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Abstract

This paper deals with the derivation and analysis of reduced order elliptic PDE models
on fractured domains. We use a Fourier analysis to obtain coupling conditions between
subdomains, when the fracture is represented as a hypersurface embedded in the sur-
rounded rock matrix. We compare our results to prominent examples from the literature,
for diffusive models. In a second step, we present error estimates for the reduced order
models in terms of the fracture width. For the proofs, we rely on a combination of Fourier
analysis, asymptotic expansions and functional analysis. Finally, we study the behaviour
of the error of the reduced order solutions on numerical test cases, when the fracture
width tends to zero.

1 Introduction

There are countless physical processes in real life applications that can be modeled by elliptic
partial differential equations. One of the difficulties one often encounters in the formulation of
such models is the presence of heterogeneities in the ambient media (i.e. spatially discontinuous
coefficients in the differential equations). If this is the case, then one has to think about coupling
conditions between regions at the material interfaces. A further difficulty for the numerical
solution of the problem occurs when the heterogeneity is a thin layer, in the sense that its
length is much bigger than its width, which requires anisotropic and/or very small mesh cells
inside the layer. This situation most prominently occurs in subsurface flow applications, where
the thin heterogeneous layers are called fractures, and they are surrounded by the so-called rock
matrix. Being motivated by such applications, we adopt this nomenclature in what follows.

A model reduction strategy consists in representing the fractures as hypersurfaces, embedded
in the matrix domain. This results in a system of PDEs in the full dimensional matrix domain
coupled with a system of tangential PDEs in the reduced dimensional fractures. Therefore, these
models are called in the literature mixed- or hybrid-dimensional models, or Discrete Fracture
Matrix (DFM) models. A common method to establish such models consists in integrating
the fracture equations over the fracture width and using some ad hoc approximations for the
coupling conditions (see [9, 19, 1, 18], where these techniques have been employed on simple
geometries and [4, 6] for extensions to general fracture networks). For non linear DFM models,
we refer to [5, 2, 7]. For an overview and comparison of current discretisation methods, see [3].

The convergence of the DFM model solution to the full model solution has been the objective
of several studies. They all carry out the convergence proofs in a classical functional analysis
setting, but they differ in the asymptotic scaling of the model parameters, which leads to
different DFM models. In [22], the authors use a suitable modification of the solution inside
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the fracture, in order to control its gradient and to show convergence for isotropic Darcy flow
and a fracture of high resistivity. In [8], the authors also use a modification of the fracture
solution, and derive error estimates for anisotropic Darcy flow. In [20], a rescaling of the
fracture normal coordinate is used, which yields a rescaled model on a geometry independent
of the fracture width. The convergence is then proved by using the compactness of the rescaled
solution. This technique is further applied in [21, 17] to non linear problems (Richards equation
and reactive transport). On the other hand, in [7] it has been observed numerically that the
well established approximation of pressure continuity accross highly conductive fractures for
the linear single phase flow models leads to non convergent solutions for two phase flow models,
which involve highly non linear matrix fracture transmission conditions. Analytical results for
these models are still missing.

In the present paper, we use a completely new approach to develop and analyze reduced
order models for general linear elliptic problems. Our focus lies on the derivation of coupling
conditions, which have to be satisfied by the traces of the solutions for the matrix domain on
each side of the matrix-fracture interfaces. We emphasize that we are not only interested in the
derivation of coupling conditions that have to be satisfied in the limit of vanishing aperture,
but in particular with the derivation of coupling conditions that have to hold up to a certain
order of the aperture, which in turn occurs as a model parameter. The idea is to first use a
Fourier transform in the fracture tangential direction, which allows us to eliminate the fracture
unknowns and to derive exact coupling conditions between the matrix subdomains, a technique
which can be regarded as a continuous analogue to a Schur complement of the fracture unknowns
onto the matrix-fracture interfaces, and which is frequently used in domain decomposition to
derive coupling conditions for optimal or optimized Schwarz methods, see [10, 11] and references
therein, and [12, 13, 14, 15] for a different type of heterogeneous coupling using such techniques.
Reduced order coupling conditions are then obtained by truncating the asymptotic expansions
of the exact conditions at the desired order.

Our paper is organized as follows: in Section 2, we present the model problem for which
we develop coupling conditions. Section 3 is devoted to the derivation of the reduced order
models, and Section 4 to the study of their well-posedness. The focus of Section 5 is a posteriori
approximations of the fracture unknowns by suitable interpolations of the traces of the matrix
solution at the interfaces. A comparison of our new reduced models to the Darcy flow models
proposed in [19] is given in Section 6, where we also recover and extend the convergence results
from [22]. In Section 7, we derive error estimates for reduced order models for anisotropic
diffusion problems, which are sharper than the estimates given in [8]. From the exact and
reduced order coupling conditions in Fourier space, we can infer the error of the traces of the
matrix Fourier coefficients at the interfaces. Using trace and expansion inequalities for functions
in fractional Sobolev spaces, we obtain error estimates of optimal order in the fracture width,
namely cubic order of convergence for the H1-norm of the matrix solutions and quadratic order
of convergence for the H

1
2 -norm of the fracture solution. In Section 8, we present a series of

numerical tests, where we address the convergence of the reduced order solutions w.r.t. the
fracture width, for different asymptotic behavior of the model parameters, including cases not
covered by our analysis.
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Figure 1: Model problem domain, where Ω1 = (ax,−δ)×Γ, Ω2 = (δ, bx)×Γ and Ωf = (−δ, δ)×Γ,
with ax, bx ∈ R and Γ = (ay, by) ⊂ R. Note that the Fourier analysis in sections 3 and 7, will be
carried out on unbounded domains by setting Γ = R. The unit normals on Γ pointing outside
of Ωj are denoted by nj.

2 Model problem

We consider as our model problem a fracture between two matrix domains as illustrated in
Figure 1,

−divqj +
bj
2
· ∇uj + (ηj − div

bj
2

)uj = hj in Ωj, j = 1, 2, f, (1)

qj = (Aj∇−
bj
2

)uj in Ωj, j = 1, 2, f, (2)

uj = uf on ∂Ωj ∩ ∂Ωf , j = 1, 2, (3)

qj · nj = qf · nj on ∂Ωj ∩ ∂Ωf , j = 1, 2, (4)

together with some suitable outer boundary conditions. The model coefficients are ηj : Ωj →
R≥0, bj : Ωj → R2, such that ηj − divbj ≥ 0, and coercive matrices Aj : Ωj → R2×2. The
model unknowns are qj and uj. For simplicity, we assume that the fracture source term is
trivial, hf ≡ 0.

3 Derivation of the reduced models by Fourier analysis

We now derive suitable coupling conditions between the matrix domains Ω1 and Ω2 that com-
plement the matrix equations

−divqj +
bj
2
· ∇uj + (ηj − div

bj
2

)uj = hj in Ωj, j = 1, 2, (5)

qj = (Aj∇−
bj
2

)uj in Ωj, j = 1, 2, (6)

and allow us to find approximate matrix solutions ured
j , qred

j , j = 1, 2, for small fracture aper-
tures δ > 0, without solving the fracture equations. The fracture solution can then be recon-
structed a posteriori from the traces at the interfaces of the matrix solutions, as discussed in
Section 5.

