∪ V,O(D))→ H0(U,O(D))⊕H0(V,O(D))→ H0(U ∩ V,O(D))→ 0

is an exact admissible sequence, from which we obtain the surjective admissible mor-
phism AU ⊕AV � O(D)(W ) = FW .

Suppose U ∪ V = C. Since C is then compact and integral, by [11, Théorème 6.1.3],
it is either an affinoid domain (a case we dealt with in the paragraph above) or a pro-
jective curve. If C is projective, by [22, Section 7.5, Proposition 5.5] for large enough n,
H1(U ∪V,O(D)) = 0. The Mayer-Vietoris exact sequence now produces a bounded surjec-
tive morphism AU ⊕AV � O(D)(W ) = FW . Admissibility follows from Banach’s Open
Mapping Theorem if k is not trivially valued (for a proof see [9]), and by a change
of basis followed by the Open Mapping Theorem if it is (see [2, Chapter 2, Proposi-
tion 2.1.2(ii)]). �

We make note of the fact that Proposition 1.4 assumes the existence of a point of type 3,
which is equivalent to

√
|k×| 6= R>0.

Remark 1.5. Other examples of Setting 1 can be obtained by taking instead of O(D)
any coherent sheaf F of O-algebras that is a subsheaf of M , for which H1(C,F) = 0.

Definition 1.6. Let K be a field. A rational variety over K is a K-variety that has a
Zariski open isomorphic to an open of some AnK .

Using the same notation as in Setting 1, the main goal of this section is to prove the
following matrix decomposition result:

Theorem 1.7. Let G be a connected linear algebraic group over F that is a rational variety
over F . For any g ∈ G(F0), there exist g1 ∈ G(F1), g2 ∈ G(A2), such that g = g1 · g2.

This was proven in a slightly different setting by HHK in [19]. We follow along the lines
of their proof, making adjustements to render it suitable for the hypotheses we want to
work with.

Let K be an infinite field. Since a connected rational linear algebraic group G over
some infinite field K has a non-empty open subset U ′ isomorphic to an open subset U of
an affine space AnK , by translation (since K is infinite) we may assume that the identity
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element of G is contained in U ′, that 0 ∈ U, and that the identity is sent to 0. Let us
denote the isomorphism U ′ → U by φ.

Let m be the multiplication in G, and set Ũ ′ = m−1(U ′) ∩ (U ′ × U ′), which is an open

subset of G×G. It is isomorphic to an open subset Ũ of A2n
K , and m|Ũ ′ gives rise to a map

Ũ → U, i.e. to a rational function f : A2n
K 99K AnK . Remark that for any (x, 0), (0, x) ∈ Ũ ,

this function sends them both to x.

Ũ ′ U ′

Ũ U

(φ× φ)|Ũ ′

m|Ũ ′

f

φ

The theorem we want to prove can be interpreted in terms of the map f . Lemma 1.9
below, formulated to fit a more general setup, shows that said theorem is true on some
neighborhood of the origin of an affine space. It is the analogue of [19, Theorem 2.5].

We proceed first with an auxiliary result. Since the morphisms Ai ↪→ F0, i = 1, 2, are
bounded, there exists C > 0, such that for any xi ∈ Ai, |xi|F0 6 C · |xi|Ai . By changing to
an equivalent norm on Ai if necessary, we may assume that C = 1. Let us fix the quotient
norm | · |F0 on F0, induced from the surjective morphism π : A1 ⊕A2 � F0.

Lemma 1.8. (1) For any xi ∈ Ai, i = 1, 2, |xi|F0 6 |xi|Ai .
(2) There exists a constant d ∈ (0, 1), such that for any c ∈ F0, there exist a ∈ A1, b ∈ A2,

for which π(a+ b) = c and d ·max(|a|A1 , |b|A2) 6 |c|F0 .

Proof. (1) See the paragraph above the statement.
(2) Suppose c 6= 0. Let D be any real number, such that D > 1. For any c ∈

F0, there exist a ∈ A1, b ∈ A2 (depending on D), such that π(a + b) = c and
max(|a|A1 , |b|A2) 6 D · |c|F0 . Otherwise, for any x ∈ A1, y ∈ A2, for which π(x +
y) = c, one would have |x+ y|max = max(|x|A1 , |y|A2) > D · |c|F0 . Then,

|c|F0 = inf
x∈A1,y∈A2

π(x+y)=c

|x+ y|max > D · |c|F0 ,

which is impossible if c 6= 0. Thus, there exist a and b as above, and
for d = D−1 ∈ (0, 1), one obtains d ·max(|a|A1 , |b|A2) 6 |c|F0 .

If c = 0, the statement is true regardless of the choice of d.
�

From now on, instead of writing π(x + y) = c for x ∈ A1, y ∈ A2, c ∈ F0, we will just
put x+ y = c without risk of ambiguity.

In what follows, for any positive integer n, let us endow Fn0 with the max norm induced
from the norm on F0, and let us also denote it by | · |F0 .

Lemma 1.9. Let f : AnF0
× AnF0

99K AnF0
be a rational map defined on a Zariski open S̃

such that (0, 0) ∈ S̃, and f(x, 0) = f(0, x) = x whenever (x, 0), (0, x) ∈ S̃. Then, there
exists ε > 0, such that for any a ∈ An(F0) with |a|F0 6 ε, there exist u ∈ An1 and v ∈ An2 ,
for which (u, v) ∈ S̃(F0) and f(u, v) = a.
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Proof. The rational function f can be written as (f1, . . . , fn), where the fi are elements
of F0[T1, . . . , Tn, S1, . . . , Sn](T1,...,Tn,S1,...,Sn). Furthermore, since fi(0, 0) = 0, they belong
to the maximal ideal of this ring. Lemmas 2.1 and 2.3 of [19] remain true in our setting
without any significant changes to their proofs (this is where the condition f(x, 0) =
f(0, x) = x is crucial). They tell us that:

(1) we can see these rational functions as elements of F0[[T1, . . . , Tn, S1, . . . , Sn]];
(2) there exists M > 1, such that

fi = Si + Ti +
∑

|(l,m)|>2

cil,mT
lSm ∈ F0[[T1, . . . , Tn, S1, . . . , Sn]],

with |cil,m|F0 6 M |(l,m)|, for i = 1, 2, . . . , n and (l,m) ∈ N2n, where |(l,m)| is the

sum of the coordinates of (l,m). (Remark that since fi(x, 0) = fi(0, x) = x for any

x for which (0, x), (x, 0) ∈ S̃, we can even assume that l,m are both non-zero.)

Since S̃ is open, S̃(F0) is a Zariski open in A2n(F0), and so it is open in F 2n
0 in the topology

induced by the max norm (which is finer than the Zariski one). Seeing as 0 ∈ S̃(F0), there

exists δ > 0, such that for any (x, y) ∈ F 2n
0 with |(x, y)|F0 < δ, one has (x, y) ∈ S̃(F0)

and f(x, y) is defined.
Let us fix the constant d given by Lemma 1.8. Let 0 < ε′ 6 min{1/2M,d2/M4, δ/2}.

Set ε = dε′. Since ε < ε′ < min(1/M, δ/2), by Lemma 2.1 in [19], for any (x, y) ∈ S̃(F0)
with |(x, y)|F0 6 ε′, f(x, y) is well defined, and the series by which fi(x, y) is given is
convergent in F0, i = 1, 2, . . . , n.

Let a = (a1, a2, . . . , an) ∈ An(F0) be such that |a|F0 6 ε. Let u0 = 0 ∈ An1 , and
v0 = 0 ∈ An2 . Using induction, one constructs sequences (us)s in An1 , and (vs)s in An2 , such
that the following conditions are satisfied:

(1) |us|A1 , |vs|A2 6 ε
′ for all s > 0;

(2) |us − us−1|A1 , |vs − vs−1|A2 6 ε
′ s+1

2 for all s > 1;

(3) |f(us, vs)− a|F0 6 dε
′ s+2

2 for all s > 0.

The first terms u0 and v0 satisfy conditions 1 and 3. We notice that the first condi-
tion implies |(us, vs)|F0 6 ε′, so f(us, vs) is well defined, and fi(us, vs) is convergent for
s ∈ N and i = 1, 2, . . . , n. Suppose that for j > 0, we have constructed uj and vj sat-
isfying all three conditions above. Then, dj := a − f(uj , vj) ∈ Fn0 is well defined, and

|dj |F0 6 dε
′ j+2

2 . From Lemma 1.8, there exist u′j ∈ An1 and v′j ∈ An2 , such that dj = u′j +v′j ,

and d ·max(|u′j |A1 , |v′j |A2) 6 |dj |F0 6 dε
′ j+2

2 .

Set uj+1 = uj + u′j and vj+1 = vj + v′j . Then, |uj+1|A1 6 max
(
ε′, ε′

j+2
2

)
= ε′,

and the same is true for vj+1. Also, |uj+1 − uj |A1 = |u′j |A1 6 ε′
j+2
2 , and similarly,

|vj+1 − vj |A2 6 ε
′ j+2

2 .
For r ∈ N, i ∈ {1, 2, . . . , r} and α ∈ F r0 , let αi be the i-th coordinate of α. For

p = (p1, p2, . . . , pr) ∈ Nr, set αp :=
∏r
i=1 α

pi
i . Then, for the third condition,

|fi(uj+1, vj+1)− ai|F0 =

∣∣∣∣∣∣uj+1,i + vj+1,i − ai +
∑

|(l,m)|>2

cil,mu
l
j+1v

m
j+1

∣∣∣∣∣∣
F0
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=

∣∣∣∣∣∣uj,i + vj,i + u′j,i + v′j,i − ai +
∑

|(l,m)|>2

cil,mu
l
j+1v

m
j+1

∣∣∣∣∣∣
F0

=

∣∣∣∣∣∣fi(uj , vj)− ai + u′j,i + v′j,i +
∑

|(l,m)|>2

cil,m(ulj+1v
m
j+1 − uljvmj )

∣∣∣∣∣∣
F0

=

∣∣∣∣∣∣−dj,i + u′j,i + v′j,i +
∑

|(l,m)|>2

cil,m(ulj+1v
m
j+1 − uljvmj )

∣∣∣∣∣∣
F0

=

∣∣∣∣∣∣
∑

|(l,m)|>2

cil,m(ulj+1v
m
j+1 − uljvmj )

∣∣∣∣∣∣
F0

6 max
|(l,m)|>2

|cil,m|F0 · |ulj+1v
m
j+1 − uljvmj |F0 .

On the other hand,

ulj+1v
m
j+1 − uljvmj =(uj + u′j)

l(vj + v′j)
m − uljvmj

=
∑

06β6l
06γ6m

AβBγu
β
j u
′l−β
j vγj v

′m−γ
j − uljvmj

=
∑

06α6(l,m)

∑
β+γ=α
06β6l
06γ6m

AβBγu
β
j u
′l−β
j vγj v

′m−γ
j − uljvmj ,

where Aβ, Bγ are integers (implying they are of norm at most one on F0). Thus,

ulj+1v
m
j+1 − umj vlj is a finite sum of monomials of degree |(l,m)| in the variables

uj,i, u
′
j,i, vj,i, v

′
j,i, i = 1, 2, . . . , n, where the degree in uj,i, vj,i is strictly smaller than |(l,m)|.

Finally, since the norm is multiplicative and non-archimedean:

|ulj+1v
m
j+1 − uljvmj |F0 6 max

06β+γ<(l,m)
06β6l,06γ6m

|uβj |F0 |v
γ
j |F0 |u

′l−β
j |F0 |v

′m−γ
j |F0

6 max
06β+γ<(l,m)
06β6l,06γ6m

ε′|(β,γ)|(ε′
j+2
2 )|(l,m)|−|(β,γ)|,

so |ulj+1v
m
j+1 − uljv

m
j |F0 6 max06θ<|(l,m)| ε

′θ · (ε′
j+2
2 )|(l,m)|−θ. This, combined with

|cil,m|F0 6M
|(l,m)|, implies that:

|fi(uj+1, vj+1)− ai|F0 6 max
|(l,m)|>2

06θ<|(l,m)|

M |(l,m)|ε′θ · (ε′
j+2
2 )|(l,m)|−θ

= max
|(l,m)|>2

06θ<|(l,m)|

(Mε′)θ · (Mε′
j+2
2 )|(l,m)|−θ.
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Since ε′ > ε′
j+2
2 and Mε′ < 1, one obtains:

|fi(uj+1, vj+1)− ai|F0 6 max
|(l,m)|>2

(Mε′)|(l,m)|−1 · (Mε′
j+2
2 ) 6Mε′ ·Mε′

j+2
2 .

At the same time, M2 · ε′1+
j+2
2 = (M

2

d ε
′1/2)dε′

j+3
2 6 dε′

j+3
2 , which concludes the induction

argument.
The second property of the sequences (us)s, (vs)s tells us that they are Cauchy (hence

convergent) in the complete spaces An1 , A
n
2 , respectively. Let u ∈ An1 and v ∈ An2 be the

corresponding limits. The first property implies that |(u, v)|F0 6 ε
′ < δ, so (u, v) ∈ S̃(F0),

and f(u, v) is well defined. Lastly, the third property implies that f(u, v) = a. �

From this point on, Theorem 1.7 can be proven the same way as in [19, Theorem 3.2].
Since Ai ↪→ Fi, i = 1, 2, we immediately obtain:

Corollary 1.10. Let G be a connected linear algebraic group over F that is a rational
variety over F. For any g ∈ G(F0), there exist gi ∈ G(Fi), i = 1, 2, such that g = g1 · g2
in G(F0).

2. Retracting Covers

In the first section we mentioned that the most important example of Setting 1 was the
one given by Proposition 1.4. This should serve as motivation for the following:

Definition 2.1. A finite cover U of a k-analytic curve will be called nice if:

(1) the elements of U are connected affinoid domains with only type 3 points in their
topological boundaries;

(2) for any different U, V ∈ U , U ∩ V = ∂U ∩ ∂V ;
(3) for any two different elements of U , neither is contained in the other.

We recall once again that we will use the term boundary for the topological boundary.
The purpose of this section is to prove that, under certain conditions, for any open

cover of a k-analytic curve, there exists a nice refinement, i.e. a refinement that is a nice
cover of the curve. The main goal is to be able to apply Corollary 1.10 to any open cover.

Definition 2.2. Let P ∈ k[T ] be any irreducible polynomial. We will denote by ηP,0 the

only (type 1) point of A1,an
k for which |P | = 0. For s ∈ R>0, we will denote by ηP,s the

point of A1,an
k that is the Shilov boundary of the affinoid domain {|P | 6 s} ⊆ A1,an

k .

Proposition 2.3. For any point η ∈ A1,an
k of type 2 or 3, there exist an irreducible poly-

nomial P ∈ k[T ] and r ∈ R>0, such that η = ηP,r. Then, |P |η = r and:

(1) r ∈
√
|k×| if and only if η is a type 2 point;

(2) r 6∈
√
|k×| if and only if η is a type 3 point, in which case η is the only element of

A1,an
k for which |P | = r.

Proof. We recall that the projective line P1,an
k is uniquely path-connected and can be

obtained by adding a rational point∞ to A1,an
k . For any two points a, b ∈ P1,an

k , we denote
by [a, b] the unique path connecting them.
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Let A be a connected component of P1,an
k \{η} that doesn’t contain ∞. In particular,

A ⊆ A1,an
k . Let η0 be any rigid point of A. There exists a unique irreducible polynomial

P ∈ k[T ], such that η0 = ηP,0. Then, η ∈ [ηP,0,∞].