In what follows, we will drop the index f for fracture parameters whenever it does not lead
to confusion. Only in Section 4, we will have to use it again.

We assume now for simplicity that the overall domain is R2 to be able to use Fourier
transforms (similar results could also be obtained on bounded domains using Fourier series).
From (1) and (2) with hf ≡ 0, the Fourier coefficients ûf (x, k) of uf (x, y) have to satisfy for all
k ∈ R the ordinary differential equation

−a11∂xxûf +
(
b1 − (a12 + a21)ik

)
∂xûf + (a22k

2 + b2ik + η)ûf = 0 in Ωf . (7)
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The roots of the characteristic polynomial associated with (7) are λ1,2 = r ± s, where

r = − 1

2a11

((a12 + a21)ik − b1) and s =
(
r2 +

1

a11

(a22k
2 + b2ik + η)

) 1
2
.

The ansatz for the solution of (7),

ûf (x, k) = A(k)eλ1x +B(k)eλ2x, (8)

together with the coupling conditions (3) and (4) yields for the Fourier coefficients ûj(x, k) of
uj(x, y) and q̂j(x, k) of qj(x, y), j = 1, 2, on the interfaces,

û1(−δ, k) = A(k)e−δλ1 +B(k)e−δλ2 , (9)

û2(δ, k) = A(k)eδλ1 +B(k)eδλ2 , (10)

q̂1(−δ, k) · n1 = a11λ1A(k)e−δλ1 + a11λ2B(k)e−δλ2 + (a12ik −
b1

2
)û1(−δ, k), (11)

−q̂2(δ, k) · n2 = a11λ1A(k)eδλ1 + a11λ2B(k)eδλ2 + (a12ik −
b1

2
)û2(δ, k). (12)

Equations (9) and (10) are now solved for A and B,

A(k) =
û2(δ, k)e−δλ2 − û1(−δ, k)eδλ2

2 sinh(2sδ)
, B(k) =

û1(−δ, k)eδλ1 − û2(δ, k)e−δλ1

2 sinh(2sδ)
, (13)

which can then be substituted into the remaining two equations (11) and (12). After some
calculations, this leads to the exact coupling conditions between û1, q̂1 in Ω1 and û2, q̂2 in Ω2

across the fracture which has been eliminated,

sinh(2sδ)q̂1(−δ) · n1 + (a11s cosh(2sδ) + ρ sinh(2sδ))û1(−δ)
= a11se

−2δrû2(δ), (14)

sinh(2sδ)q̂2(δ) · n2 + (a11s cosh(2sδ)− ρ sinh(2sδ))û2(δ)

= a11se
2δrû1(−δ), (15)

where ρ = a21−a12
2

ik. Note that even without the fracture, (14) and (15) together with (5) and
(6) form a model with identical matrix solutions to the original model (1)-(4). For the remaining
part of this section, we will drop the arguments indicating the evaluation at x = −δ for the
functions living in Ω1 and at x = δ for those living in Ω2. Taking the sum (14) + (15) yields
an expression related to the normal velocity jump across the fracture, whereas the difference
(14)− (15) gives an expression related to the pressure jump across the fracture,

− sinh(2sδ)(q̂2 · n2 + q̂1 · n1)

= a11s
(

cosh(2sδ)(û1 + û2)− (e2δrû1 + e−2δrû2)
)

+ ρ sinh(2sδ)(û1 − û2), (16)

a11s
(

cosh(2sδ)(û2 − û1) + (e−2δrû2 − e2δrû1)
)

= sinh(2sδ)(q̂1 · n1 − q̂2 · n2) + ρ sinh(2sδ)(û1 + û2). (17)

We now expand (16), (17) into a series in δ and truncate at a given order. We then obtain the
following reduced order coupling conditions at x = ±δ:

1. Truncation after the leading-order term (CC0 coupling conditions):

q̂red
2 · n2 + q̂red

1 · n1 = 0 and ûred
2 − ûred

1 = 0.

2. Truncation after the next-to-leading-order term (CC1 coupling conditions):

−(q̂red
2 · n2 + q̂red

1 · n1) = δ
(
a22k

2 + b2ik + η
)

(ûred
1 + ûred

2 ) +
(
−a21ik +

b1

2

)
(ûred

2 − ûred
1 ),

δ(q̂red
1 · n1 − q̂red

2 · n1) = a11(ûred
2 − ûred

1 ) + δ
(
a12ik −

b1

2

)
(ûred

1 + ûred
2 ).
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To get back to the physical unknowns uj and qj, j = 1, 2, we perform an inverse Fourier
transform by formally applying the rules,

ûred
j 7→ ured

j , q̂red
j 7→ qred

j , k2 7→ −∂yy, ik 7→ ∂y. (18)

We therefore obtain as reduced order approximations of the exact coupling conditions between
the matrix domains Ω1 and Ω2

1. CC0 coupling conditions:

qred
1 · n1 + qred

2 · n2 = 0 and ured
2 − ured

1 = 0. (19)

2. CC1 coupling conditions:

−(qred
1 · n1 + qred

2 · n2) = δ
(
−a22∂yy + b2∂y + η

)
(ured

1 + ured
2 ) +

(
−a21∂y +

b1

2

)
(ured

2 − ured
1 ),

(20)

δ(qred
1 · n1 − qred

2 · n2) = a11(ured
2 − ured

1 ) + δ
(
a12∂y −

b1

2

)
(ured

1 + ured
2 ). (21)

Remark 3.1 Since the CC0 coupling conditions represent the trivial case without any fracture,
we will not consider this model further. We could also derive higher order coupling conditions
by using higher order expansions, but such models would in general not be well posed.

4 Well-posedness of the reduced models

In this section, we show the well-posedness of the reduced models on bounded domains. First,
we have to introduce the trace operators

γj : H1(Ωj)→ L2(Γ) and γj,∂Ω : H1(Ωj)→ L2(∂Ωj \ ({±δ} × Γ))

and the normal trace operators

γnj
: Hdiv(Ωj)→ H−

1
2 (Γ)

for j = 1, 2, with n1 = n and n2 = −n. and the function spaces

Vj := {ϕj ∈ H1(Ωj) | γj,∂Ωϕj = 0} for j = 1, 2,

V := {(ϕ1, ϕ2) ∈ V1 ⊕ V2 | γ1ϕ1 + γ2ϕ2 ∈ H1
0 (Γ)}

Wj := {qj ∈ Hdiv(Ωj) | γnj
qj ∈ L2(Γ)} for j = 1, 2,

W := W1 ⊕W2,

which we need for the weak formulation of the reduced models. Let us define for all (ϕ1, ϕ2) ∈ V ,

ϕ̄f :=
γ1ϕ1 + γ2ϕ2

2
and δxϕ̄f :=

γ2ϕ2 − γ1ϕ1

2δ
,

and for all (v1,v2) ∈ W ,

v̄f :=
γn1v1 − γn2v2

2
and δxv̄f :=

−γn2v2 − γn1v1

2δ
.

The function space V is complemented by the norm

‖(ϕ1, ϕ2)‖V =

(
(

2∑
j=1

‖∇ϕj‖2
L2(Ωj)) + 2δ‖∂yϕ̄f‖2

L2(Γ) + 2δ‖δxϕ̄f‖2
L2(Γ)

) 1
2

.
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The δ-weights in the norm are added in order to derive continuity and coercivity uniformly in
δ for the bilinear form of the problem.

We can now multiply equations (5) by any ϕj ∈ Vj. Subsequent integration over Ωj,
summation over j = 1, 2, and integration by parts, taking into account the definition of qj in
(6), yields

aδ

(
(u1, u2), (ϕ1, ϕ2)

)
=

2∑
j=1

∫
Ωj

hjϕjdxdy, (22)

with the bilinear form on V × V

aδ

(
(u1, u2), (ϕ1, ϕ2)

)
= 2δ

∫
Γ

(ϕ̄fδxq̄f + q̄fδxϕ̄f )dy

+
2∑
j=1

∫
Ωj

(
(Aj∇−

bj
2

)uj · ∇ϕj + (
bj
2
· ∇uj)ϕj + (ηj − div

bj
2

)ujϕj

)
dxdy.

(23)

By means of the coupling conditions (20), (21), we further obtain for the interfacial integral,∫
Γ

(ϕ̄fδxq̄f + q̄fδxϕ̄f )dy =

∫
Γ

[(
δxϕ̄f ∂yϕ̄f

)
Af

(
δxūf
∂yūf

)
+ ηf ūf ϕ̄f

− bf1
2
ūf (δxϕ̄f ) +

bf1
2

(δxūf )ϕ̄f + bf2(∂yūf )ϕ̄f

]
dy.

(24)

Therefore, the primal weak formulation of the reduced model with CC1 coupling conditions
amounts to find (u1, u2) ∈ V , such that for all (ϕ1, ϕ2) ∈ V , one has (23), (24).

Lemma 4.1 There exists a positive constant CP , such that for all (ϕ1, ϕ2) ∈ V we have the
inequality

( 2∑
j=1

(‖ϕj‖2
L2(Ωj) + 2δ‖ϕ̄f‖2

L2(Γ)

) 1
2 ≤ CP‖(ϕ1, ϕ2)‖V . (25)

Proof cf. [16] Proposition 1.2.1. �

Remark 4.1 From the referenced proof of Lemma 4.1 it follows immediately that inequality
(25) holds for all functions in {(ϕ1, ϕ2) ∈ H1(Ω1)⊕H1(Ω2) | γ1ϕ1 + γ2ϕ2 ∈ H1(Γ)} with traces
vanishing on a subset of the outer boundary of positive surface measure. The general requirement
of the proof is that (ϕ1, ϕ2) belongs to a closed subspace of (H1(Ω1)⊕H1(Ω2),

∑2
j=1 ‖ · ‖H1(Ωj))

for which ‖ · ‖V is a well defined norm.

Theorem 4.1 The bilinear form aδ associated with the reduced model (23), (24) is continuous
and coercive uniformly with respect to δ.

Proof Continuity: Let (ϕ1, ϕ2) ∈ V . From (24), there exists a positive constant C, indepen-
dent of δ, such that

2δ
∣∣∣∫

Γ

(ϕ̄fδxq̄f + q̄fδxϕ̄f )dy
∣∣∣

≤ C
(

2δ‖∂yūf‖2
L2(Γ) + 2δ‖δxūf‖2

L2(Γ) + 2δ‖ūf‖2
L2(Γ)

) 1
2

·
(

2δ‖∂yϕ̄f‖2
L2(Γ) + 2δ‖δxϕ̄f‖2

L2(Γ) + 2δ‖ϕ̄f‖2
L2(Γ)

) 1
2
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Furthermore, there exists a positive constant C, such that for j = 1, 2,∣∣∣∫
Ωj

(
(Aj∇−

bj
2

)uj · ∇ϕj + (
bj
2
· ∇uj)ϕj + (ηj − div

bj
2

)ujϕj

)
dxdy

∣∣∣
≤ C

2∑
j=1

(‖uj‖L2(Ωj) + ‖∇uj‖L2(Ωj))(‖ϕj‖L2(Ωj) + ‖∇ϕj‖L2(Ωj)).

Hence, by (25) there exists a positive constant C, independent of δ, such that

|aδ((u1, u2), (ϕ1, ϕ2))| ≤ C‖(u1, u2)‖V ‖(ϕ1, ϕ2)‖V .

Coercivity: Let us first note that, from ϕ̄f = ūf in (24), we obtain

2δ

∫
Γ

(ūfδxq̄f + q̄fδxūf )dy

= 2δ

∫
Γ

(
δxūf ∂yūf

)
Af

(
δxūf
∂yūf

)
dy + 2δ

∫
Γ

ηf (ūf )
2dy

≥ λmin(Af )2δ
(
‖δxūf‖2

L2(Γ) + ‖∂yūf‖2
L2(Γ)

)
+ 2δηf‖ūf‖2

L2(Γ).

Furthermore, for j = 1, 2,∫
Ωj

(
(Aj∇−

bj
2

)uj · ∇uj + (
bj
2
· ∇uj)uj + (ηj − div

bj
2

)u2
j

)
dxdy

≥
2∑
j=1

((ηj − div
bj
2

)‖uj‖2
L2(Ωj) + λmin(Aj)‖∇uj‖2

L2(Ωj).

Inserting (u1, u2) ∈ V as a test function in the bilinear form of the variational problem (23),
(24) immediately yields its coercivity, with a constant C independent of δ

aδ((u1, u2), (u1, u2)) ≥ C‖(u1, u2)‖2
V .

�

Remark 4.2 The coercivity for the reduced problem with CC0 coupling condition is immediate.
However, the reduced problems with higher than next-to-leading-order (CC1) coupling conditions
are not coercive, in general. In the corresponding calculations for the next-to-next-to-leading-
order coupling conditions, a term related to the normal fracture advection coefficient can not be
controlled.