Let ϕ be the finite morphism P1,an
k → P1,an

k determined by the map k[T ]→ k[T ],
T 7→ P (T ). Seeing as ϕ(ηP,0) = ηT,0 and ϕ(∞) =∞, [ηP,0,∞] is mapped by ϕ to [ηT,0,∞].

Set η′ = ϕ(η). The path connecting ηT,0 to ∞ in P1,an
k is {ηT,s : s ∈ R>0} ∪ {∞}. For any

s > 0, |T |ηT,s = s, and if ηT,s is a type 3 point, then it is the only one in P1,an
k for which

|T | = s. Furthermore, ηT,s is a type 2 (resp. type 3) point if and only if s ∈
√
|k×| (resp.

s 6∈
√
|k×|).

Thus, there exists r > 0, such that η′ = ηT,r. Since ϕ(η) = ηT,r, by construction,
η = ηP,r and |P |ηP,r = r. Seeing as a finite morphism preserves the type of the point (i.e.
ηT,r is a type 2 (resp. 3) point if and only if ηP,r is so), we obtain (1) and the first part
of (2).

To prove the second part of (2), we need to show that if r 6∈
√
|k×|, ηP,r is the only

point in A1,an
k for which |P | = r. Since P is irreducible, by [11, 3.4.24.3], |P | is strictly

increasing in [ηP,0,∞), and locally constant elsewhere. Hence, ηP,r is the only point in

[ηP,0,∞) for which |P | = r, and since it is a type 3 point (i.e. A1,an
k has exactly two

connected components), it is the only such point in A1,an
k . �

Let us recall that we denote by ∂B(·/·) the Berkovich relative boundary, and by ∂B(·)
the boundary relative to the base field k, i.e. ∂B(·/M(k)) (see [2, Definition 2.5.7] and
[3, Definition 1.5.4]).

Lemma 2.4. Let V be a k-affinoid curve. The following sets are equal:

(1) the Berkovich boundary ∂B(V ) of V ;
(2) the Shilov boundary Γ(V ) of V.

Proof. If V is strictly affinoid, this is [32, Lemma 2.3]. The proof can be extended to
the general case by replacing classical reduction with Temkin’s graded reduction (see
Propositions 3.3 and 3.4 of [29]). �

Proposition 2.5. Let C be a k-analytic curve such that ∂B(C) = ∅. Let V be an affinoid
domain of C. The three following sets coincide:

(1) the topological boundary ∂V of V in C;
(2) the Berkovich relative boundary ∂B(V/C) of V in C;
(3) the Shilov boundary Γ(V ) of V.

Proof. By [2, Corollary 2.5.13 (ii)], ∂B(V/C) = ∂V. By [3, Proposition 1.5.5 (ii)], since C is
boundaryless, ∂B(V/C) = ∂B(V ). Finally, in view of Lemma 2.4, ∂V = ∂B(V/C) = Γ(V ).

�

Let us recall that analytification of an algebraic variety is boundaryless. In particular,
projective k-analytic curves are boundaryless.

Until the end of this section, suppose that
√
|k×| 6= R>0, so that there exist type 3

points in P1,an
k .

Theorem 2.6. Let C be a k-analytic curve. The family of connected affinoid domains
with only type 3 points in their topological boundaries forms a basis of neighborhoods of
the Berkovich topology on C.
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Proof. Let x ∈ C. Seeing as any curve is a good Berkovich space (i.e. all points have a
neighborhood that is an affinoid domain), we may assume that C is an affinoid domain.
Let U be an open neighborhood of x in C. There exists an open neighborhood of x in U
given by {|fi| < ri, |gj | > sj : i = 1, 2, . . . , n, j = 1, 2, . . . ,m}, where fi, gj are analytic
functions on C and ri, sj ∈ R>0.

Let r′i, s
′
j ∈ R>0\

√
|k×|, such that r′i < ri and s′j > sj , and |fi(x)| < r′i, |gj(x)| > s′j , for

all i and j. Set V = {|fi| 6 r′i, |gj | > s′j}. It is an affinoid domain of C and a neighborhood
of x contained in U.

As {|fi| < r′i, |g′j | > sj} is open, it is contained in Int(V ), so ∂V ⊆
⋃n
i=1{|fi| = r′i} ∪⋃m

j=1{|gj | = s′j}. Let y ∈
⋃n
i=1{|fi| = r′i} ∪

⋃m
j=1{|gj | = s′j}. Since there exists an analytic

function f on C such that |f(y)| 6∈
√
|k×|, the point y is of type 3, implying that the

boundary of V contains only type 3 points. �

2.1. The Case of P1,an
k . Recall that P1,an

k is uniquely path-connected. For any x, y ∈ P1,an
k ,

let us denote by [x, y] the unique injective path connecting them. The next few properties
of the projective line will be essential to the remainder of this section.

Lemma 2.7. Let A ⊆ P1,an
k . Then, A is connected if and only if for any x, y ∈ A, [x, y] ⊆ A.

Furthermore, the intersection of any two connected subsets of P1,an
k is connected.

Lemma 2.8. Let U, V be two non-disjoint connected affinoid domains of P1,an
k , such that

they have disjoint interiors. Then, U ∩ V is a single point.

Proof. Since U ∩V = ∂U ∩∂V, it is a finite set of points. At the same time, by Lemma 2.7,
U ∩ V is connected, so it must be a single point. �

Lemma 2.9. Let U be an affinoid domain of P1,an
k with only type 3 points in its boundary.

If Int(U) 6= ∅, then (Int U)c is an affinoid domain of P1,an
k with only type 3 points in its

boundary.

Proof. Let us show that Int U has only finitely many connected components.
Since U is an affinoid domain, it has a finite number of connected components Ui, and

by [2, Corollary 2.2.7], they are all affinoid domains. Furthermore, Ui has only type 3
points in its boundary for all i.

Let x, y ∈ Int Ui. Since Ui is connected, [x, y] ⊆ Ui. Let z ∈ ∂Ui. We aim to show that
z 6∈ [x, y], implying [x, y] ⊆ Int Ui, and thus the connectedness of Int Ui.

By [11, Théorème 4.5.4], there exists a neighborhood V of z in Ui such that it is a
closed virtual annulus, and its Berkovich boundary is ∂B(V ) = {z, u} for some u ∈ Ui. By
shrinking this annulus if necessary, we may assume that x, y 6∈ V. Since V is an affinoid
domain in Ui, by [2, Corollary 2.5.13 (ii)], the topological boundary ∂UV of V in U is a
subset of ∂B(V ) = {z, u}. Since V is a neighborhood of z, ∂UV = {u}.

Suppose z ∈ [x, y]. Then we could decompose [x, y] = [x, z] ∪ [z, y]. Since x, y 6∈ V , and
z ∈ V, the sets [x, z] ∩ ∂UV, [z, y] ∩ ∂UV are non-empty, thus implying u is contained in
both [x, z] and [z, y], which contradicts the injectivity of [x, y].

We have shown that Int U has finitely many connected components, so by [11, Proposi-

tion 4.2.14], (Int U)c is a closed proper analytic domain of P1,an
k . By [11, Théorème 6.1.3],

it is an affinoid domain. �

We can now show a special case of the result we prove in this section.
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Lemma 2.10. Let C,D be connected affinoid domains of P1,an
k with only type 3 points in

their boundaries. There exists a nice refinement {C1, . . . , Cn, D} of the cover {C,D} of
C ∪D, such that Ci ∩ Cj = ∅ for any i 6= j.

Proof. If C = D, it is straightforward. Otherwise, suppose C 6⊆ D. By Lemma 2.9, C\IntD
is an affinoid domain. Let C ′1, C

′
2, . . . , C

′
m be its connected components. They are mutu-

ally disjoint connected affinoid domains with only type 3 points in their boundaries. By
construction, for any i the intersection C ′i ∩ D is either empty or a single type 3 point,
C ′i ∩ C ′j = ∅ for all i 6= j, and {C ′1, C ′2, . . . , C ′m, D} is a refinement of {C,D}. For any i, if

C ′i is a single point, i.e. C ′i ⊆ D, we remove it from {C ′1, C ′2, . . . , C ′m}, and if not, we keep
it there. Let C1, C2, . . . , Cn be the remaining connected components of C\Int D. Then,
{C1, C2, . . . , Cn, D} is a nice refinement of the cover {C,D} of C ∪D. �

The main result of this section in the case of the projective line is the following gener-
alization:

Proposition 2.11. For any n ∈ N, let {Ui}ni=1 be a set of affinoid domains of P1,an
k with

only type 3 points in their boundaries. Set Vn =
⋃n
i=1 Ui. Then, there exists a nice cover

of Vn that refines {Ui}ni=1, satisfying the following properties:

(1) the intersection of any two of its elements is either empty or a single type 3 point;
(2) if two domains of the refinement intersect, there is no third one that intersects

them both.

Proof. We will use induction on the number of affinoids domains n. For n = 1, the state-
ment is trivial. Suppose the proposition is true for any positive integer smaller or equal
to some n − 1. Let {Ui}ni=1 be affinoid domains of P1,an

k with only type 3 points in their
boundaries. If they are all of empty interior, i.e. unions of points, then the statement is
trivially true. Otherwise, let i0 ∈ {1, 2, . . . , n} be any index for which Ui0 has non-empty
interior. To simplify the notation, suppose i0 = n. By removing the Ui’s contained in Un
if necessary, we may assume that for all i, Ui 6⊆ Un.

From Lemmas 2.9 and 2.10, U = {Un} ∪ {Ui ∩ (Int Un)c}n−1i=1 is a refinement of {Ui}ni=1
containing affinoid domains with only type 3 points in their boundaries. Let {Wl}sl=1 be a

nice refinement of {Ui ∩ (Int Un)c}n−1i=1 . Then, for any l, Un∩Wl ⊆ ∂Un. By removing those
Wl for which Wl ⊆ Un if necessary, we obtain that {Un} ∪ {Wl}sl=1 is a nice refinement of
{Ui}ni=1. The first condition of the statement is a direct consequence of Lemma 2.8.

We have proven that for any positive integer n, there exists a nice refinement of {Ui}ni=1,
which satisfies the first property of the statement. Property 2 is immediate from the
following:

Lemma 2.12. Let W1,W2,W3 be three connected affinoid domains of P1,an
k with non-

empty interiors and only type 3 points in their boundaries. Suppose their interiors are
mutually disjoint. Then, at least one of W1 ∩W2,W2 ∩W3,W3 ∩W1 is empty.

Proof. Suppose that W1 ∩W2,W2 ∩W3, and W3 ∩W1 are all non-empty. If W1 ∩W2 ∩
W3 6= ∅, then by Lemma 2.7 it is a single type 3 point {z}. Since P1,an

k \{z} has exactly
two connected components, and the interiors of W1,W2,W3 are non-empty and mutually
disjoint, this is impossible. Hence, W1∩W2∩W3 = ∅, and so W1∩W2,W2∩W3 and W3∩W1

are all non-empty and different. Since W1∩W2 6= ∅, W1∪W2 is a connected affinoid domain
with only type 3 points in its boundary. Furthermore, Int(W3) ∩ Int(W1 ∪W2) ⊆ (W3 ∩
W1)∪(W3∩W2), and since this is a finite set of type 3 points, Int(W3)∩ Int(W1∪W2) = ∅.
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Thus, the interior of W1 ∪W2 is disjoint to the interior of W3. By Lemma 2.8, (W1 ∪
W2) ∩W3 is a single type 3 point. But, W1 ∩W3 and W2 ∩W3 were both assumed to be
non-empty and shown to be different, implying (W1 ∩W3)∪ (W2 ∩W3) = (W1 ∪W2)∩W3

contains at least two different points, contradiction.
Thus, at least one of W1 ∩W2,W2 ∩W3, W3 ∩W1 must be empty. �

This completes the proof of the proposition. �

In view of Theorem 2.6, we obtain:

Theorem 2.13. Any open cover of a compact subset of P1,an
k has a nice refinement.

The following will be needed later:

Lemma 2.14. Let A be a connected affinoid domain of P1,an
k . Let S be a finite subset of

Int(A) containing only type 3 points. There exists a nice cover A of A, such that the set
of points of intersection of different elements of A is S.

Proof. Seeing as S consists of type 3 points, they are all contained in a copy of A1,an
k

in P1,an
k . Thus, for any element η ∈ S, there exists an irreducible polynomial P over k and

a real number r 6∈
√
|k×| such that η = ηP,r.

Let us prove the statement using induction on the cardinality of S. If S is empty, then
the statement is trivially true. Suppose we know the statement is true if the cardinality
of S is equal to some n− 1.

Let us assume S contains n points. Fix some element ηP,r ∈ S. Let U be a nice
cover of A that satisfies the properties of the statement for S′ := S\{ηP,r}. There
exists a unique U ∈ U , such that ηP,r ∈ U, in which case ηP,r ∈ Int(U). Then,
{U ∩ {|P | 6 r}, U ∩ {|P | > r}} ∪ {V ∈ U : V 6= U} is a nice cover that fulfills our require-
ments. �

2.2. Nice Covers of a Berkovich Curve.

Lemma 2.15. Let C be an irreducible projective generically smooth k-analytic curve.
There exists a type 3 point η in C such that C\{η} has exactly two connected components
E1, E2. Furthermore, E1 ∪ {η}, E2 ∪ {η} are affinoid domains of C.

Proof. By [11, Théorème 3.7.2], there exists an algebraic projective curve Calg/k such that
(Calg)an = C. By [2, Theorem 3.4.1], there is a bijection between the closed points of Calg

and the rigid points of C, meaning the latter are Zariski dense in C. As C is generically
smooth, by [13, Théorème 3.4], the smooth locus of C is a non-empty Zariski open of C.
Consequently, there exists η0 - a rigid smooth point in C.

By [11, Théorème 4.5.4], there exists a neighborhood D′ of η0 in C which is a virtual
disc. By density of type 3 points in C (Theorem 2.6), there exists a type 3 point η ∈ D′. By
[11, 3.6.34], D′ is uniquely path-connected with a single boundary point x. By [11, 1.4.21],
D := D′ - the closure of D in C, is uniquely path-connected. Remark that ∂D = {x}, and
D = D′ ∪ {x}.

As it is of type 3, by [11, 4.2.11.2], there exist at most two branches coming out of η, and
there are exactly two if and only if η ∈ IntB(D). As η ∈ Int(D) = IntB(D) (Proposition
3.1.3(i) of [2]), there are two branches coming out of η. As D is uniquely path-connected,
by [11, 1.3.12], this means that D\{η} has exactly two connected components. Let us
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denote them by A and B, and assume, without loss of generality, that x ∈ B. Remark
that A ⊆ D′.

Set E := (C\D) ∪ {x} = C\D′. Let us show that E is connected. Let a, b ∈ E. Since
C is connected, by [2, Theorem 3.2.1], there exists an injective path [a, b] in C connecting
a and b. Suppose [a, b] ∩ D′ 6= ∅. Let d ∈ [a, b] ∩ D′. Then, [a, b] induces injective paths
[a, d] and [d, b] in C connecting a and d, resp. d and b. As a, b 6∈ D′ and d ∈ D′, we obtain
that [a, d]∩ ∂D, [d, b]∩ ∂D 6= ∅, so x ∈ [a, d] and x ∈ [d, b]. This contradicts the injectivity
of [a, b] unless x = d, which is impossible seeing as x 6∈ D′. Thus, [a, b] ∩ D′ = ∅, i.e.
[a, b] ⊆ E, implying E is connected.

As B,E are connected, and B∩E = {x}, G := B∪E is a connected subset of C. Remark
that A∩G = (A∩B)∪(A∩E) ⊆ D′∩E = ∅. Also, A∪G∪{η} = A∪B∪E∪{η} = D∪E = C.