5 Fracture reconstruction for reduced models

In many applications, the fracture unknown uf is of interest. Substituting (13) into equation
(7) yields an expression for ûf in terms of γ̂1û1 and γ̂1û2,

ûf (x, k) =
(γ̂2û2(δ, k)e−δλ2 − γ̂1û1(−δ, k)eδλ2)eλ1x + (γ̂1û1(−δ, k)eδλ1 − γ̂2û2(δ, k)e−δλ1)eλ2x

2 sinh(2sδ)
,

(26)

which can be used to recover information on uf . We will give now some examples.
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Approximation for uf (0, y): we start with

ûf (0, k) =
γ̂2û2e

−δλ2 − γ̂1û1e
δλ2 + γ̂1û1e

δλ1 − γ̂2û2e
−δλ1

2 sinh(2sδ)
=
γ̂1û1e

δr + γ̂2û2e
−δr

2 cosh(sδ)

=
1

2
(γ̂1û1 + γ̂2û2)− δ

4a11

((a12 + a21)ik − b1)(γ̂1û1 − γ̂2û2)

− δ2

4a11

(a22k
2 + b2ik + η)(γ̂1û1 + γ̂2û2) +O(δ3).

(27)

Then, truncating at a given order and performing an inverse Fourier transform (18) gives rise
to the following definitions:

1. Truncation after the leading-order term:

ured,0
f :=

1

2
(γ1u

red
1 + γ2u

red
2 ). (28)

2. Truncation after the next-to-leading-order term:

ured,1
f :=

1

2
(γ1u

red
1 + γ2u

red
2 )− δ

4a11

((a12 + a21)∂y − b1)(γ1u
red
1 − γ2u

red
2 ). (29)

3. Truncation after the next-to-next-to-leading-order term:

ured,2
f :=

1

2
(γ1u

red
1 + γ2u

red
2 )− δ

4a11

((a12 + a21)∂y − b1)(γ1u
red
1 − γ2u

red
2 )

+
δ2

4a11

(a22∂yy − b2∂y − η)(γ1u
red
1 + γ2u

red
2 ).

(30)

Approximation for Uf (y) := 1
2δ

∫ δ
−δ uf (x, y)dx: let us first calculate the Fourier coefficients

for Uf (y),

Ûf (k) =
1

2δ

∫ δ

−δ
ûf (x, k)dx

=
−e−2δ(r+s)

8δ(r2 − s2) sinh(δs) cosh(δs))

·
(
−2e(4r+2s)δsγ̂1û1 + ((γ̂1û1 + γ̂2û2)s+ (γ̂1û1 − γ̂2û2)r)e2δ(r+2s)

+ ((γ̂1û1 + γ̂2û2)s− (γ̂1û1 − γ̂2û2)r)e2δr − 2sγ̂2û2e
2δs
)

=
1

2
(γ̂1û1 + γ̂2û2)− δ

6a11

((a12 + a21)ik − b1)(γ̂1û1 − γ̂2û2)

− δ2

6a11

(a22k
2 + b2ik + η)(γ̂1û1 + γ̂2û2) +O(δ3).

(31)

Truncating at a given order and using an inverse Fourier transform gives rise to the following
definitions:

1. Truncation after the leading-order term:

U red,0
f :=

1

2
(γ1u

red
1 + γ2u

red
2 ). (32)

2. Truncation after the next-to-leading-order term:

U red,1
f :=

1

2
(γ1u

red
1 + γ2u

red
2 )− δ

6a11

((a12 + a21)∂y − b1)(γ1u
red
1 − γ2u

red
2 ). (33)

8



3. Truncation after the next-to-next-to-leading-order term:

U red,2
f :=

1

2
(γ1u

red
1 + γ2u

red
2 )− δ

6a11

((a12 + a21)∂y − b1)(γ1u
red
1 − γ2u

red
2 )

+
δ2

6a11

(a22∂yy − b2∂y − η)(γ1u
red
1 + γ2u

red
2 ).

(34)

6 Comparison to the literature

DFM models are a tool for the simulation of flow through fractured porous media, where the
governing equations are mass conservation and Darcy’s law. The approach illustrated above
covers more general problems, and in order to compare our models to existing ones from the
literature, we now let

b := 0, η := 0, and A :=

(
a11 0
0 a22

)
. (35)

As outlined in [19], a PDE on the dimensionally reduced fracture Γ is derived by integrating
the mass conservation equation over the fracture width,

0 =

∫ δ

−δ
divqfdx = γnf,2

qf + γnf,1
qf + ∂y

∫ δ

−δ
qf · τdx,

with τ being the unit vector tangetial to Γ. Hence, by means of Darcy’s law and normal flux
continuity, we get

−γn2q2 − γn1q1 + 2δa22∂
2
yUf = 0, (36)

where Uf := 1
2δ

∫ δ
−δ ufdx is the fracture unknown. Then, one typically derives one of the

reduced order matrix-fracture (mf) coupling conditions by integrating Darcy’s law over the
fracture width, ∫ δ

−δ
qf · ndx = a11(γf,2uf − γf,1uf ) = a11(γ2u2 − γ1u1),

and by using the trapezoidal approximation∫ δ

−δ
qf · ndx ≈ 2δ

γnf,2
qf − γnf,1

qf

2
= δ(γn1q1 − γn2q2),

which yields the mf coupling condition

δ(γn1q1 − γn2q2) ≈ a11(γ2u2 − γ1u1). (37)

In order to provide the second mf coupling condition, the authors propose in [19] a family of
approximations for Uf , parametrized by ξ ∈ [1

2
, 1],

Uf ≈
γ2u2 + γ1u1

2
+

2ξ − 1

2

δ

a11

(γn1q1 + γn2q2). (38)

The corresponding reduced order model amounts to find uξj , qξj , U
ξ
f , such that

−divqξj +
bj
2
· ∇uξj + (ηj − div

bj
2

)uξj = hj in Ωj, j = 1, 2, (39)

qξj = (Aj∇−
bj
2

)uξj in Ωj, j = 1, 2, (40)

2δa22∂
2
yU

ξ
f = γn1q

ξ
1 + γn2q

ξ
2 on Γ, (41)

δ(γn1q
ξ
1 − γn2q

ξ
2) = a11(γ2u

ξ
2 − γ1u

ξ
1) on Γ, (42)

γ2u
ξ
2 + γ1u

ξ
1

2
+

2ξ − 1

2

δ

a11

(γn1q
ξ
1 + γn2q

ξ
2) = U ξ

f on Γ. (43)
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Theorem 6.1 For ξ = 1
2
, the model (39)–(43) is equivalent to the model (5), (6), (20), (21),

(32), for the diffusion equation with diagonal matrix Af inside the fracture.

Proof The statement of the theorem follows by substituting equation (43) into (41). �

Writing (16), (17) for the diffusion model with diagonal matrix A, we observe that the
asymptotic behavior of the exact coupling conditions depends only on the asymptotic behavior
of the ratio δ

a11
and of the product δa22. We call these two characteristic quantities the fracture

resistivity and fracture conductivity. In [22], a rigorous asymptotic analysis for the Laplace
equation is performed, with the focus on the solution in the limit δ = 0. In this context,
coupling conditions (at x = ±0) are derived, for the cases δ

a11
→ α ∈ R, δ

a11
→ ∞, δ

a11
→ 0,

provided a11 → 0, which turn out to correspond to the coupling conditions which we derive by
means of truncating (16), (17) at order δ0 (with ν := a11 = a22 for isotropic diffusion).

1. Case δ
ν
→ α ∈ R (note that this implies δν → 0):

γn1q1 + γn2q2 = 0 and γ2u2 − γ1u1 = α(γn1q1 − γn2q2).

2. Case δ
ν
→∞ (note that this implies δν → 0):

γn1q1 + γn2q2 = 0 and γn1q1 − γn2q2 = 0.

3. Case δ
ν
→ 0 and δν → 0 corresponds to (19).

We can now complete this study by considering the cases δν → α ∈ R or δν →∞ (which both
imply δ

ν
→ 0). We obtain

4. Case δν → α ∈ R:

γn1q1 + γn2q2 = α∂yy(u1 + u2) and γ2u2 − γ1u1 = 0.

5. Case δν →∞:
∂yy(γ1u1 + γ2u2) = 0 and γ2u2 − γ1u1 = 0.

7 Error estimates for the reduced models

In this section, we will derive an error estimate in the H1-norm for the reduced order solution
in the bulk (matrix) domains and error estimates in the H

1
2 -norm for the reduced order re-

constructed fracture solutions. For simplicity, we restrict ourselves to the anisotropic diffusion
equation with diagonal tensor inside the fracture, as in (35), and to the isotropic diffusion
equation in the matrix. Furthermore, the underlying geometry is set to Ω1 = (−L1,−δ) × Γ,
Ωf = (−δ, δ) × Γ, Ω1 = (δ, L2) × Γ, with δ < L1, L2 < ∞ and Γ = R, in order to allow for
the use of Fourier transforms w.r.t. the y-coordinate (similar results could also be obtained on
bounded domains using Fourier series).

In this setting, the model solved on the full domain consists of the Poisson equation in
mixed formulation in the matrix,

−divqj = hj in Ωj,

qj = ∇uj in Ωj,

γ∂Ωuj = 0 on ∂Ωj \ Γj,

j ∈ {1, 2}, and an anisotropic diffusion model inside the fracture,

−divqf = 0 in Ωf ,

qj = (a11∂xx + a22∂yy)uf in Ωf ,
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together with the matrix-fracture coupling conditions

γjuj = γf,juf on Γj,

γnj
qj = −γnf,j

qf on Γj.

The reduced order model consists of the Poisson equation in mixed formulation in the matrix,

−divqred
j = hj in Ωj,

qred
j = ∇ured

j in Ωj,

γ∂Ωu
red
j = 0 on ∂Ωj \ Γj,

j ∈ {1, 2}, together with CC1 coupling conditions (see (20), (21)),

γn2q
red
2 + γn1q

red
1 = δa22∂yy(γ1u

red
1 + γ2u

red
2 ),

−γn2q
red
2 + γn1q

red
1 =

a11

δ
(γ2u

red
2 − γ1u

red
1 ).

Theorem 7.1 (Matrix error estimate) Let Af be diagonal, A1 = A2 = I, b1 = b2 = bf =
0 and η1 = η2 = ηf = 0. Let {u1, u2, uf} be solution to (1)–(4) and {ured

1 , ured
2 } be solution

to (5), (6), (20) and (21).Then there exists a constant C > 0 independent of δ, such that for
j = 1, 2 we have the estimate

‖uj − ured
j ‖H1(Ωj) ≤ Cδ3

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
.

Proof We want to express the normal traces of the matrix fluxes in terms of the hj and the
traces of uj on Γj, j ∈ {1, 2}. To do so, we introduce the Steklov-Poincaré operators

Sj : H
1
2 (Γj) −→ H−

1
2 (Γj)

gj 7→ γnj
(∇vj),

where vj satisfies the equations

−∆vj = 0 in Ωj,

γjvj = gj on Γj,

γ∂Ωvj = 0 on ∂Ω ∩ ∂Ωj.

To account for the source term, we also introduce the operators

Rj : L2(Ωj) −→ H−
1
2 (Γj)

hj 7→ γnj
(∇wj),

where wj satisfies the equations

−∆wj = hj in Ωj,

γjwj = 0 on Γj,

γ∂Ωwj = 0 on ∂Ω ∩ ∂Ωj.

(44)

Then, from the superposition principle for linear differential equations, we have

γnj
qj = Sj(γjuj) +Rj(hj),

γnj
qred
j = Sj(γjured

j ) +Rj(hj).

In a first step, we will derive an error estimate for the traces on Γj of the reduced order
solutions in Fourier space. As shown in Section 3, the exact problem in Fourier space, after
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the elimination of the fracture unknown by means of a continuous Schur complement, can be
written as

(k2 − ∂xx)û1 = ĥ1 in (−L1,−δ), ∀k ∈ R,
(k2 − ∂xx)û2 = ĥ2 in (δ, L2), ∀k ∈ R,

together with the coupling conditions

ŝ1γ̂1û1 + ŝ2γ̂2û2 + R̂1(h1) + R̂2(h2) = −f̂ ex(γ̂1û1 + γ̂2û2), (45)

ŝ1γ̂1û1 − ŝ2γ̂2û2 + R̂1(h1)− R̂2(h2) = ĝex(γ̂2û2 − γ̂1û1), (46)

where we have introduced the terms

f̂ ex := a11

√
a22

a11

k2 tanh (δ

√
a22

a11

k2), ĝex :=
a11

√
a22
a11
k2

tanh (δ
√

a22
a11
k2)

,

and where
ŝj γ̂jûj := Ŝj(uj) = |k| coth(|k|(Lj − δ))γ̂jûj.

The property of the Steklov-Poincaré operators to reduce to a scaling factor in Fourier space
will be used in what follows.

The reduced order model in Fourier space can be written in the form

(k2 − ∂xx)ûred
j = ĥj in (±L,±δ), ∀k ∈ R,

together with the coupling conditions

ŝ1γ̂1û
red
1 + ŝ2γ̂2û

red
2 + R̂1(h1) + R̂2(h2) = −f̂ red(γ̂1û

red
1 + γ̂2û

red
2 ), (47)

ŝ1γ̂1û
red
1 − ŝ2γ̂2û

red
2 + R̂1(h1)− R̂2(h2) = ĝred(γ̂2û

red
2 − γ̂1û

red
1 ), (48)

where we have introduced the terms

f̂ red := δa22k
2, ĝred :=

a11

δ
.

Combining equations (45), (46), (47) and (48) yields the expressions for the error of the traces
on Γj in Fourier space,

γ̂1ê1 := γ̂1û1 − γ̂1û
red
1

=
−(ŝ2 + ĝred)(f̂ ex − f̂ red)(γ̂2û2 + γ̂1û1) + (ŝ2 + f̂ red)(ĝex − ĝred)(γ̂2û2 − γ̂1û1)

(ŝ2 + ĝred)(ŝ1 + f̂ red) + (ŝ1 + ĝred)(ŝ2 + f̂ red)
,

γ̂2ê2 := γ̂2û2 − γ̂2û
red
2

=
−(ŝ1 + ĝred)(f̂ ex − f̂ red)(γ̂2û2 + γ̂1û1)− (ŝ1 + f̂ red)(ĝex − ĝred)(γ̂2û2 − γ̂1û1)

(ŝ2 + ĝred)(ŝ1 + f̂ red) + (ŝ1 + ĝred)(ŝ2 + f̂ red)
.