It only remains to show that A′ := A∪{η} and G′ := G∪{η} are affinoid domains in C.
By [11, Proposition 4.2.14], they are both closed analytic domains in C. As C is projective,
it is boundaryless, so ∂B(A′) = ∂A′ = {η}, and the same is true for G′ (Proposition 2.5).
Let I be an irreducible component of A′ (resp. G′). By [11, 3.2.3], if ∂B(I) = ∅, then
I = C, implying A′ (resp. G′) is C, which is false. Hence, ∂B(I) 6= ∅.

As I is a Zariski closed subset of A′ (resp. G′), there exists a closed immersion (hence,
a finite morphism) I → A′ (resp. I → G′). By [2, Corollary 2.5.13(i)] and [2, Proposition
3.1.3(ii)], ∂B(I) is a subset of I\IntB(A′) (resp. I\IntB(G′)). Hence, ∂B(I) is a non-empty
subset of ∂B(A′) (resp. ∂B(G′)). We conclude by [11, Théorème 6.1.3]. �

Remark 2.16. In general, C\{η} has at most two connected components “around” η, and
it might happen that it has exactly one (for example in a Tate curve), see also [11, 4.2.11.2]
and the remarks made after Lemma 3.7.

Proposition 2.17. Let C be a normal connected projective k-algebraic curve. Then, there
exists a nice cover {U1, U2} of Can - the Berkovich analytification of C, such that U1 ∩U2

is a single type 3 point.

Proof. Let C → P1
k be a finite morphism. It induces an embedding of function fields

k(P1
k) ↪→ k(C). Let K be the separable closure of k(P1

k) in k(C). There exists a connected
normal projective algebraic curve Y over k, such that k(Y ) = K. Since the field extension
K/k(P1

k) is separable, the induced morphism Y → P1
k is generically étale, so Y is a generi-

cally smooth curve. In particular, this implies that the k-analytic curve Y an is generically
smooth ([13, Théorème 3.4]). At the same time, since the finite extension k(C)/K is
purely inseparable, the induced finite type morphism C → Y is a homeomorphism. Con-
sequently, by [2, Proposition 3.4.6], its analytification f : Can → Y an is a finite morphism
that is a homeomorphism.

By Proposition 2.15, there exists a nice cover {U ′1, U ′2} of Y an, such that U ′1 ∩ U ′2 is a
single type 3 point. Seeing as f is finite and a homeomorphism, Ui := f−1(U ′i), i = 1, 2, is
a connected affinoid domain, and U1 ∩ U2 is a single type 3 point. �

Notation 1. For a nice cover U of a k-analytic curve, let us denote by SU the finite set
of type 3 points that are in the intersections of different elements of U .

Remark that for a nice cover U of a k-analytic curve C, if s ∈ SU , the set {s} is an
affinoid domain of C. This is because {s} is a connected component of the intersection of
two affinoid domains.

The following notion will be needed in the section to come.
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Definition 2.18. Let C be a k-analytic curve. Let U be a nice cover of C. A function
TU : U → {0, 1} will be called a parity function for U if for any different U ′, U ′′ ∈ U that
intersect, TU (U ′) 6= TU (U ′′).

Lemma 2.19. For any n ∈ N, let U1, U2, . . . , Un be affinoid domains in P1,an
k such that

Un := {Ui}ni=1 is a nice cover of Kn :=
⋃n
i=1 Ui. Then, there exists a parity function TUn

for Un.

Proof. It suffices to prove the result under the assumption that Kn is connected. We will
use induction on the cardinality n of Un. If n = 1, the statement is trivially true. Suppose
it to be true for some n− 1.

Lemma 2.20. Let Z be a topological space. For any positive integer m, let {Wi}mi=1 be
a set of closed connected subsets of Z. Suppose

⋃m
i=1Wi is connected. Then, there exists

i0 ∈ {1, 2, . . . ,m}, such that
⋃
i 6=i0 Wi is connected.

Proof. Let l be the largest integer such that l < m and there exist Wi1 ,Wi2 , . . . ,Wil ,

with
⋃l
j=1Wij connected. As all the Wi are connected, l > 0. Set J =

{1, 2, . . . ,m}\{i1, i2, . . . , il}. If l < m−1, then for any p ∈ J, we obtain Wp∩
⋃l
j=1Wij = ∅.

This implies that
(⋃

p∈JWp

)
∩
(⋃l

j=1Wij

)
= ∅, which contradicts the connectedness of⋃m

i=1Wi. Thus, l = m− 1.
�

Seeing as
⋃n
i=1 Ui is connected, from Lemma 2.20, there exist n−1 elements of Un whose

union remains connected. For simplicity of notation, assume them to be the elements of
Un−1 := {U1, U2, . . . , Un−1}. Then, Un−1 is a nice cover of Kn−1 :=

⋃n−1
i=1 Ui. Let TUn−1 be

a parity function for Un−1. By Lemma 2.8, Un ∩
⋃n−1
i=1 Ui is a single type 3 point, so by

Lemma 2.12, Un intersects exactly one of the elements of Un−1. Suppose it to be Un−1.
Define TUn as follows:

(1) for any U ∈ Un−1, TUn(U) := TUn−1(U);
(2) TUn(Un) := 1− TUn−1(Un−1).

The function TUn is a parity function for Un. �

Proposition 2.21. Let Y,Z be k-analytic curves with Y normal and Z compact. Let
f : Z → Y be a finite surjective morphism. Suppose V is a nice cover of Y. Then, the con-
nected components of f−1(V ), V ∈ V, form a nice cover U of Z, such that f−1(SV) = SU .

Furthermore, if TV is a parity function for V, then the function TU that to an element
U ∈ U associates TV(f(U)), is a parity function for U .

Proof. Since Z is compact and Y is Hausdorff, f is a closed morphism. By [11, 3.5.12], f
is also open.

If V is any connected affinoid domain of Y, for any connected component V ′0 of f−1(V ),
f(V ′0) = V. To see this, recall that by [3, Lemma 1.3.7], f|f−1(V ) : f−1(V ) → V is a finite
morphism of affinoid spaces, and by [13, Théorème 3.4], as Y is normal, so is V. Thus,
f|f−1(V ) is open and closed. Seeing as V ′0 is a connected component of f−1(V ), it is both

open and closed in f−1(V ), so its image is both open and closed in V. As V is connected,
f(V ′0) = V.

The connected components of f−1(V ) for all V ∈ V form a finite cover U of Z consisting
of affinoid domains (see Corollary 2.2.7(i) of [2]). As f is open, for any V ∈ V, ∂(f−1(V )) =
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f−1(∂V ). Since a finite morphism preserves the type of point of an analytic curve, ∂f−1(V )
is an affinoid domain containing only type 3 points in its boundary. Thus, the elements
of U are connected affinoid domains containing only type 3 points in their boundaries.

Let U1, U2 ∈ U be such that U1 ∩ U2 6= ∅. Set Vi = f(Ui), i = 1, 2. Then, V1, V2 ∈ V,
and V1 6= V2. To see the second part, if V1 = V2, then U1, U2 would be connected compo-
nents of f−1(V1), thus disjoint, which contradicts the assumption U1 ∩ U2 6= ∅. Seeing as
U1∩U2 ⊆ f−1(V1∩V2), U1∩U2 is a finite set of type 3 points. Hence, U1∩U2 = ∂U1∩∂U2.
The third condition of a nice cover is trivially satisfied. Since f−1(∂V ) = ∂f−1(V ) for all
V ∈ V, it follows that f−1(SV) = SU . Finally, TU (U1) = TV(V1) 6= TV(V2) = TU (U2), so
TU is a parity function for U . �

Corollary 2.22. Let C be a normal projective k-analytic curve or a strict k-affinoid curve.
Any open cover of C has a nice refinement.

Proof. By Theorem 2.6, we may assume that the open cover only contains elements with
finite boundary consisting of type 3 points. Since C is compact, there is a finite subcover
U of the starting open cover. Set S =

⋃
U∈U ∂U. There exists a finite surjective morphism

C → P1,an
k . Set S′ := f(S). By Lemma 2.14, there exists a nice cover D of P1,an

k , such that
SD = S′. We conclude by applying Proposition 2.21.

If C is a strict k-affinoid curve, by Noether’s Normalization Lemma there exists a finite
surjective morphism C → D, where D is the closed unit disc in P1,an

k . We conclude as
above. �

3. A Local-Global Principle over Berkovich Curves

Unless mentioned otherwise, we assume that k is a complete ultrametric field such that√
|k×| 6= R>0. Following [19]:

Definition 3.1. Let F be a field. A linear algebraic group G over F acts strongly transi-
tively on an F -variety X if G acts on X and for any field extension E/F, either X(E) = ∅
or the action of G(E) on X(E) is transitive.

We start by showing some patching results over nice covers.

Proposition 3.2. Let D be P1,an
k or a connected affinoid domain of P1,an

k . Let D be a
nice cover of D, and TD a parity function for D. Let G/M (D) be a connected ratio-
nal linear algebraic group. Then, for any (gs)s∈SD ∈

∏
s∈SD G(M ({s})), there exists

(gU )U∈D ∈
∏
U∈DG(M (U)), satisfying: for any s ∈ SD, if U0, U1 are the elements of D

contain s and TD(U0) = 0, then gs = gU0 · g−1U1
in G(M ({s})).

Proof. We will use induction on the cardinality n of a nice cover. If n = 2, then this is
Corollary 1.10 (considering Proposition 1.4 with O(D) = O). Suppose the result is true
for some n − 1. If D =: {U1, U2, . . . , Un}, since

⋃n
i=1 Ui is connected, from Lemma 2.20,

there exist n−1 elements of U whose union remains connected. For simplicity of notation,
suppose them to be the elements of D′ := {U1, U2, . . . , Un−1}. By Lemma 2.8,

⋃n−1
i=1 Ui∩Un

is single type 3 point, so by Lemma 2.12, Un intersects exactly one of the elements of D′. To
simplify the notation, suppose it to be Un−1. Set {η} = Un−1∩Un, so that SD = SD′ ∪{η}.

Let (gs)s∈SD be any element of
∏
s∈SD G(M ({s})). By the induction hypothesis, for

(gs)s∈SD′ ∈
∏
s∈SD′

G(M ({s})), there exists (gU )U∈D′ ∈
∏
U∈D′ G(M (U)), satisfying the

conditions of the statement.
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• Suppose TD(Un) = 0. By Corollary 1.10, there exist a ∈ G(M (Un)) and b ∈
G(M (

⋃n−1
i=1 Ui)), such that gη · gUn−1 = a · b in G(M ({η})). For any i 6= n, set

g′Ui = gUi · b−1 in G(M (Ui)). Also, set g′Un = a in G(M (Un)).

• Suppose TD(Un) = 1. By Corollary 1.10, there exist c ∈ G(M (
⋃n−1
i=1 Ui)) and

d ∈ G(M (Un)), such that g−1Un−1
· gη = c · d in G(M ({η})). For any i 6= n, set

g′Ui = gUi · c in G(M (Ui)). Also, set g′Un = d−1 in G(M (Un)).

The family (g′Ui)
n
i=1 ∈

∏n
i=1G(M (Ui)) satisfies the conditions of the statement for (gs)s∈SD .

�

Proposition 3.3. Let Y be an integral strict k-affinoid curve. Set K = M (Y ). Let
G/K be a connected rational linear algebraic group. For any open cover V of Y, there
exists a nice refinement U of V with a parity function TU , such that for any given
(gy)y∈SU ∈

∏
y∈SU G(M {y}), there exists (gU )U∈U ∈

∏
U∈U G(M (U)), satisfying: for any

y ∈ SU there are exactly two elements U ′, U ′′ of U containing y, and if TU (U ′) = 0, then
gy = gU ′ · g−1U ′′ in G(M {y}).
Proof. By Theorem 2.6, we may assume that the cover V only contains elements with
finite boundary consisting of only type 3 points. Since Y is compact, we may also assume
that V is finite.

Let f : Y → D be a finite surjective morphism we obtain from Noether’s Normalization
Lemma, where D is the closed unit disc in P1,an

k . Set S = f(
⋃
V ∈V ∂V ). It is a finite set of

type 3 points. By Lemma 2.14, there exists a nice cover D of D such that SD = S. Let TD
be a parity function for D (it exists by Lemma 2.19). From Proposition 2.21, the connected
components of f−1(Z ′), Z ′ ∈ D, form a nice cover U of Y such that f−1(SD) = SU , and
TD induces a parity function TU for U .

Let us show that U refines V. Suppose, by contradiction, that Z ∈ U is such that there
does not exist an element of V containing it. Then, there must exist a ∈

⋃
V ∈V ∂V ⊆ SU

such that a ∈ Int(Z). Since a ∈ SU , there exists U ∈ U such that a ∈ ∂U. But then,
Z ∩U 6= ∂Z ∩ ∂U, which contradicts the fact that U is a nice cover of Y. Consequently, U
must refine V.

Suppose that for s ∈ SU there exist different U1, U2, U3 ∈ U containing s. Then, f(s) ∈
V1 ∩ V2 ∩ V3, where Vi := f(Ui) ∈ D, i = 1, 2, 3, (the fact that Vi ∈ D was shown in the
beginning of the proof of Proposition 2.21). By Lemma 2.12, this is only possible if at least
two of the V1, V2, V3 coincide. Suppose, without loss of generality, that V1 = V2. Then,
U1, U2 are connected components of f−1(V1), so U1 ∩ U2 = ∅, contradiction. Hence, for
any s ∈ SU , there exist at most two elements of U containing s. Considering the definition
of SU , there must exist exactly two.

Set G′ = RK/M (D)(G) - the restriction of scalars from K to M (D) of G. It is still a
connected rational linear algebraic group (see [8, 7.6] or [25, Section 1]).

Lemma 3.4. For any point s of type 3 in D, M ({s})⊗M (D) M (Y ) =
∏
x∈f−1(s) M ({x}).

Proof. Seeing as s is a type 3 point, the set f−1(s) is finite consisting of only type 3 points.
Hence, O({s}) = M ({s}), and O({x}) = M ({x}) for all x ∈ f−1(s).

Set A = O(D), B = O(Y ), and C = O({s}). Let us denote by S the set of non-
zero elements of A. We know that C ⊗A B =

∏
x∈f−1(s)O({x}) =

∏
x∈f−1(s) M ({x}).

Then, localizing on both sides, we obtain: S−1(C ⊗A B) = C ⊗S−1A S−1B and

S−1
(∏

x∈f−1(s) M ({x})
)

=
∏
x∈f−1(s) M ({x}). Since B is a finite A-module, S−1B



20 VLERË MEHMETI

is a domain that is a finite dimensional S−1A-vector space. Then, for any b ∈
B\{0}, the map S−1B → S−1B,α 7→ bα is injective, so surjective. Thus, there
exists b′ ∈ S−1B such that bb′ = 1, implying S−1B = Frac B. Consequently,
S−1(C ⊗A B) = M ({s})⊗M (D) M (Y ). �

By the definition of the restriction of scalars, for any s ∈ SD, one obtains G′(M ({s})) =
G(M ({s})⊗M (D) M (Y )). By the lemma above, G′(M ({s})) =

∏
x∈f−1(s)G(M ({x})).

Consequently, (gy)y∈SU ∈
∏
y∈SU G(M ({y})) determines uniquely an element (hs)s∈SD

of
∏
s∈SD G

′(M ({s})). By Proposition 3.2, there exists (hZ)Z∈D ∈
∏
Z∈DG

′(M (Z)), such

that if for two different Z0, Z1 ∈ D with TD(Z0) = 0, s ∈ Z0 ∩ Z1, then hs = hZ0 · h−1Z1
in

G′(M ({s})).
For any Z ∈ D, let Z1, Z2, . . . , Zr be the connected components of f−1(Z). The map

M (Z) ⊗M (D) M (Y ) →
∏r
i=1 M (Zi) induces G′(M (Z)) = G(M (Z) ⊗M (D) M (Y )) →∏r

i=1G(M (Zi)), which maps hZ to an element (gZ1 , gZ2 , . . . , gZr) of
∏r
i=1G(M (Zi)).

Thus, for any U ∈ U , we have an element gU ∈ G(M (U)). It remains to show that
given different U0, U1 ∈ U with TU (U0) = 0, such that y ∈ U0 ∩ U1 for some y ∈ SU , we
have gy = gU0 · g−1U1

in G(M ({y})). This is a consequence of the relation between TD and
TU , and of the commutativity of the following diagram for any Z ∈ D and any s ∈ Z of
type 3:

M (Z) MD({s})

∏r
i=1 M (Zi)

∏
y∈f−1(s) MY ({y})

�

Proposition 3.5. Let Y be a normal irreducible strict k-affinoid curve. Set K = M (Y ).
Let X/K be a variety, and G/K a connected rational linear algebraic group acting strongly
transitively on X. The following local-global principles hold:

• X(K) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ Y ;
• for any open cover P of Y, X(K) 6= ∅ ⇐⇒ X(M (U)) 6= ∅ for all U ∈ P.

Proof. Since Y is irreducible and normal, Ox is a domain for all x ∈ Y, and Mx = Frac Ox.
Seeing as K ↪→Mx for all x ∈ Y, the implication “⇒ ” is true.
Suppose X(Mx) 6= ∅ for all x ∈ Y. Then, there exists an open cover V of Y such that for

any V ∈ V, X(M (V )) 6= ∅. Let U be a nice refinement of V given by Proposition 3.3, and
TU its associated parity function. Remark that for any U ∈ U , we have X(M (U)) 6= ∅.

For U ∈ U , let xU ∈ X(M (U)). For any y ∈ SU , there exists exactly one element
Ui ∈ U , with TU (Ui) = i, i = 0, 1, containing y. From the transitivity of the ac-
tion of G, there exists gy ∈ G(M ({y})), such that xU0 = gy · xU1 in G(M ({y})). This
gives us an element (gy)y∈SU ∈

∏
y∈SU G(M ({y})). By Proposition 3.3, there exists

(gU )U∈U ∈
∏
U∈U G(M (U)), satisfying: for any different U ′, U ′′ ∈ U containing some point

y ∈ SU , such that TU (U ′) = 0 (implying TU (U ′′) = 1), gy = gU ′ · g−1U ′′ in G(M {y}).
For any U ∈ U , set x′U = g−1U · xU ∈ X(M (U)). We have construced a meromorphic

function over U for any U ∈ U . Let us show they are compatible, i.e. that they coincide
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on the intersections of the elements of U . Let D,E ∈ U be such that D ∩E 6= ∅. Suppose
TU (D) = 0. For any s ∈ D∩E, x′E = g−1E ·xE = g−1D (gDg

−1
E )·xE = g−1D gs·xE = g−1D xD = x′D

in X(M ({s})). Consequently, x′E = x′D in X(M (E ∩D)).
Compatibility of these meromorphic functions implies they can be glued to give a mero-

morphic function on the entire Y. Thus, X(K) = X(M (Y )) 6= ∅.
The second version of this local-global principle is a direct consequence of the first one.

�

Let us show the same result (Theorem 3.9) for any k-affinoid space. Recall that Γ(·)
denotes the Shilov boundary of an affinoid space.

Lemma 3.6. Let k be a complete ultrametric field. Let E be a k-affinoid space. Let e be
any point of E. Then, the following statements are equivalent:

(1) there exists an affinoid neighborhood N0 of e in E such that e ∈ Γ(N0);
(2) for any affinoid neighborhood N of e in E, e ∈ Γ(N);
(3) e ∈ Γ(E).

Proof. Suppose there exists an affinoid neighborhood N0 of e in E, such that e ∈ Γ(N0). By
[2, Proposition 2.5.20], Γ(N0) ⊆ ∂B(N0/E)∪(Γ(E)∩N0). Since ∂B(N/E) is the topological
boundary of N0 in E (see [2, Corollary 2.5.13 (ii)]), we obtain that e 6∈ ∂B(N0/E), implying
e ∈ Γ(E) ∩N0 ⊆ Γ(E).

On the other hand, if e ∈ Γ(E), for any affinoid neighborhood N of e in E, since
Γ(E) ∩N ⊆ Γ(N) (see [2, Proposition 2.5.20]), we obtain e ∈ Γ(N). �

Lemma 3.7. Let Y be an integral k-affinoid curve. Let y ∈ Y be any point of type 3, and
Z a connected affinoid neighborhood of y in Y. Then,

(1) the subspace Y \{y} has at most two connected components at the neighborhood
of y; it is connected at the neighborhood of y if and only if y ∈ Γ(Y );

(2) if y ∈ Γ(Y ), then there exist connected affinoid domains A,B of Y, such that A is
a neighborhood of y in Z, Γ(Y )∩A = {y}, A∪B = Y, and A∩B is a single type 3
point;

(3) if k is non-trivially valued and y 6∈ Γ(Y ), there exists a strict affinoid neighborhood
of y in Y.

Proof. Let p denote the characteristic exponent of k. Then, by [13, Théorème 6.10], there

exists n such that Y ′ := (Y × k1/p
n
)red is geometrically reduced. Since k1/p

n
/k is a

purely inseparable field extension, the map f : Y ′ → Y is a homeomorphism. As Y ′ is
geometrically reduced, the set of its smooth points is a non-empty Zariski-open subset,
i.e. the complement of a set of rigid points. Consequently, since y′ := f−1(y) is non-
rigid, it is smooth in Y ′. Remark also that by [11, Proposition 4.2.14], the image (resp.
preimage) of a connected affinoid domain is a connected analytic domain, and thus by
[11, Théorème 6.1.3], a connected affinoid domain. Finally, for any affinoid domain U of
Y ′, we have that Γ(U) = f−1(Γ(f(U))): by Proposition 2.5.8 (iii) and Corollary 2.5.13 (i)
of [2], this is true for finite morphisms, and taking the reduction of an affinoid space does
not change its Shilov boundary. Set Z ′ := f−1(Z). It suffices to prove the statement for
Y ′, y′, Z ′.

(1) By [11, Théorème 4.5.4], y′ has an affinoid neighborhood A′ in Y ′ (we may assume,
seeing as type 3 points are dense, that ∂A′ consists of type 3 points) that is a closed
virtual annulus, implying ∂B(A′) contains exactly two points. Thus, A′ has at most two
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connected components at the neighborhood of y′, and it is connected there if and only if
y′ ∈ Γ(A′).

Finally, Y ′ has at most two connected components at the neighborhood of y′, and by
Lemma 3.6, it is connected there if and only if y′ ∈ Γ(Y ′).

(2) Suppose furthermore that y′ ∈ Γ(Y ′), implying y′ ∈ Γ(A′). Set Γ(A′) = {y′, z′},
where z′ is a type 3 point. Then, ∂A′ = {z′} and by Proposition 4.2.14 and Théorème 6.1.3
of [11], B′ := (Y ′\A′) ∪ {z′} is an affinoid domain. We have: A′ ∪B′ = Y ′, A′ ∩B′ = {z′}
(which implies B′ is connected). Finally, by shrinking A′ if necessary, we can always
assume z′ 6∈ Γ(Y ′), and since Γ(Y ′) ∩A′ ⊆ Γ(A′), this implies Γ(Y ′) ∩A′ = {y′}.

(3) If y′ 6∈ Γ(Y ′), then y′ 6∈ Γ(A′), and for the non-trivially valued field k1/p
n
, the

statement follows from the fact that A′ is a closed virtual annulus. �

By the terminology introduced in [11, Section 1.7] and [11, Théorème 3.5.1], the first
part of Lemma 3.7 shows that points of type 3 of certain k-analytic curves have at most
two branches. Furthermore, in view of Lemma 2.4 and [3, Proposition 1.5.5 (ii)], it has
one branch if and only if it is in the Berkovich boundary of the curve.

The following argument will be used often in what is to come.

Lemma 3.8. Let C be a normal irreducible k-analytic curve. Set F = M (C). Let X/F be
a variety, and G/F a connected rational linear algebraic group acting strongly transitively
on X.

(1) Suppose X(Mx) 6= ∅ for all x ∈ C. Let Z be any affinoid domain of C. Then,
GZ := G ×F M (Z) is a connected rational linear algebraic group over M (Z)
acting strongly transitively on the M (Z)-variety XZ := X×F M (Z). Furthermore,
XZ(MZ,x) 6= ∅ for all x ∈ Z, where MZ is the sheaf of meromorphic functions over
Z.

(2) Let U1, U2 be connected affinoid domains of C such that U1 ∩U2 = {s}, where s is
a type 3 point. If X(M (Ui)) 6= ∅, i = 1, 2, then X(M (U1 ∪ U2)) 6= ∅.

Proof. (1) That GZ = G×FM (Z) is still a connected rational linear algebraic group acting
strongly transitively on the variety XZ = X ×F M (Z) is immediate. Also, Mx ↪→MZ,x

for any x ∈ Z. Thus, X(Mx) 6= ∅ implies X(MZ,x) = XZ(MZ,x) 6= ∅ for any x ∈ Z.
(2) Let xi ∈ X(M (Ui)), i = 1, 2. By the transitivity of the action of G, there exists

g ∈ G(M ({s})), such that x1 = g · x2 in X(M ({s})). By Corollary 1.10, there exist
gi ∈ G(M (Ui)), such that g = g1 ·g2 in G(M ({s})). Thus g−11 ·x1 = g2 ·x2 in X(M ({s})).
Set x′1 = g−11 · x1 and x′2 = g2 · x2. They represent meromorphic functions over U1 and
U2, respectively, whose restrictions to U1 ∩ U2 are compatible. Thus, they can be glued
to give a meromorphic function x over M (U1 ∪U2), where x ∈ X(M (U1 ∪U2)), implying
X(M (U1 ∪ U2)) 6= ∅. �

Theorem 3.9. Suppose k is non-trivially valued. Let Y be a normal irreducible k-affinoid
curve. Set K = M (Y ). Let X/K be a variety, and G/K a connected rational linear
algebraic group acting strongly transitively on X. The following local-global principles hold:

• X(K) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ Y ;
• for any open cover P of Y, X(K) 6= ∅ ⇐⇒ X(M (U)) 6= ∅ for all U ∈ P.

Proof. Seeing as K ↪→Mx for any x ∈ Y, the direction “⇒” is true.
For the other one, let us use induction on the number n of type 3 points in the Shilov

boundary of Y. If n = 0, then by [2, Corollary 2.1.6], Y is a strict k-affinoid curve, in
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which case the statement has already been proven in Proposition 3.5. Assume we know
the statement for any positive integer not larger than n− 1, n > 0.

Suppose Γ(Y ) contains n type 3 points. Let u ∈ Γ(Y ). Since X(Mu) 6= ∅, there exists
a connected affinoid neighborhood U ′1 of u in Y, such that X(M (U ′1)) 6= ∅. By Lemma 3.7,
there exist two connected affinoid domains U1, U2 of Y, such that U1 is a neighborhood of u
in U ′1, Γ(Y ) ∩ U1 = {u}, U1 ∪U2 = Y, and U1 ∩U2 = {s}, where s is a type 3 point. Since
U1 ⊆ U ′1, we obtain X(M (U ′1)) ⊆ X(M (U1)), so X(M (U1)) 6= ∅. Let Us be a connected
strict affinoid neighborhood of s in Y (see Lemma 3.7). Set Zi = Ui ∪Us, i = 1, 2. It is an
integral affinoid domain. Let us show Γ(Z2) contains at most n− 1 type 3 points.

For any y ∈ Us of type 3, seeing as Γ(Us) doesn’t contain any type 3 points, y 6∈ Γ(Us).
Taking into account Γ(Zi)∩Us ⊆ Γ(Us), we obtain y 6∈ Γ(Zi). Similarly, for any y ∈ Ui\Γ(Ui),
we have y 6∈ Γ(Zi). Thus, if z is a type 3 point in the Shilov boundary of Zi, then z ∈ Γ(Ui).
For a subset S of Y, let us denote by S3 the set of type 3 points contained in S. We have
just shown that Γ(Zi)3 = Γ(Ui)3\{s}, i = 1, 2. At the same time, Γ(Y )3 is a disjoint union
of Γ(Ui)3\{s}, i = 1, 2. By construction, u ∈ Γ(U1)3\{s}, so the cardinality of Γ(Z2)3 is
at most n− 1.

By the first part of Lemma 3.8, XZ2(MZ2,x) 6= ∅ for any x ∈ Z2. In view of the
paragraph above and the induction hypothesis, X(M (Z2)) = XZ2(M (Z2)) 6= ∅. Seeing as
M (Z2) ⊆ M (U2), we obtain X(M (U2)) 6= ∅. Considering we also have X(M (U1)) 6= ∅,
we can conclude by applying the second part of Lemma 3.8.

The second version of this local-global principle is a direct consequence of the first one.
�

We are now able to prove the following:

Theorem 3.10. Let k be a complete valued non-archimedean field such that
√
|k×| 6= R>0.

Let C be a normal irreducible projective k-analytic curve. Set F = M (C). Let X/F be a
variety, and G/F a connected rational linear algebraic group acting strongly transitively
on X. The following local-global principles hold:

• X(F ) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ C;
• for any open cover P of C, X(F ) 6= ∅ ⇐⇒ X(M (U)) 6= ∅ for all U ∈ P.

Proof. Since F ↪→Mx for any x ∈ C, the direction “⇒ ” is true.
Suppose k is non-trivially valued. By Proposition 2.17, there exists a nice cover {Z1, Z2}

of C, such that Z1 ∩ Z2 is a single type 3 point. Set {η} = Z1 ∩ Z2. By the first part of
Lemma 3.8, GZi is a connected rational linear algebraic group acting strongly transitively
on the variety XZi , and XZi(MZi,x) 6= ∅ for any x ∈ Zi, i = 1, 2. Thus, by Theorem 3.9,
X(M (Zi)) = XZi(M (Zi)) 6= ∅. We now conclude by the second part of Lemma 3.8.

Suppose k is trivially valued. Being a projective analytic curve over a trivially valued
field, the curve C has exactly one type 2 point x. In that case, Mx = F, so the statement
is trivially satisfied.

The second version of this local-global principle is a direct consequence of the first one.
�

The condition on the value group of k can be removed using model-theoretic arguments.
We are very grateful to Antoine Ducros for bringing this to our attention.

Theorem 3.11. Let k be a complete ultrametric field. Let C be an irreducible normal
projective k-analytic curve. Set F = M (C). Let X/F be a variety, and G/F a connected
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rational linear algebraic group acting strongly transitively on X. The following local-global
principles hold:

• X(F ) 6= ∅ ⇐⇒ X(Mx) 6= ∅ for all x ∈ C;
• for any open cover P of C, X(F ) 6= ∅ ⇐⇒ X(M (U)) 6= ∅ for all U ∈ P.