We will now give estimates for these errors in the sharpest possible order in δ. First, let us
estimate the coefficient in front of the sum (γ̂2û2 + γ̂1û1). We have

|f̂ ex − f̂ red| = |k|√a11a22

∣∣∣tanh(|k|δ
√
a22

a11

)− |k|δ
√
a22

a11

∣∣∣
≤ |k|√a11a22 sup

z∈R

∣∣∣tanh z − z
z3

∣∣∣|k|3δ3
(a22

a11

) 3
2
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and, for j ∈ {1, 2}, using the notation {j + 1} = 2 for j = 1 and {j + 1} = 1 for j = 2,

0 <
(ŝj + ĝred)

(ŝ2 + ĝred)(ŝ1 + f̂ red) + (ŝ1 + ĝred)(ŝ2 + f̂ red)
≤ 1

ŝ{j+1} + f̂ red
≤ 1

ŝ{j+1}
≤ 1

|k| ,

where we have used the positivity of the occurring coefficients, and the estimate

|k| ≤ |k| coth(|k|(L− δ)) ≤ |k|+ 1

L− δ . (49)

Now, let us estimate the coefficient in front of the difference (γ̂2û2 − γ̂1û1). We have

|ĝex − ĝred| = a11

δ

∣∣∣ |k|δ
√

a22
a11

tanh(|k|δ
√

a22
a11

)
− 1
∣∣∣ ≤ a11

δ
sup
z∈R

∣∣∣ z
tanh(z)

− 1

z2

∣∣∣|k|2δ2a22

a11

,

and, for j ∈ {1, 2},

0 <
(ŝj + f̂ red)

(ŝ2 + ĝred)(ŝ1 + f̂ red) + (ŝ1 + ĝred)(ŝ2 + f̂ red)
≤ 1

ŝ{j+1} + ĝred
≤ 1

ĝred
≤ δ

a11

,

where we have used the positivity of the occurring coefficients. We see that the coefficient in
front of the sum (γ̂2û2 + γ̂1û1) is of third order in δ, whereas the coefficient in front of the
difference (û2 − û1) is only of second order. But we can gain one order in δ by using (46),

|γ̂1û1 − γ̂2û2| =
|ŝ1γ̂1û1 − ŝ2γ̂2û2 + R̂1(h1)− R̂2(h2)|

|ĝex|

≤ δ

a11

(
(|k|+ 1

L1 − δ
)|γ̂1û1|+ (|k|+ 1

L2 − δ
)|γ̂2û2|+ |R̂1(h1)− R̂2(h2)|

)
,

by means of inequality (49). Gathering these inequalities, we obtain for j ∈ {1, 2},

|γ̂j êj| ≤ Cδ3|k|2
(

(|k|+ 1)(|γ̂1û1|+ |γ̂2û2|) + |R̂1(h1)− R̂2(h2)|
)
. (50)

For the errors in physical space,

ej =
1√
2π

∫ ∞
−∞

êje
ikydk = uj − ured

j ,

we have

‖γjej‖H 1
2 (R)

=
(∫

R

√
1 + k2|γ̂j êj|2dk

) 1
2

≤ Cδ3
[(∫

R

√
1 + k2(|k|6 + 1)(|γ̂1û1|+ |γ̂2û2|)2dk

) 1
2

+
(∫

R

√
1 + k2|k|4(|R̂1(h1)|+ |R̂2(h2)|)2dk

) 1
2
]

≤ Cδ3
[ 2∑
j=1

(∫
R
(1 + k2)

7
2 |γ̂jûj|2dk

) 1
2

+
2∑
j=1

(∫
R
(1 + k2)

5
2 |R̂j(hj)|2dk

) 1
2
]

= Cδ3
(
‖γ1u1‖H 7

2 (R)
+ ‖γ2u2‖H 7

2 (R)
+ ‖R1(h1)‖

H
5
2 (R)

+ ‖R2(h2)‖
H

5
2 (R)

)
.

Using the (normal) trace and extension inequalities, we then obtain

‖ej‖H1(Ωj) ≤ ‖γjej‖H 1
2 (R)
≤ Cδ3

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖w1‖H5(Ω1) + ‖w2‖H5(Ω2)

)
,
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with wj solutions to problem (44), which classically induces

‖wj‖H5(Ωj) ≤ ‖hj‖H3(Ωj).

Thus we obtain the error estimates

‖ej‖H1(Ωj) ≤ ‖γjej‖H 1
2 (Γ)
≤ Cδ3

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
. (51)

�

We can now also obtain a rigorous error estimate for the coupled problem from [19].

Theorem 7.2 (Matrix error estimate for problem [19]) Let Af be diagonal, A1 = A2 =
I, b1 = b2 = bf = 0 and η1 = η2 = ηf = 0. Let {u1, u2, uf} be solution to (1)–(4). Let ξ ∈ [1

2
, 1]

and {uξ1, uξ2, U ξ
f} be solution to (39)–(43). Then there exists a constant C > 0 independent of

δ, such that for j = 1, 2 we have the estimate

‖uj − uξj‖H1(Ωj) ≤ Cδ3
(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
.

Proof We first eliminate U ξ
f by substituting (43) into (41) and obtain the coupling conditions

(1− 2ξ − 1

2

δ

a11

∂yy)(γn1q
ξ
1 + γn2q

ξ
2) = δa22∂yy(γ2u

ξ
2 + γ1u

ξ
1),

δ(γn1q
ξ
1 − γn2q

ξ
2) = a11(γ2u

ξ
2 − γ1u

ξ
1),

or, in Fourier space,

ŝ1γ̂1û
ξ
1 + ŝ2γ̂2û

ξ
2 + R̂1(h1) + R̂2(h2) = −f̂ ξ(γ̂1û

ξ
1 + γ̂2û

ξ
2), (52)

ŝ1γ̂1û
ξ
1 − ŝ2γ̂2û

ξ
2 + R̂1(h1)− R̂2(h2) = ĝξ(γ̂2û

ξ
2 − γ̂1û

ξ
1), (53)

where

f̂ ξ :=
δa11a22k

2

a11 + δ2a22k2(2ξ − 1)
, ĝξ :=

a11

δ
.

We have ĝred − ĝξ = 0 and

f̂ red − f̂ ξ =
δ3a2

22k
4(2ξ − 1)

a11 + δ2a22k2(2ξ − 1)
.

Further

|f̂ − f̂ ξ| ≤ |f̂ − f̂ red|+ |f̂ red − f̂ ξ| ≤ |k|4δ3
(

sup
z∈R

∣∣∣tanh z − z
z3

∣∣∣a2
22

a11

+ (2ξ − 1)
a2

22

a11

)
.