Proof. If
√
|k×| 6= R>0, then the statement was already proven in Theorem 3.10. Let us

show that we can always reduce to this case.
Since F ↪→ Mx for all x ∈ C, the direction “ ⇒ ” is clear. Assume X(Mx) 6= ∅ for

all x ∈ C. Since C is compact, there exists a finite cover V of C containing only affinoid
domains, such that {Int(V ) : V ∈ V} is also a cover of C, and X(M (V )) 6= ∅ for all V ∈ V.
Let xV ∈ X(M (V )).

Recall that for any V, M (V ) is the fraction field of an algebra of convergent series
over k. Hence, C,X,G, the action of G on X, the isomorphism of a Zariski open of G to
an open of some AnF , and xV , V ∈ V, are all determined by countably many elements of
k. Let S ⊆ k denote a countable subset containing all these elements.

Let k0 be the prime subfield of k. Let k1 be the field extension of k0 generated by S.
Remark that k1 is countable. By [23, Theorem 2.3.7], there exists a subfield k2 of k that is
a countable extension of k1, such that k2 ⊆ k is an elementary embedding in the language
of valued fields.

Then, by [23, Theorem 2.5.36], there exists a field extensionK of k, such thatK = kI2/D,
where I is an index set and D is a non-principal ultra-filter on I. Furthermore, by [23,
Exercise 2.5.22], it is an elementary extension.

Since k2 is a countable subfield of k, the value group of k2 with respect to the valuation

induced by that of k satisfies
√
|k×2 | 6= R>0. Let k′ be the completion of k2 with respect

to this valuation. Then,
√
|k′×| 6= R>0.

Since C is defined over k′, there exists a compact integral k′-analytic curve C ′, such
that C ′ ×k′ k = C. Set F ′ = M (C ′). By construction, there exists an F ′-variety X ′, and
a connected rational linear algebraic group G′/F ′ acting on X ′, such that X = X ′ ×F ′ F,
G = G′×F ′ F, and the action of G induced on X is the one given in the statement. Let us
show that G′ acts strongly transitively on X ′. Let L/F ′ be any field extension such that
X ′(L) 6= ∅. Set L1 = LI/D. This is a field containing F ′ and k (since k ⊆ k′I/D ⊆ L1), so
it is a field extension of F. Consequently, G′(L1) = G(L1) acts transitively on X ′(L1) =
X(L1), and since by [23, Exercise 2.5.22], L ⊆ L1 is an elementary embedding, G′(L) acts
transitively on X ′(L).

For any V ∈ V, let V ′ denote the image of V with respect to the projection morphism
C → C ′. By construction, X ′(M (V ′)) 6= ∅. Hence, X ′(Mx) 6= ∅ for all x ∈ C ′, implying
X ′(F ′) 6= ∅, thus in particular X ′(F ′) = X(F ′) ⊆ X(F ) 6= ∅.

The second part of the statement is a direct consequence of the first one. �

We can apply Theorem 3.11 to the projective variety X defined by a quadratic form q
over F. In [19, Theorem 4.2], HHK show that for a regular quadratic form q over F, if
char(F ) 6= 2, SO(q) - the special orthogonal group of q, acts strongly transitively on X
when dim q 6= 2, so in that case we can take G = SO(q). If dim q = 2, then X may not be
connected and consequently the group SO(q) doesn’t necessarily act strongly transitively
on X (see [19, Example 4.4] and the proof of [19, Theorem 4.2]).

Theorem 3.12. Let k be a complete ultrametric field. Let C be a compact irreducible
normal k-analytic curve. If

√
|k×| = R>0 (resp. |k×| = {1}) assume C is projective
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(resp. strict). Set F = M (C). Suppose char(F ) 6= 2. Let q be a quadratic form over F of
dimension different from 2.

(1) The quadratic form q is isotropic over F if and only if it is isotropic over Mx for
all x ∈ C.

(2) Let U be an open cover of C. Then, q is isotropic over F if and only if it is isotropic
over M (U) for all U ∈ U .

Proof. By Witt decomposition, q = qt⊥qr, where qr is regular and qt is totally isotropic.
If qt 6= 0, then q is isotropic, so we may assume that q is regular. Consequently, Proposi-
tion 3.5, Theorem 3.9, and Theorem 3.11 are applicable according to the paragraph above
the statement. �

Because of the relation of Berkovich points to valuations of the function field of a
curve, as a result of Theorem 3.11 we will obtain a local-global principle with respect to
completions.

Definition 3.13. Let k be a complete ultrametric field. Let F be a field extension of k.
For any valuation v on F, we denote by Rv the valuation ring of F with respect to v, and
mv its maximal ideal. We denote by Fv the completion of F with respect to v. We use
the following notations:

• Vk(F ) is the set of all rank 1 valuations v on F that extend the valuation of k;
• V0(F ) is the set of all non-trivial rank 1 valuations on F that when restricted to k

are trivial;
• for a k-subalgebra R of F, R 6= k, V ′R(F ) is the set of valuations v ∈ V0(F ), such

that R ⊆ Rv;
• V (F ) := Vk(F ) ∪ V0(F );
• for a k-subalgebra R of F , R 6= k, VR(F ) := Vk(F ) ∪ V ′R(F ).

Remark that if k is trivially valued, then V (F ) and VR(F ) contain the trivial valuation
on F for any k-subalgebra R of F , R 6= k.

Remark 3.14. Let C be a normal irreducible k-analytic curve. Then, for any point x ∈ C,
Ox is either a field or a discrete valuation ring. If Ox is a field, then Mx = Ox ↪→ H(x),
so we endow Mx with the valuation induced from H(x). If Ox is a discrete valuation ring,
then we endow Mx with the corresponding discrete valuation.

Proposition 3.15. Let k be a non-trivially valued complete ultrametric field. Let C be a
normal irreducible k-analytic curve.

(1) Suppose there exists an affine curve S over k, such that San = C. Let F denote the
function field of S. Then, there exists a bijective correspondence C ←→ VO(S)(F ).

(2) If C is projective, set F = M (C). Then, there exists a bijective correspondence
C ←→ V (F ).

In either case, if to x ∈ C is associated the valuation v of F, then M̂x = Fv, where the
completion of Mx is taken with respect to the valuation introduced in Remark 3.14.

Proof. (1) Let x ∈ C. If x is a non-rigid point, then Ox is a field ([12, Example 3.2.10]), so
| · |x is a norm on A := O(S) extending that of k. Consequently, it extends to F = Frac A
and defines a valuation vx on F extending that of k, i.e. vx ∈ Vk(F ). If x is a rigid point,
OC,x is a dvr, and k× ⊆ O×C,x, so the embedding A ↪→ OC,x induces a discrete valuation
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on A whose restriction to k is trivial, i.e. a discrete valuation vx on F whose restriction
to k is trivial. Moreover, A ⊆ Rvx by definition, so vx ∈ V ′A(F ).

Let us look at the function C −→ VA(F ), x 7→ vx. It is injective by the paragraph above.
It is also surjective: if v ∈ Vk(F ), then it determines a norm on A that extends that of k,
so it corresponds to a non-rigid point of C; if v ∈ V ′A(F ), then A ⊆ Rv, and P := A ∩mv

is a prime ideal of A, so it corresponds to a rigid point x of C for which ker| · |x = P (see
[2, Theorem 3.4.1(i)]).

If x ∈ C is non-rigid, then M̂x = H(x), which is the completion of F with respect to vx.
If x is a rigid point of C, and P its corresponding prime ideal in A, then by [2, Theorem

3.4.1(ii)], ÔC,x = ÂP = Â, where Â denotes the completion of A with respect to the

ideal P. Consequently, M̂x = Frac Â = Fvx .
(2) Suppose C is projective. Let Calg be the normal irreducible projective k-algebraic

curve such that its Berkovich analytification is C, and π : C → Calg the canonical analyti-
fication morphism. Let x ∈ C. Let S′ be an affine Zariski open of Calg containing π(x).
Since C is irreducible, the function field of S′ is F. By (1), there exists an injective map:
C −→ V (F ), x 7→ vx.

Let us show it is also surjective. Let v ∈ V (F ) such that v|k is the starting valuation

on k. Then, by taking any affine Zariski open subset S′ of Calg (as in the paragraph
above), seeing as its function field is F, we obtain that v corresponds to some non-rigid
point of S′an ⊆ C.

Suppose v ∈ V (F ) is such that v|k is trivial. Let us consider an embedding Calg → Pnk =

Proj k[x0, x1, . . . , xn]. Let {Ui := Spec k[xj/xi]j 6=i/Ii}ni=1 be a cover of Calg by standard
open sets. Let i0 be such that |xi0 |v > |xi|v for all i. Since |xi/xi0 |v ≤ 1, O(Ui0) ⊆ Rv, so
by (1), v corresponds to a rigid point of Uan

i0
⊆ C.

That M̂x = Fvx for all x ∈ C follows from part (1) by taking an affine Zariski open
containing the point x. �

Let us now show a local-global principle with respect to all such completions of the
field F.

We are very grateful to the referee for bringing to our attention the following lemma:

Lemma 3.16. Let K be a complete valued field and K0 a dense Henselian (called quasi-
complete in [3, Definition 2.3.1]) subfield. Let F be a subfield of K0 and X an F -variety.
Then, if F is perfect or X is smooth,

X(K0) 6= ∅ ⇐⇒ X(K) 6= ∅.

Proof. Since K0 is a subfield of K, the implication “⇒” is clear. Suppose X(K) 6= ∅.
Suppose F is perfect. By taking the reduction of X if necessary, we may assume that X

is reduced. Let a ∈ X(K). Denote by X ′ the (reduced) Zariski closure of {a} in X. Since
F is perfect, the smooth locus X ′′ of X ′ is a dense Zariski open subset of X ′ containing a.
Thus, X ′′ is a smooth F -variety such that X ′′(K) 6= ∅, implying it suffices to prove the
statement in the case X is smooth.

Suppose X is smooth. Let a ∈ X(K). Since X is smooth, there exists a neighborhood
U of a in X, such that there exists an étale morphism ϕ : U → AdF for some d ∈ N.
Let ϕK : UK → AdK be the tensorization by K, and let us look at its analytification ϕan

K .
Since a is a rational point, ϕan

K induces an isomorphism between a neighborhood V of x

in Uan
K and an open V ′ of Ad,anK . Since K0 is dense in K, there exists b in V ′, such that
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b ∈ Ad(K) = Kd has coordinates over K0. Let c be the only pre-image of b in V. Then, c
is a K-rational point over b.

UK UK0

AdK AdK0

ϕK

g

ϕK0

Set b′ = g(b) ∈ AdK0
. By commutativity of the diagram, since b has coordinates over K0,

b′ is a closed point of AdK0
which is in the image of ϕK0 .

Since ϕ is étale, ϕ−1K0
(b′) is a disjoint union

⊔
i Spec Fi, where Fi are separable finite field

extensions of κ(b′) = K0. At the same time, ϕ−1K (b) =
⊔
i Fi ⊗K0 K. Set F̂i = Fi ⊗K0 K.

We know that ϕ−1K (b)(K) 6= ∅. Then, there exists i, such that (Spec F̂i)(K) 6= ∅, so

F̂i = K. By Proposition 2.4.1 of [3], this implies that Fi = K0, and so ϕ−1K0
(b′)(K0) 6= ∅,

implying X(K0) 6= ∅. �

Corollary 3.17. Let k be a complete ultrametric field. Let C be a normal irreducible
k-analytic curve. Set F = M (C). Let X be an F -variety. Then, if F is perfect or X is
smooth:

X(Mx) 6= ∅ ⇐⇒ X(M̂x) 6= ∅

for all x ∈ C, where the completion M̂x of Mx is taken with respect to the valuations
introduced in Remark 3.14.

Proof. If Ox is a field, then Mx is Henselian by [3, Theorem 2.3.3]. If Ox is not a field,
then it is a discrete valuation ring that is Henselian (see [3, Theorem 2.1.5]), so Mx is
Henselian by [3, Proposition 2.4.3]. We conclude by Lemma 3.16. �

Recall once again that an irreducible compact analytic curve is either projective or
affinoid (see Théorème 6.1.3 of [11]).

Corollary 3.18. Let k be a complete ultrametric valued field. Let C be a compact ir-
reducible normal k-analytic curve. Set F = M (C). Let X/F be a variety, and G/F a
connected rational linear algebraic group acting strongly transitively on X. The following
local-global principles hold if F is perfect or X is smooth:

(1) if C is affinoid and
√
|k×| 6= R>0,

X(F ) 6= ∅ ⇐⇒ X(Fv) 6= ∅ for all v ∈ VO(C)(F );

(2) if C is projective,

X(F ) 6= ∅ ⇐⇒ X(Fv) 6= ∅ for all v ∈ V (F ).

Proof. If k is trivially valued, then the trivial valuation v0 of F is in VO(C)(F ) (resp.
V (F )), and since Fv0 = F, the statement is clear in this case.

Otherwise, it is a consequence Proposition 3.5, Theorem 3.9, and Theorem 3.11 in view
of Proposition 3.15 and Corollary 3.17. �
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Corollary 3.19. Let k be a complete non-archimedean valued field. Let C be a compact
irreducible normal k-analytic curve. Set F = M (C). Suppose char(F ) 6= 2. Let q be a
quadratic form over F of dimension different from 2. The following local-global principles
hold:

(1) If C is affinoid and
√
|k×| 6= R>0, q is isotropic over F if and only if it is isotropic

over all completions Fv, v ∈ VO(C)(F ), of F.
(2) If C is projective, q is isotropic over F if and only if it is isotropic over all com-

pletions Fv, v ∈ V (F ), of F.

Proof. If k is trivially valued, then the trivial valuation v0 of F is in VO(C)(F ) (resp.
V (F )), and since Fv0 = F, the statement is clear in this case.

Otherwise, by Witt decomposition, q = qt⊥qr, where qr is regular and qt is totally
isotropic. If qt 6= 0, then q is isotropic. Otherwise, q is regular, so smooth, and we
conclude by Corollary 3.18. �

Remark 3.20. Recall that for any finitely generated field extension F/k of transcendence
degree 1, there exists a unique normal projective k-algebraic curve Calg with function
field F. Let C be the analytification of Calg. Then, M (C) = F (see [2, Proposition 3.6.2]),
so the local-global principles above are applicable to any such field F.

By Corollary 3.8 of [19], if G1 and G2 are linear algebraic groups such that G1 × G2

is a connected rational linear algebraic group, then all the results proven in this section
remain true for G1 and G2.

4. Comparison of Overfields

The purpose of this section is to draw a comparison between one of the local-global
principles we proved (Theorem 3.11) and the one proven in HHK ([19, Theorem 3.7]).
More precisely, we will interpret what the overfields appearing in [19] represent in the
Berkovich setting, and show that [19, Theorem 3.7] can be obtained as a consequence of
Theorem 3.11. When working over a “fine” enough model, we show that the converse is
also true.

Throughout this section, for a non-archimedean valued field E, we will denote by E◦

the ring of integers of E, E◦◦ the maximal ideal of E◦, and by Ẽ the residue field of E.
Until the end of this section, we assume k to be a complete discretely valued field.

4.1. Analytic generic fiber and the reduction map. We will be using the notion of
generic fibre in the sense of Berkovich. To see the construction in more detail and under
less constrictive conditions, we refer the reader to [4, Section 1] and [5, Section 1].

Let X = Spec A be a flat finite type scheme over k◦. Then, the formal completion X̂
of X along its special fiber is Spf(Â), where Â is a topologically finitely presented ring
over k◦ (i.e. isomorphic to some k◦{T1, . . . , Tn}/I, where I is a finitely generated ideal).

Remark that Â⊗k◦ k is a strict k-affinoid algebra.

The analytic generic fiber of X̂ , denoted by X̂η, is defined to be M(Â ⊗k◦ k), where

M(·) denotes the Berkovich spectrum. There exists a reduction map π : X̂η → X̂s, where

X̂s is the special fiber of X̂ , which is anti-continuous, meaning the pre-image of a closed

subset is open. We remark that X̂s = Xs, where Xs is the special fiber of X . Let us
describe π more explicitly.
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There are embeddings A ↪→ Â ↪→ (Â⊗k◦ k)◦, where (Â⊗k◦ k)◦ is the set of all elements f

of Â ⊗k◦ k for which |f(x)| 6 1 for all x ∈ M(Â ⊗k◦ k). Let x ∈ M(Â ⊗k◦ k). This
point then determines a bounded morphism A → H(x)◦, which induces an application

ϕx : A⊗k◦ k̃ → H̃(x). The reduction map π sends x to kerϕx.

The following commutative diagram, where φ : Spec( ̂̃A⊗k◦ k) → Spec(A ⊗k◦ k̃) is the
canonical map, gives the relation between this reduction map and the one from [2, Sec-
tion 2.4]. The morphism φ is finite and dominant (see [7, 6.1.2 and 6.4.3] and [31, pg. 17]).

M(Â⊗k◦ k) Spec( ̂̃A⊗k◦ k)

Spec(A⊗k◦ k̃)

r

π
φ

The construction above has nice glueing properties. Let X be a finite type scheme

over k◦, and X̂ its formal completion along the special fiber. Then, the analytic generic

fiber X̂η of X̂ is the k-analytic space we obtain by glueing the analytic generic fibers of an

open affine cover of the formal scheme X̂ . In general, X̂η is a compact analytic domain of

the Berkovich analytification X an of X . If X is proper, then X an = X̂η (see [26, 2.2.2]).

Similarly, there exists an anti-continuous reduction map π : X̂η → Xs, where Xs is the
special fiber of X .

A property we will need is the following:

Proposition 4.1. With the same notation as above, suppose A is a normal domain. Then,

Â = (Â⊗k◦ k)◦, and the finite morphism φ from the diagram above is a bijection.

Proof. Let us denote by t a uniformizer of k◦, and by I the ideal tÂ. Recall that

Â is the completion of A with respect to the ideal tA (and is isomorphic to some

k◦{T1, T2, . . . , Tn}/P ; remark that then Â ⊗k◦ k is isomorphic to the k-affinoid algebra
k{T1, T2, . . . , Tn}/P ).

Set B = (Â⊗k◦ k)◦ and J = (Â⊗k◦ k)◦◦ - the elements f of Â⊗k◦ k such that |f |x < 1

for all x ∈M(Â⊗k◦ k) (i.e. ρ(f) < 1, where the ρ is the spectral norm on Â⊗k◦ k).
Remark that for any maximal ideal m of A, t ∈ m (i.e. the closed points of Spec A

are in the special fiber). This means that tA is contained in the Jacobson radical of A.

Considering this and the fact that A is excellent and normal, by [14, 7.8.3.1], Â is also

normal. At the same time, by [7, 6.1.2, 6.3.4], B is the integral closure of Â in Â ⊗ko k.
Since Frac Â = Frac B, we obtain Â = B.

Let us look at the canonical map A/t = Â/I → B/J inducing φ. Let | · | be the norm

on the affinoid algebra Â⊗k◦ k.
Remark that

√
I = J : let x ∈ J, so that ρ(x) = limn→∞ |xn|1/n < 1, implying |xn| → 0,

n→ +∞. Thus, for large enough n, xn ∈ I, so J ⊆
√
I. The other containment is clear

seeing as ρ(·) 6 | · |. This means that any prime ideal of Â contains I if and only if it
contains J, and thus that φ is a bijection. �

4.2. The setup of HHK’s [19]. Let us start by recalling HHK’s framework (see [19,
Notation 3.3]):
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Notation 2. Let T = k◦ be a complete discrete valuation ring with uniformizer t, fraction

field k, and residue field k̃. Let C be a flat normal irreducible projective T -curve with
function field F. Let us denote by Cs the special fiber of C .

For any point P ∈ Cs, set RP = OC ,P . Since T is complete discretely valued, RP is an

excellent ring. Let us denote by R̂P the completion of RP with respect to its maximal

ideal. Since RP is normal and excellent, R̂P is also a domain. Set FP = Frac R̂P .
Let U be a proper subset of one of the irreducible components of Cs. SetRU =

⋂
P∈U OC ,P .

Let us denote by R̂U the t-adic completion of RU . By [19, Notation 3.3], for any Q ∈ U,
R̂U ⊆ R̂Q. Thus, R̂U is an integral domain. Set FU = Frac R̂U .

Let P be a finite set of closed points of Cs containing all points at which distinct
irreducible components of Cs meet. Let U be the set of all irreducible components of
Cs\P (which here are also its connected componenets).

The following is the local-global principle proven by HHK in [19] and [20]:

Theorem 4.2 ([19, Theorem 3.7], [20, Theorem 9.1]). Let G be a connected rational linear
algebraic group over F that acts strongly transitively on an F -variety X. The following
statements are equivalent:

(1) X(F ) 6= ∅;
(2) X(FP ) 6= ∅ for all P ∈P and X(FU ) 6= ∅ for all U ∈ U ;
(3) X(FQ) 6= ∅ for all Q ∈ Cs.

The implication (1) ⇒ (2) is immediate seeing as F is embedded into FP and FU for
all P ∈P and U ∈ U . Considering for any U ∈ U and any Q ∈ U, FU ⊆ FQ, we obtain
that (2)⇒ (3).

We now proceed to show that the remaining implication (3)⇒ (1) is a consequence of
Theorem 3.11. To do this, a comparison will be drawn between the fields FQ, Q ∈ Cs, and
the ones appearing in Theorem 3.11.

4.3. The comparison. Let us denote by C the Berkovich analytification of the generic
fiber of C . It is a normal irreducible projective k-analytic curve. By [2, Proposition 3.6.2],
M (C) = F, where M is the sheaf of meromorphic functions on C. Since C is projective,

C = Ĉη. Let π : C → Cs be the reduction map.
Let µ be the generic point of one of the irreducible components of Cs. Then, OC ,µ is

a discrete valuation ring with fraction field F, whose valuation extends that of k. As the

residue field of OC ,µ is of transcendence degree 1 over k̃, µ determines a unique type 2
point xµ on the Berkovich curve C.

Lemma 4.3. Let µ be the generic point of one of the irreducible components of Cs. Then,
π−1(µ) = {xµ}.
Proof. Let U = Spec A be an open affine neighborhood of µ in C . Since C is irreducible,

we obtain that Frac A = F. By [4, pg. 541], π−1(Us) = Ûη, and the restriction of π on

Ûη is the reduction map Ûη → Us. Explicitly, we have π :M(Â⊗k◦ k) → Spec(A⊗k◦ k̃),

where x ∈M(Â⊗k◦ k) is sent to the kernel of the map A⊗k◦ k̃ = A/k◦◦A→ H̃(x).
By construction, for any x ∈ π−1(µ) and any f ∈ A, f(µ) = 0 if and only if |f |x < 1,

and f(µ) 6= 0 if and only if |f |x = 1. As a consequence, |f |xµ < 1 if and only if |f |x < 1,
and |f |xµ = 1 if and only if |f |x = 1. This implies that x and xµ define the same norm on

A (and hence on F ), so xµ = x in C, and π−1(µ) = {xµ}. �
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Proposition 4.4. Let µ be the generic point of one of the irreducible components of Cs.
Set {xµ} := π−1(µ). Then, Fµ = H(xµ). Let X be an F -variety. If X(Fµ) 6= ∅, then
X(MC,xµ) 6= ∅.

Proof. Remark that Fµ = Frac ÔC ,µ is the completion of F with respect to the valua-

tion xµ. Seeing as xµ is of type 2, OC,xµ = MC,xµ , and by Proposition 3.15, Fµ = M̂C,xµ

= H(xµ).
If X is smooth or F is perfect, we can conclude by Corollary 3.17.
Otherwise, the restriction morphism of the sheaf of meromorphic functions gives us

Frac OC ,µ = F = M (C) ↪→ OC,xµ , so there exist embeddings OC ,µ ⊆ OC,xµ ⊆ H(xµ).
Seeing as all elements of OC ,µ have norm at most 1, Rµ = OC ,µ ⊆ O◦C,xµ - the valuation

ring of OC,xµ .
By the proof of [20, Proposition 5.8], X(Fµ) 6= ∅ impliesX(R̂µ) 6= ∅. The ringRµ = OC ,µ

is excellent, so by Artin’s Approximation Theorem ([1, Theorem 1.10]), X(Rhµ) 6= ∅,
where Rhµ denotes the henselization of the local ring Rµ. Seeing as OoC,xµ is Henselian

([3, Thm. 2.3.3, Prop. 2.4.3]), Rµ ⊆ Rhµ ⊆ O◦C,xµ ⊆MC,xµ . Consequently, X(MC,xµ) 6= ∅.
�

We recall that the reduction map is anti-continuous.

Proposition 4.5. Let P be a closed point of Cs. Then, R̂P = O◦C(π−1(P )), where O◦ is
the sheaf of analytic functions f such that |f |sup 6 1. Consequently, if X(FP ) 6= ∅, then
X(M (π−1(P ))) 6= ∅.
Proof. Let V = Spec A be an open integral affine neighborhood of P in C . As C is normal,
so is A. Note that P ∈ Vs, where Vs is the special fiber of V.

Let π denote the specialization map correspoding to C . By cf. [4, pg. 541], π−1(V ) = V̂η
- the analytic generic fiber of V , and the restriction of π to V̂η is the specialization map

V̂η → Vs of V . Thus, π−1(P ) ⊆ V̂η. Let us come back to the commutative diagram
constructed above:

V̂η =M(Â⊗k◦ k) Spec( ̂̃A⊗k◦ k)

Spec(A⊗k◦ k̃) = Vs

r

π
φ

Set B = (Â ⊗k◦ k)◦. By Proposition 4.1, φ is a bijection, and B = Â. Let mP be
the maximal ideal of A corresponding to the point P on the special fiber, and m̂P the

corresponding ideal in Â, i.e. the completion of mP along the special fiber. Then, φ−1(P )

is a closed point of Spec( ̂̃A⊗k◦ k) corresponding to the maximal ideal m̂P of B = Â.

Since k◦◦A ⊆ mP , Â
mP =

̂̂
A
m̂P

= B̂m̂P , where the notation R̂S is used for the comple-
tion of a ring R with respect to the topology induced by an ideal S.

As V is reduced, so is its analytification V an ([13, Théorème 3.4]). Since V̂η is an
analytic domain of V an, it is reduced (see [13, Théorème 3.4]). By a theorem of Bosch
(see [24, Theorem 3.1], [6, Theorem 5.8]),

B̂m̂P = O◦
V̂η

(r−1(φ−1(P ))) = O◦
V̂η

(π−1(P )).
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As P is a closed point of Cs (resp. Vs), π
−1(P ) is an open subset of C (resp. V̂η), implying

O◦
V̂η

(π−1(P )) = O◦C(π−1(P )).

As a consequence,

R̂P = ÔC ,P = ÂmP = B̂m̂P = O◦C(π−1(P )).

This implies that FP = Frac O◦(π−1(P )) ⊆ M (π−1(P )). The last part of the statement
is now immediate. �

We are now able to state and prove the following argument, thus concluding the proof
that HHK’s local-global principle (Theorem 4.2) can be obtained as a consequence of
Theorem 3.11.

Proposition 4.6. Using the same notation as in Theorem 4.2, (3)⇒ (1).

Proof. Let x be any point of C. Recall π denotes the reduction map C → Cs.

(1) If π(x) = µ ∈ Cs is the generic point of one of the irreducible components of Cs,
then by Proposition 4.4, X(Fµ) 6= ∅ implies X(MC,x) 6= ∅.

(2) If π(x) = P ∈ Cs is a closed point, by Proposition 4.5, FP ⊆ M (π−1(P )). Since
x ∈ π−1(P ) and π−1(P ) is open, we obtain M (π−1(P )) ⊆ Mπ−1(P ),x = MC,x.
Hence, X(FP ) 6= ∅ implies X(MC,x) 6= ∅.

Finally, seeing as X(Mx) 6= ∅ for all x ∈ C, by Theorem 3.11, X(F ) 6= ∅. �

Lastly, using Ducros’ work on semi-stable reduction in the analytic setting (see [11], in
particular Chapter 6), we can say something in the other direction as well:

Proposition 4.7. Let F be a finitely generated field extension of k of transcendence
degree 1. Let C be the normal irreducible projective Berkovich k-analytic curve for which
F = M (C). Let X/F be a variety. Then, there exists a flat normal irreducible projective
model C ′ over T = k◦ of F, such that

X(Mx) 6= ∅ for all x ∈ C ⇒ X(FP ) 6= ∅ for all P ∈ C ′s,

where FP = ÔC ′,P , and C ′s is the special fiber of C ′.

Consequently, a local-global principle with respect to the overfields FP , P ∈ C ′s, implies
a local-global principle with respect to the Mx, x ∈ C.

Proof. Suppose X(Mx) 6= ∅ for all x ∈ C. As C is projective, it is strict, so by [2,
Proposition 2.2.3(iii)], the strict affinoid domains of C form a basis of neighborhoods of
the topology of C. Taking also into account that C is compact, there exists a finite cover
U of C such that:

(1) for any U ∈ U , U is a connected strict affinoid domain in C;
(2)

⋃
U∈U Int(U) = C;

(3) for any U ∈ U , X(M (U)) 6= ∅.
Let S be the set of all boundary points of the elements of U . By construction, S is a finite
set of type 2 points.

Let us show that S is a vertex set of C using [11, Théorème 6.3.15] (see [11, 6.3.17] for the
definition of a vertex set, which is called ensemble sommital there). Since C is projective
(implying boundaryless) and irreducible, conditions α), β) and γ) of [11, Théorème 6.3.15 ii)]
are satisfied. Finally, condition δ) is a consequence of the fact that S contains only type 2
points (see [11, Commentaire 6.3.16]).
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By [11, 6.3.23], this implies the existence of an irreducible projective model C ′ of F over
T with special fiber C ′s, and specialization map π : C → C ′s, such that π induces a bijection
between S and the generic points of the irreducible components of C ′s. Furthermore, by
[11, 6.3.9.1], since k is discretely valued and C reduced, C ′ is locally topologically finitely
presented. Finally, by [11, 6.3.10], since C is normal, the model C ′ is flat and normal.

By Proposition 4.5, for any closed point P ∈ C ′s, ÔC ′,P = Oo(π−1(P )), where Oo is
the sheaf of holomorphic functions f, such that |f |sup 6 1. In particular, remark that if
V is an affinoid domain of C, since all holomorphic functions are bounded on V, we have
Oo(V ) ⊆ O(V ). This implies Frac Oo(V ) ⊆M (V ). Let f

g ∈M (V ), with f, g ∈ O(V ). Let

α ∈ k be such that |αf |sup, |αg|sup 6 1 (it suffices to choose α so that |f |sup, |g|sup 6 |α−1|,
which is possible seeing as k is non-trivially valued). Then, fg = αf

αg ∈ FracOo(V ), implying

M (V ) = Frac Oo(V ). By construction, there exists U ∈ U , such that π−1(P ) ⊆ U. In
particular, M (U) = Frac Oo(U) ⊆ Frac(Oo(π−1(P ))) = FP , so X(FP ) 6= ∅.