The rest of the proof is as in the proof of Theorem 7.1. �

Similarly as above, we can now derive estimates for the error in the reconstructed fracture
solutions of the reduced models.

Theorem 7.3 (Fracture error estimates) Let Af be diagonal, A1 = A2 = I, b1 = b2 =
bf = 0 and η1 = η2 = ηf = 0. Let {u1, u2, uf} be solution to (1)–(4) and {ured

1 , ured
2 } be solution

to (5), (6), (20), (21). Let ured,0
f , U red,0

f , ured,2
f , U red,2

f be defined according to Section 5. Then

1. There exist constants C, c > 0 independent of δ, such that

‖uf |x=0 − ured,0
f ‖

H
1
2 (R)

‖Uf − U red,0
f ‖

H
1
2 (R)

}
≤ cδ2

(
‖u1‖H3(Ω1) + ‖u2‖H3(Ω2)

)
+ Cδ3

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
.
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2. There exists a constant C > 0 independent of δ, such that

‖uf |x=0 − ured,2
f ‖

H
1
2 (R)

‖Uf − U red,2
f ‖

H
1
2 (R)

}
≤ Cδ3

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
.

Proof Leading order approximation of uf (0, y): the leading order reconstructed fracture solu-
tion is

ured,0
f =

ured
1 + ured

2

2
.

Following the calculations in Section 5, we obtain for the error of the Fourier coefficients

|ûf (0, k)− ûred,0
f (k)| =

∣∣∣ γ̂1û1 + γ̂2û2

2 cosh(δ
√

a22
a11
k2)
− γ̂1û

red
1 + γ̂2û

red
2

2

∣∣∣
≤

1− cosh(δ
√

a22
a11
k2)

2 cosh(δ
√

a22
a11
k2)
|γ̂1û1 + γ̂2û2|+

|γ̂1ê1 + γ̂2ê2|
2

≤ sup
z∈R

∣∣∣ 1
cosh z

− 1

z2

∣∣∣δ2a22

a11

k2|γ̂1û1 + γ̂2û2|+
|γ̂1ê1 + γ̂2ê2|

2
,

and therefore,

‖uf (0, ·)− ured,0
f ‖

H
1
2 (Γ)

=
(∫

R

√
1 + k2|ûf (0, ·)− ûred,0

f |2dk
) 1

2

≤ cδ2
(∫

R

√
1 + k2k4|γ̂1û1 + γ̂2û2|2dk

) 1
2

+ Cδ3
(∫

R

√
1 + k2|γ̂1ê1 + γ̂2ê2|2dk

) 1
2

≤ cδ2‖γ1u1 + γ2u2‖H 5
2 (Γ)

+ C‖γ1e1 + γ2e2‖H 1
2 (Γ)

≤ cδ2
(
‖u1‖H3(Ω1) + ‖u2‖H3(Ω2)

)
+ Cδ3

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
,

where we have used an extension inequality as well as inequality (51).
Next-to-next-to-leading order approximation of uf (0, y): the next-to-next-to-leading order

reconstructed fracture solution is

ured,2
f =

(1

2
+
δ2a22

4a11

∂yy

)
(ured

1 + ured
2 ).

Following the calculations in Section 5, we obtain for the error of the Fourier coefficients

|ûf (0, k)− ûred,2
f (k)| =

∣∣∣ γ̂1û1 + γ̂2û2

2 cosh(δ
√

a11
a22
k2)
−
(1

2
− δ2a22k

2

4a11

)
(γ̂1û

red
1 + γ̂2û

red
2 )
∣∣∣

≤ sup
z∈R

∣∣∣1− (1− z2

2
) cosh z

z4 cosh z

∣∣∣(δ√a11

a22

k2)4 |γ̂1û1 + γ̂2û2|
2

+ (
1

2
− δ2a11

4a22

k2)(|γ̂1ê1 + γ̂2ê2|).

Hence,

‖uf (0, ·)− ured,2
f ‖

H
1
2 (Γ)

≤ 1

2
‖γ1e1 + γ2e2‖H 1

2 (Γ)
+
δ2a22

4a11

‖γ1e1 + γ2e2‖H 5
2 (Γ)

+ cδ4‖γ1u1 + γ2u2‖H 7
2 (Γ)

≤ C
(
δ3 + δ5)(‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
+ cδ4

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2)

)
,
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where we have used an extension inequality as well as inequality (51). It is worth to note that,
even though the approximation of the fracture solution is formally of order four, the error is of
order three, due to the error of the traces at the interfaces of the reduced order matrix solutions.

Leading order approximation of Uf : the leading order reconstructed fracture solution is

U red,0
f =

ured
1 + ured

2

2
.

Let us first remark that from the calculations in Section 5, we obtain

Ûf (k) =
tanh(δ

√
a22
a11
k2)

2δ
√

a22
a11
k2

(γ̂1û1 + γ̂2û2),

and therefore,

|Ûf (k)− Û red,0
f (k)| ≤

∣∣∣tanh(δ
√

a22
a11
k2)− δ

√
a22
a11
k2

2δ
√

a22
a11
k2

(γ̂1û1 + γ̂2û2)
∣∣∣+
|γ̂1ê1 + γ̂2ê2|

2

≤ sup
z∈R

∣∣∣tanh(z)− z
z3

∣∣∣δ2a22

a11

k2 |γ̂1û1 + γ̂2û2|
2

+
|γ̂1ê1 + γ̂2ê2|

2
.

The conclusion is now in the same manner as above and will not be repeated.
Next-to-next-to-leading order approximation of Uf : the next–to–next–to–leading order re-

constructed fracture solution is

U red,2
f =

(1

2
+
δ2a22

6a11

∂yy

)
(ured

1 + ured
2 ).

Following the calculations in Section 5, we obtain for the error of the Fourier coefficients

|Ûf (k)− Û red,2
f (k)| =

∣∣∣tanh(δ

√
a22

a11

k2)−
(1

2
− δ2a22k

2

6a11

)
(γ̂1û

red
1 + γ̂2û

red
2 )
∣∣∣

≤ sup
z∈R

∣∣∣tanh(z)− z + z3

3

z5

∣∣∣(δ√a11

a22

k2
)4 |γ̂1û1 + γ̂2û2|

2

+
(1

2
− δ2a11

6a22

k2
)
|γ̂1ê1 + γ̂2ê2|.

The conclusion is now in the same manner as above and will not be repeated. �

Theorem 7.4 (Fracture error estimates for problem [19]) Let Af be diagonal, A1 =
A2 = I, b1 = b2 = bf = 0 and η1 = η2 = ηf = 0. Let {u1, u2, uf} be solution to (1)–(4). Let

ξ ∈ [1
2
, 1] and {uξ1, uξ2, U ξ

f} be solution to (39)–(43). Then

1. For any ξ ∈ [1
2
, 1], there exist constants C, c > 0 independent of δ, such that

‖uf |x=0 − U ξ
f‖H 1

2 (Γ)

‖Uf − U ξ
f‖H 1

2 (Γ)

}
≤ cδ2

(
‖u1‖H3(Ω1) + ‖u2‖H3(Ω2)

)
+ Cδ3

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
.