If P is a generic point of C ′s, then π−1(P ) is a single type 2 point xP and MxP ⊆
H(xP ) = FP (Proposition 4.4). Thus, X(FP ) 6= ∅.

Since π is surjective ([24, Lemma 4.11]), this implies that X(FP ) 6= ∅ for all P ∈ C ′s.
�

5. The Local Part for Quadratic Forms

In view of the local-global principle we proved for quadratic forms (Theorem 3.12), we
now want to find sufficient conditions under which there is local isotropy. To do this, we
will need to put further restrictions on the base field. Throughout this section, we will
suppose the dimension of

√
|k×| as a Q-vector space (i.e. the rational rank of |k×|) is

n ∈ Z. In the special case that |k×| is a free Z-module (e.g. if k is a discretely valued
field), the sufficient conditions for local isotropy can be refined. The class of such fields is
quite broad, especially when it comes to arithmetic questions: if we work over a complete
ultrametric base field k satisfying this condition, then for any k-analytic space and any of
its points x, the field H(x) also satisfies it.

For any valued field E, we denote by E◦ its ring of integers, by E◦◦ the corresponding

maximal ideal, and by Ẽ its residue field.
For the following two propositions, the case of characteristic 2 can be treated uniformly

with the general one. Afterwards, we will restrict to residual characteristic different from 2.

Proposition 5.1. Let l be a valued field. Suppose |l×| is a free Z-module of finite rank n.
Let L be a valued field extension of l. Let q be a non-zero diagonal quadratic form over L.
Suppose for any non-zero coefficient a of q, |a| ∈ |l×|. There exists a family Q of at most
2n quadratic forms with coefficients in (L◦)×, such that q is L-isometric to ⊥σ∈QCσ · σ,
where Cσ ∈ L× for any σ ∈ Q.

Proof. Let us fix π1, π2, . . . , πn ∈ l×, such that their norms form a basis of the Z-module
|l×|. Set A = {

∏n
i=1 π

δi
i |δi ∈ {0, 1}}. For any coefficient a of q, let p1, p2, . . . , pn ∈ Z

be such that |a| =
∏n
i=1 |πi|pi . Then, there exist va ∈ (Lo)× and sa ∈ A, such that

a ≡ vasa mod (L×)2. Consequently, for any A ∈ A, there exists a diagonal quadratic form
σA with coefficients in (L◦)×, such that q is L-isometric to ⊥A∈AA · σA. �

The following is the analogue of Proposition 5.1 in a more general case.
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Proposition 5.2. Let l be a valued field, such that dimQ
√
|l×| equals an integer n. Let

L be a valued field extension of l. Let q be a non-zero diagonal quadratic form over L.
Suppose for any non-zero coefficient a of q, |a| ∈

√
|l×|. Then, there exists a family Q

of at most 2n+1 quadratic forms with coefficients in (L◦)×, such that q is L-isometric to
⊥σ∈QCσ · σ, where Cσ ∈ L× for any σ ∈ Q.

Proof. To ease the notation, let us start by introducing the following:

Notation 3. Let M be a multiplicative Z-module, such that the divisible closure
√
M of

M as a group is a finite dimensional Q-vector space. Set n = dimQ
√
M. Set M2 = {m2 :

m ∈M}.
There exist t1, t2, . . . , tn ∈M, such that for any t ∈M, there exist unique p1, p2, . . . , pn ∈ Q,

for which t =
∏n
i=1 t

pi
i . Let us fix such elements t1, t2, . . . , tn.

In the particular situation that is of interest to us, M = |l×|, and there exist π1, π2, . . . , πn ∈ l,
with |πi| = ti, such that for any ε ∈

√
|l×|, there exist unique p1, p2, . . . , pn ∈ Q, for which

ε =
∏n
i=1 |πi|pi . Let us fix such elements π1, π2, · · · , πn.

Definition 5.3. Let ε ∈ M. Suppose ε =
∏n
i=1 t

si
ri
i , for si

ri
∈ Q with si, ri coprime, i =

1, 2, . . . , n.

(1) Let r be the least common multiple of ri, i = 1, 2, . . . , n. We will say r is the order
of ε.

(2) Let si
ri

=
s′i
r , i = 1, 2, . . . , n. If there exists i0, such that s′i0 = 1, then ti0 will be

said to be a base of ε.

Let ε ∈M, and suppose ε =
∏n
i=1 t

pi
i , for pi ∈ Q, i = 1, 2, . . . , n. Let α be the order of ε.

Lemma 5.4. If α is odd, then for any i = 1, 2, . . . , n, there exist δi ∈ {0, 1}, such that

ε ≡
∏n
i=1 t

δi
i mod M2.

Proof. Remark that since α is odd, ε ≡ εα mod M2, and εα =
∏n
i=1 t

si
i , with si ∈ Z for

all i. Let si = 2s′i + δi, where s′i ∈ Z and δi ∈ {0, 1}. Then, ε ≡
∏n
i=1 t

δi
i mod M2. �

Lemma 5.5. If α is even, then there exist m ∈ M, xi, y ∈ Z, i = 1, 2, . . . , n, with y > 0,
satisfying:

(1) ε ≡ m mod M2;

(2) m =
∏n
i=1 t

xi/2
y

i ;
(3) there exists i0 ∈ {1, 2, . . . , n}, such that xi0 = 1.

Remark that ti0 is a base of m and its order is 2y.

Proof. Let α = 2y · z, with z odd and y > 0. Then, ε ≡ εz mod M2, and (εz)2
y

=
∏n
i=1 t

ei
i ,

with ei ∈ Z, i = 1, 2, . . . , n. Furthermore, there exists i0 ∈ {1, 2, . . . , n}, such that ei0 is
odd.

Seeing as (2y, ei0) = 1, there exist A,B ∈ Z, with A odd, such that Aei0 + 2yB = 1.

Then, εz ≡ εz · (εz)A−1 mod M2, and εzA = t
1/2y−B
i0

·
∏
i 6=i0 t

Aei/2
y

i . Hence, there exists

m′B ∈M, such that εzA ≡ m′B mod M2, and

• m′B = t
1/2y

i0

∏
i 6=i0 t

Aei/2
y

i if B is even;

• m′B = t
1/2y+1
i0

∏
i 6=i0 t

Aei/2
y

i if B is odd.
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If B is odd, m′′B := m′B ·m′B
2y t−2−2

y

i0
≡ m′B mod M2, and m′′B = t

1/2y

i0

∏
i 6=i0 t

Aei
2y

(2y+1)

i .
Consequently, in either case, there exist m ∈ M and xi ∈ Z, for i = 1, 2, . . . n, with

xi0 = 1, such that ε ≡ m mod M2, and m =
∏n
i=1 t

xi/2
y

i . �

For ε ∈ L, such that |ε| ∈
√
|l×|, we will say that the order of |ε| is the order of ε. If

|πi0 | is a base of |ε|, we will say πi0 is a base of ε. By applying the last two lemmas to the
valued field L, we obtain:

Corollary 5.6. Let ε ∈ L×. Suppose |ε| =
∏n
i=1 |πi|pi for pi ∈ Q, i = 1, 2, . . . , n.

(1) If the order of |ε| is odd, then for any i = 1, 2, . . . , n, there exists δi ∈ {0, 1}, such

that ε ≡
∏n
i=1 π

δi
i mod (L×)2(Lo)×.

(2) If the order of |ε| is even, then there exist ε′ ∈ L×, xi, y ∈ Z, i = 1, 2, . . . , n, with
y > 0, satisfying:
(a) ε ≡ ε′ mod (L×)2(Lo)×;

(b) |ε′| =
∏n
i=1 |πi|xi/2

y
;

(c) there exists i0 ∈ {1, 2, . . . , n}, such that xi0 = 1.

We immediately obtain as a by-product of the proof:

Corollary 5.7. Let ε ∈ L×, such that |ε| ∈
√
|l×|. Suppose the order of |ε| is 2ν , so that

there exist νi ∈ Z, i = 1, 2, . . . , n, such that |ε| =
∏n
i=1 |πi|νi/2

ν
. If νi′ is odd for some i′,

then there exists ε′ ∈ L×, such that ε ≡ ε′ mod (L×)2(L◦)×, and |πi′ | is a base of |ε′|.

Let q1 (resp. q2) be the part of q whose coefficients have odd (resp. even) order. We
remark that q1, q2 are diagonal quadratic forms over L, and that q = q1⊥q2.

Decomposition of q1: Set A =
{∏n

i=1 π
δi
i |δi ∈ {0, 1}

}
. Let e be any coefficient of q1. By

Corollary 5.6 (1), there exist ue ∈ (L◦)× and Ae ∈ A, such that e ≡ ue · Ae mod (L×)2.
Consequently, for any A ∈ A, there exists a diagonal quadratic form σA with coefficients
in (L◦)×, such that q1 is L-isometric to ⊥A∈AA · σA.

Decomposition of q2: We first need an auxiliary result, which requires the following:

Definition 5.8. Let ε ∈ L× be such that there exist pi ∈ Q, i = 1, 2, . . . , n, for which
|ε| =

∏n
i=1 |πi|pi . Let I ⊆ {0, 1 . . . , n}, such that {i : pi 6= 0} ⊆ I. We will say that ε is

given in |I| parameters, where |I| is the cardinality of I, or that ε is given in parameters
over I.

Notice that a ∈ L is given in 0 parameters if and only if a ∈ (L◦)×.

Lemma 5.9. Let τ be a diagonal quadratic form over L with coefficients of order either 1
or an even number. Let I ⊆ {1, 2, . . . , n}, with 1 6 |I| = m 6 n, such that the coefficients
of τ are given in parameters over I. Then, there exist:

• J ⊆ I, with |J | = m− 1,
• x1, x2 ∈ L×,
• diagonal quadratic forms τ1, τ2 over L with coefficients of order either 1 or an even

number and in parameters over J,

such that τ is L-isometric to x1τ1⊥x2τ2.

Proof. Roughly, the idea is to find some i0 and a partition Aj , j = 1, 2, of the set of
coefficients, for which there exist xj ∈ L×, satisfying: if a ∈ Aj , there exists Ba ∈ L×,
such that, modulo squares, a = xj ·Ba, and |Ba| =

∏
i 6=i0 |πi|

pi,a , pi,a ∈ Q. In what follows,
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we find suitable representatives of the coefficients modulo squares, from which we can read
the factorization xj ·Ba.

Without loss of generality, let us assume that I = {1, 2, . . . ,m}. Suppose the coeffi-
cients of τ are all of order 1. If they are given in zero parameters, the statement is clear.
Otherwise, suppose that there is a coefficient given over a set of parameters containing t1.

Let d be any coefficient of the quadratic form. There exist si ∈ Z, i = 1, 2, . . . , n, such
that |d| =

∏n
i=1 |πi|si . As a consequence, there exist d′ ∈ L× and s′i ∈ Z, i = 2, . . . , n,

for which d ≡ d′ mod (L×)2(L◦)×, and either |d′| =
∏n
i=2 |πi|s

′
i or |d′| = |π1| ·

∏n
i=2 |πi|s

′
i .

Hence, there exist diagonal quadratic forms τ1, τ2, whose coefficients are all of order 1, in
parameters over {2, 3, . . . ,m}, such that τ is L-isometric to π1τ1⊥τ2.

Suppose there exists at least one coefficient of τ of even order. Let τ ′ be the quadratic
form obtained from τ by:

(1) leaving the coefficients of order 1 intact;
(2) applying Corollary 5.6 (2) to the coefficients of even order to substitute them by

elements of L× that satisfy properties 2 and 3 of the lemma.

We remark that due to the proof of Corollary 5.6 (2) (i.e. Lemma 5.5), the set of param-
eters over which the coefficients of τ ′ are given doesn’t change. The quadratic form τ ′ is
L-isometric to τ. Let us fix a′, one of the coefficients of τ ′ with largest order. Suppose the
order of a′ is 2α

′
. Without loss of generality, we may assume that π1 is a base of a′. For

i = 2, . . . ,m, let αi ∈ Z be such that |a′| = |π1|1/2
α′ ·
∏m
i=2 |πi|αi/2

α′
.

Let c be any other coefficient of τ ′. Let πi0 be a base of c, and 2γ , γ > 0, its order. For

i = 1, 2, . . . ,m, let γi ∈ Z be such that |c| =
∏m
i=1 |πi|γi/2

γ
.

• Suppose α′ > γ. Set c′ = c · a′(2
γ−γ1)·2α

′−γ
Then, c′ ≡ c mod (L×)2(L◦)×, and

|c′| = |π1| ·
∏m
i=2 |πi|

γi+αi(2
γ−γ1)

2γ .
• Suppose α′ = γ and γ1 is odd. By Corollary 5.7, there exist α′i ∈ Z, i = 2, 3, . . . , n,

and c′′ ∈ L× of order 2α
′
, having π1 as a base, such that c′′ ≡ c mod (L×)2(L◦)×

and |c′′| = |π1|1/2
α′ ·
∏m
i=2 |πi|α

′
i/2

α′
.

• Suppose α′ = γ and γ1 is even. Let γ′1/2
δ be the reduced form of γ1/2

γ , mean-

ing γ′1 is odd. Set c′′′ = c · a′(2
δ−γ′1)·2α

′−δ
. Then, c′′′ ≡ c mod (L×)2(L◦)×, and

|c′′′| = |π1| ·
∏m
i=2 |πi|

γi+αi(2
γ−γ1)

2γ .

To summarize, there exist c̄ ∈ L× and ε2, · · · , εm ∈ Z, such that c ≡ c̄ mod (L×)2(L◦)×,

and either |c̄| = |π1|1/2
α ·
∏m
i=2 |πi|εi/2

α′
= |a′| ·

∏m
i=2 |πi|

εi−αi
2α
′ or |c̄| = |π1| ·

∏m
i=2 |πi|εi/2

α′
.

Therefore, there exist diagonal quadratic forms τ1, τ2 over L, such that τ ∼= π1τ1⊥a′τ2,
and for any coefficient h of τ1 or τ2, the order of h is either 1 or an even integer. Further-
more, h is with parameters over {2, 3, . . . ,m}. �

Using induction, an immediate consequence of Lemma 5.9 is that there exists a family T
of 2n quadratic forms with coefficients in (L◦)×, such that τ is L-isometric to ⊥σ∈TBσ · σ,
where Bσ ∈ L× for any σ ∈ T.

Finally, by combining the decomposition results of q1 and q2, we obtain the statement
of Proposition 5.2. �

The following framework corresponds to Berkovich curves:
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Setting 2. Let k be a complete ultrametric field. Let k ⊆ R be a Henselian valuation
ring with maximal ideal mR, and fraction field FR = Frac R. Set L′ = R/mR, and
suppose it is endowed with a valuation making it a Henselian (called quasicomplete in [3])
valued field extension of k. Let L/L′ be an immediate Henselian extension. Set t =

rankQ(|L×|/|k×| ⊗Z Q) = rankQ(|L′×|/|k×| ⊗Z Q) and s = deg tr
k̃
L̃ = deg tr

k̃
L̃′. Suppose

s+ t 6 1.

The motivation behind this setup is:

Example 5.10. Let C be any k-analytic curve, and x ∈ C any point. The hypotheses of
the setting above are satisfied for R = Ox, FR = Mx, L

′ = κ(x), and L = H(x).

For any quadratic form σ with coefficients in R, let us denote by σL (resp. σL′) its
image over L (resp. L′).

We recall:

Definition 5.11. Let K be a field.

(1) [Kaplansky] The u-invariant of K, denoted by u(K), is the maximal dimension
of anisotropic quadratic forms over K. We say that u(K) = ∞ if there exist
anisotropic quadratic forms over K of arbitrarily large dimension.

(2) [HHK] The strong u-invariant of K, denoted by us(K), is the smallest real num-
ber m, such that:
• u(E) 6 m for all finite field extensions E/K;
• 1

2u(E) 6 m for all finitely generated field extensions E/K of transcendence
degree 1.

We say that us(K) = ∞ if there exist such field extensions E of arbitrarily
large u-invariant.

Notation 4. From now on, let k be a complete ultrametric field, such that dimQ
√
|k×|

equals an integer n. Also, suppose char k̃ 6= 2.

Proposition 5.12. Let L/k be a valued field extension, such that rankQ(|L×|/|k×| ⊗ZQ) = 0

and deg tr
k̃
L̃ = 0. Let τ be a quadratic form over L, with dim τ > 2n+1us(k̃).

(1) Suppose L is Henselian. Then, τ is isotropic.
(2) Under the same hypotheses as in Setting 2, let q be a diagonal quadratic form

over R, such that qL = τ. Then, q is isotropic over FR.

Proof. Since char(L) 6= 2, we may assume that τ is a diagonal quadratic form. Seeing as

dimQ
√
|L×| = n, by Proposition 5.2 there exists a set Q of at most 2n+1 quadratic forms

with coefficients in (L◦)×, such that τ is L-isometric to ⊥σ∈QCσ · σ, with Cσ ∈ L× for
every σ ∈ Q.

Since dim τ > 2n+1us(k̃), there exists τ ′ ∈ Q, such that dim τ ′ > us(k̃). Let τ̃ ′ be the

image of τ ′ over L̃. Seeing as the coefficients of τ ′ are all in (L◦)×, dim τ̃ ′ = dim τ ′ > us(k̃).

Since deg tr
k̃
L̃ = 0, the extension L̃/k̃ is algebraic. Let E be the finite field extension of k̃

generated by the coefficients of τ̃ ′. Then, u(E) 6 us(k̃) < dim τ̃ ′, implying τ̃ ′ is isotropic

over E, and hence over L̃. Since L is Henselian, τ ′ is isotropic over L, and thus so is τ.

For the second part, if τ = qL for some diagonal R-quadratic form q, seeing as τ̃ ′ is

isotropic over L̃ = L̃′, the image of q in L̃′ is so as well. From Henselianity of L′, we obtain
that the image of q in L′ is isotropic there. Finally, from Henselianity of R, the quadratic
form q is isotropic over FR. �
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The bound 2n+1us(k̃) in Proposition 5.12 will remain the same regardless of whether
we demand |k×| to be a free Z-module or not. The reason behind this is that in any case,

the hypotheses of said proposition tell us only that dimQ
√
|L×| = n, but not necessarily

that |L×| is a free Z-module.

Proposition 5.13. Let L/k be a valued field extension, such that rankQ(|L×|/|k×| ⊗ZQ) = 0

and deg tr
k̃
L̃ = 1. Let τ be a quadratic form over L, with dim τ > 2n+2us(k̃).

(1) Suppose L is Henselian. Then, τ is isotropic.
(2) Under the same hypotheses as in Setting 2, let q be a diagonal quadratic form

over R, such that qL = τ. Then, q is isotropic over FR.

If |L×| is a free Z-modules of dimension n, the statement is true for dim τ > 2n+1us(k̃).

Proof. Since char(L) 6= 2, we may assume that τ is a diagonal quadratic form. Again,
let ⊥σ∈QCσσ be the L-quadratic form isometric to τ obtained from Proposition 5.2 (resp.
Proposition 5.1), where Q has cardinality at most 2n+1 (resp. 2n). Then, there exists

τ ′ ∈ Q, such that dim τ ′ > 2us(k̃). Let τ̃ ′ be the image of τ ′ over L̃. Since the coefficients

of τ ′ are all in (Lo)×, dim τ̃ ′ = dim τ ′ > 2us(k̃).

As the extension L̃/k̃ is finitely generated of transcendence degree 1, one obtains

u(L̃) 6 2us(k̃) < dim τ ′. This implies that τ ′ is isotropic over L̃. Since L is Henselian,
the quadratic form τ ′ is isotropic over L, and thus so is τ.

For the second part, if τ = qL for some diagonal quadratic form q over R, we conclude

by using the same argument as in Proposition 5.12, seeing as τ̃ ′ is isotropic over L̃′. �

Proposition 5.14. Let L/k be a valued field extension, such that rankQ(|L×|/|k×| ⊗ZQ) = 1

and deg tr
k̃
L̃ = 0. Let τ be a quadratic form over L, with dim τ > 2n+2us(k̃).

(1) Suppose L is Henselian. Then, τ is isotropic.
(2) Under the same hypotheses as in Setting 2, let q be a diagonal quadratic form

over R, such that qL = τ. Then, q is isotropic over FR.

If |k×| is a free Z-module, the statement is true for dim τ > 2n+1us(k̃).

Proof. Since char(L) 6= 2, we may assume that τ is a diagonal quadratic form. Since

rankQ(|L×|/|k×| ⊗Z Q) = 1, there exists ρ ∈ R>0\
√
|k×|, such that the group |L×| is

generated by |k×| and ρ. Let T be an element of L with |T | = ρ. Then, for any a ∈ L×,
there exist m ∈ Z, pi ∈ Q (resp. pi ∈ Z), i = 1, 2, . . . , n, such that |a| = |T |m ·

∏n
i=1 |πi|pi .

Consequently, there exist diagonal quadratic forms q1, q2 over L, for which τ is isometric
to q1⊥Tq2, where the coefficients of q1, q2 have norms in |k×|.

By applying Proposition 5.2 (resp. Proposition 5.1) to q1 and q2, we obtain a family S
of at most 2n+2 (resp. 2n+1) diagonal quadratic forms with coefficients in (L◦)×, such that
τ is isometric to ⊥σ∈SCσ · σ, where Cσ ∈ L× for every σ ∈ S. Thus, there exists τ ′ ∈ S,
such that dim τ ′ > us(k̃). Let τ̃ ′ be the image of τ ′ in L̃. Seeing as the coefficients of τ ′

are all in (L◦)×, dim τ̃ ′ = dim τ ′ > us(k̃).

The extension L̃/k̃ is finite algebraic, so u(L̃) 6 us(k̃) < dim τ̃ ′, implying τ̃ ′ is isotropic

over L̃. Since L is Henselian, τ ′ is isotropic over L, and thus so is τ.

For the second part, if τ = qL for some q, as τ̃ ′ is isotropic over L̃′, we conclude as in
Proposition 5.12. �

Keeping the same notation, the three propositions above can be summarized into:
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Theorem 5.15. Let L/k be a valued field extension. Suppose that the inequality

rankQ(|L×|/|k×| ⊗Z Q) + deg tr
k̃
L̃ 6 1 holds. Let τ be a quadratic form over L, with

dim τ > 2n+2us(k̃).

(1) Suppose L is Henselian. Then, τ is isotropic.
(2) Under the same hypotheses as in Setting 2, let q be a diagonal quadratic form

over R, such that qL = τ. Then, q is isotropic over FR.

If |k×| is a free Z-module, and |L×| is a free Z-module with rankZ|L×| = n if deg tr
k̃
L̃ = 1

and rankQ(|L×|/|k×| ⊗Z Q) = 0, then the statement is true for dim τ > 2n+1us(k̃).

A result we will be using often in what follows:

Lemma 5.16. Suppose |k×| is a free Z-module of dimension n. Let k′/k be a valued field

extension, such that |k′×| is finitely generated over |k×|, and |k′×|/|k×| is a torsion group.

Then, |k′×| is also a free Z-module of dimension n.
Suppose k′/k is a finite field extension. Let τ be a diagonal quadratic form over k′ with

dim τ > 2nus(k̃). Then, q is k′-isotropic.

Proof. Seeing as |k′×|/|k×| is a torsion group, its rank as a Z module is 0. Considering

rankZ|k′×| = rankZ|k′×|/|k×|+ rankZ|k×|, we obtain rankZ|k′×| = n. Furthermore, being
a finitely generated torsion-free module over Z, it is free.

Let ⊥σ∈QCσ · σ be the quadratic form k′-isometric to τ obtained by applying Propo-
sition 5.1. There exists σ0 ∈ Q with coefficients in (k′◦)×, such that dim σ̃0 = dimσ0 >

us(k̃), where σ̃0 is the image of σ0 over k̃′. Suppose k′/k is a finite field extension. Seeing

as then k̃′/k̃ is also finite, σ̃0 is k̃′-isotropic. From Henselianity of k′, we obtain that σ0 is
k′-isotropic, thus so is τ. �

The following shows that if |k×| is a free finitely generated Z-module of dimension n,
the last conditions of Theorem 5.15 are satisfied in the Berkovich setting.

Corollary 5.17. Suppose |k×| is a free Z-module with rankZ|k×| = n. Let C be a
k-analytic curve. If x ∈ C is a type 2 point, then |H(x)×| is a free Z-module and
rankZ(|H(x)×|) = n.

Proof. Since x is an Abhyankar point, |H(x)×| is finitely generated over |k×|, and since it
is of type 2, |H(x)×|/|k×| is a torsion group, so this follows from Lemma 5.16. �

Another result we will be needing in what is to come:

Lemma 5.18. Under the same hypotheses as in Setting 2, suppose R is a discrete val-
uation ring. Let q be a diagonal quadratic form over FR. Then, there exist diagonal
FR-quadratic forms q1, q2 with coefficients in R, and a ∈ F×R , such that:

• q is isometric to q1⊥aq2;
• qi,L has coefficients in (L◦)×, i = 1, 2;

• there exists i0 ∈ {1, 2}, such that dim qi0,L >
1
2 dim q.

In particular, if either of q1, q2 is isotropic over FR, then so is q.

Proof. Let π be a uniformizer of R. For any coefficient b of q, either b ≡ 1 mod (F×R )2(F ◦R)×

or b ≡ π mod (F×R )2(F ◦R)×. Hence, there exist diagonal FR-quadratic forms q1, q2 with co-
efficients in (F ◦R)× = R×, such that q is FR-isometric to q′ = q1⊥πq2. Then, dim q = dim q′,

and there exists i0, such that dim qi0 >
1
2 dim q. Since the coefficients of q1, q2 are in R×,
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their images over L are of same dimension, so dim qi0,L >
1
2 dim q. Finally, the last sentence

of the statement is obvious. �

The following theorem gives the motivation behind the hypotheses we put upon R,L′

and L.

Theorem 5.19. Suppose char(k̃) 6= 2. Let C be a normal irreducible k-analytic curve.

Set F = M (C). Let q be a quadratic form over F of dimension d, with d > 2n+2us(k̃).
Then, for any x ∈ C, the quadratic form q is isotropic over Mx for all x ∈ C.

If |k×| is a free Z-module, the statement is true for d > 2n+1us(k̃).

Proof. Seeing as char(k̃) 6= 2, neither of the overfields of k has characteristic 2. In par-
ticular, char(F ) 6= 2, so there exists a diagonal quadratic form q′ over F isometric to q.
By replacing q with q′ if necessary, we may directly assume that q is a diagonal quadratic
form.

Recall that Ox and κ(x) are Henselian [3, Sections 2.1 and 2.3]. Furthermore, H(x)
is the completion of κ(x), so it is a Henselian immediate extension. We know that
for any x ∈ C, the field H(x) is either a finite extension of k or a completion of F
with respect to some valuation extending that of k. Abhyankar’s inequality tells us that

rankQ(|H(x)×|/|k×| ⊗Z Q) + deg tr
k̃
H̃(x) 6 1. We will apply part 2 of Theorem 5.15 by

taking R = Ox, FR = Mx, L
′ = κ(x), and L = H(x).

If H(x)/k is finite, i.e. if x is a rigid point, then H(x) = κ(x) = Ox/mx. Being a
normal Noetherian local ring with Krull dimension one, Ox is a discrete valuation ring.
By Lemma 5.18, there exists a diagonal Mx-quadratic form τ with coefficients in Ox, such

that dim τL > 1
2 dim q > 2n+1us(k̃) (resp. dim τL > 1

2 dim q > 2nus(k̃)) and the isotropy of

τ implies that of q. Seeing as rankQ(|H(x)×|/|k×| ⊗Z Q) = deg tr
k̃
H̃(x) = 0, we can apply

Proposition 5.12 (resp. Lemma 5.16) to τ .
Otherwise, Ox = κ(x) is a field, and H(x) is its completion. In the general case, we

conclude by a direct application of Theorem 5.15. In particular, if |k×| is a free Z-module,
then this is an application of Theorem 5.15 in view of Corollary 5.17. �

We also obtain:

Corollary 5.20. Suppose char(k̃) 6= 2. Let C be a normal irreducible k-analytic curve.

Let x be any point of C. Let q be a quadratic form over H(x), such that dim q > 2n+2us(k̃).
Then, q is isotropic.

If |k×| is a free Z-module, then the statement is true for dim q > 2n+1us(k̃).

Proof. This is a direct consequence of part (1) of Theorem 5.15 (in view of Corollary 5.17
for the special case). �

6. Applications

We will now apply the results obtained in the previous section to the (strong) u-
invariant. Let k be a complete ultrametric field.

Theorem 6.1. Suppose char(k̃) 6= 2. Let F be a finitely generated field extension of k of
transcendence degree 1. Let q be a quadratic form over F of dimension d.

(1) If dimQ
√
|k×| =: n, n ∈ N, and d > 2n+2us(k̃), then q is isotropic.
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(2) If |k×| is a free Z-module with rankZ|k×| =: n, n ∈ N, and d > 2n+1us(k̃), then q
is isotropic.

Proof. There exists a connected normal projective k-analytic curve C, such that F = M (C).
By Theorem 3.12, the quadratic form q is isotropic over F if and only if it is isotropic
over Mx for all x ∈ C. The statement now follows in view of Theorem 5.19. �

Corollary 6.2. Suppose char(k̃) 6= 2.

(1) If dimQ
√
|k×| =: n, n ∈ N, then us(k) 6 2n+1us(k̃).

(2) If |k×| is a free Z-module with rankZ|k×| =: n, n ∈ N, then us(k) 6 2nus(k̃).

Proof. Let l/k be a finite field extension. Let q be an l-quadratic form of dimension

d > 2n+1us(k̃) (resp. d > 2nus(k̃)). Since char(k̃) 6= 2, we may assume q to be diagonal. In

view of part 1 of Proposition 5.12 (resp. Lemma 5.16), q is l-isotropic, so u(l) 6 2n+1us(k̃)

(resp. u(l) 6 2nus(k̃)). In combination with Theorem 6.1, this completes the proof of the
statement. �

Corollary 6.3. Suppose char(k̃) 6= 2. Let C be a normal irreducible k-analytic curve. Let
x be any point of C.

(1) If dimQ
√
|k×| =: n, n ∈ N, then u(H(x)) 6 2n+2us(k̃).

(2) If |k×| is a free Z-module with rankZ|k×| =: n, n ∈ N, then u(H(x)) 6 2n+1us(k̃).

Proof. See Corollary 5.20. �

In particular, when k is discretely valued we obtain the upcoming corollary. It is the
most important result on quadratic forms of HHK in [19], and from it we obtain that
u(Qp(T )) = 8 when p 6= 2, originally shown in [27].

Corollary 6.4. Let k be a complete discretely valued field, such that char(k̃) 6= 2. Then,

us(k) = 2us(k̃).

Proof. The inequality us(k) 6 2us(k̃) is a special case of Corollary 6.2. For the other
direction, a proof that is independent of the patching method and relies on the theory of
quadratic forms is given in [19, Lemma 4.9]. �
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