2. For ξ = 2
3
, there exists a constant C > 0 independent of δ, such that

‖Uf − U ξ
f‖H 1

2 (Γ)
≤ Cδ3

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
.
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3. For ξ = 3
4
, there exists a constant C > 0 independent of δ, such that

‖uf |x=0 − U ξ
f‖H 1

2 (Γ)
≤ Cδ3

(
‖u1‖H4(Ω1) + ‖u2‖H4(Ω2) + ‖h1‖H3(Ω1) + ‖h2‖H3(Ω2)

)
.

Proof The proof of Theorem 7.3 can be adapted in a straightforward manner to get this result.
�

Remark 7.1 Theorem 7.4 implies that the model (39)–(43) yields an optimal third order
asymptotical approximation U ξ

f of

1. Uf = 1
2δ

∫ δ
−δ uf (x, y)dx, when chosing ξ = 2

3
, and

2. uf (0, y), when chosing ξ = 3
4
.

8 Test cases

We present here a series of test cases in which we study the convergence, for δ → 0, of solutions
derived by the reduced model to solutions of the equi-dimensional model. We consider the
model solved on the full domain, which consists of the Laplace equation ∆uj = 0 in the matrix
domains Ωj, j = 1, 2 and a general elliptic model inside the fracture,

−div(A∇uf ) + b · ∇uf + ηuf , in Ωf ,

together with the coupling conditions

u1(−δ) = uf (−δ) and u2(δ) = uf (δ),

∂xu1(−δ) = (a11∂x + a12∂y −
b1

2
)uf (−δ) and ∂xu2(δ) = (a11∂x + a12∂y −

b1

2
)uf (δ),

and compare the solution to those obtained by the reduced models, which consist of the Laplace
equation ∆ured

j = 0 in Ωj, j = 1, 2, together with coupling conditions containing the next-to-
leading-order corrections (CC1, see (20), (21)),

∂xu
red
1 (−δ)− ∂xured

2 (δ) = δ
(
a22∂yy − b2∂y − η

)(
ured

1 (−δ) + ured
2 (δ)

)
+
(
a21∂y −

b1

2

)(
ured

2 (δ)− ured
1 (−δ)

)
,

ured
2 (δ)− ured

1 (−δ) = δa−1
11

(
∂xu

red
2 (δ) + ∂xu

red
1 (−δ)

)
+ δ
(
a12∂y −

b1

2

)(
ured

1 (−δ) + ured
2 (δ)

)
,

which have been shown in Section 7 to have an error ofO(δ3) compared to the exact solution, for
diffusion problems with diagonal matrix A. We use homogeneous Dirichlet boundary conditions
at y = ±10 and non-homogeneous Dirichlet boundary conditions with values ± cos(πy/20) at
x = ±10. In order to not have to repeat parameter choices every time, we assume that the
default setting of the fracture parameters is

a11 = 1, a22 = 1, a12 = 0, a21 = 0, b1 = 0, b2 = 0, η = 0, (54)

and we indicate which of the parameters we modified only in each test case. The errors we
measure in the matrix and fracture domains are

erm =
2∑
j=1

‖uj − ured
j ‖L∞(Ωj), (55)

erf = ‖ 1

2δ

∫ δ

−δ
ufdx−

1

2
(ured

1 |x=−δ + ured
2 |x=δ)‖L∞(R). (56)
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(a) (b) (c)

Figure 2: Isotropic Darcy flow with one fracture. The plots show the convergence of the reduced
model analytical solutions to the equi-dimensional model w.r.t. the fracture width for fracture
permeabilities a11 = a22 ∈ {10−3 (red curve), 10 (green curve), 103 (blue curve)} and a unit
matrix permeability. (a) Error erm of the matrix solution. (b) Error erf of the leading order
reconstructed fracture solution. (c) Error of the next-to-next-to-leading order reconstructed
fracture solution. The reference triangles indicate a cubic slope in (a) and (c) and a quadratic
slope in (b).

8.1 Analytical solutions

To separate numerical errors from model errors, we start by considering isotropic diffusion in
the fracture, i.e. a11 = a22 ∈ R+, and we are looking for exact solutions of the equi-dimensional
model of the form

uj(x, y) = wj(x)vj(y), j = 1, 2, f.

For simplicity we choose

v1(y) = v2(y) = vf (y) = cos(λ(y − ay)), λ =
2π

|by − ay|
,

in Ω1 = (ax,−δ)× (ay, by), Γ = (−δ, δ)× (ay, by) and Ω2 = (δ, bx)× (ay, by), respectively, which
satisfy homogeneous Neumann boundary conditions at the y-boundary. Then, since ∆uj = 0,
we have

wj(x) = αj sinh(λx) + βj cosh(λx), αj, βj ∈ R.

From the coupling conditions (3), (4), and from the (consistent!) Dirichlet boundary conditions
at the x-boundary, we obtain the values of the parameters αj, βj.

For the reduced model, we similarly derive closed form solutions

ured
j (x, y) = wred

j (x)vred
j (y), j = 1, 2,

in Ω1 and Ω2, with

vred
1 (y) = vred

2 (y) = vred
f (y) = cos(λ(y − ay)), λ =

2π

|by − ay|
,

and
wred
j (x) = αred

j sinh(λx) + βred
j cosh(λx), αred

j , βred
j ∈ R.

From the coupling conditions (20), (21), and from the Dirichlet boundary conditions at the
x-boundary, we obtain the values of the parameters αred

j , βred
j .

Figure 2 shows that for low and mid diffusion in the fracture, optimal convergence can be
observed for moderate values of δ already, while for high diffusion in the fracture, this only
occurs for very small δ.
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8.2 Numerical solutions

We present now numerical tests obtained on Cartesian grids with a classical second order finite
difference scheme.

8.2.1 δ-independent parameters

We show in Figure 3 the matrix and fracture errors erm and erf defined in (55) and (56) for
the model coefficients defined in (54), by modifying the values to a11 = 0.001 (top), a22 = 1000
(middle), b2 = 200 (bottom), to obtain anisotropic fracture coefficients. We observe that
the orders of convergence for the reduced order matrix and fracture solutions correspond to
the orders of convergence predicted by Theorem 7.1 and Theorem 7.3. Consistent with the
analytical solutions in Subsection 8.1, for highly diffusive fractures, the solutions enter the
regime of predicted convergence only for very small fracture apertures δ. Illustrations of the
solutions at δ = 0.01 are also given in Figure 3.

8.2.2 δ-dependent parameters

From the reduced order coupling conditions (20), (21), we observe that the fracture aperture,
the fracture diffusion coefficients and the fracture tangential advection coefficient never occur
isolated, but always in combination either as a fracture resistivity a11

δ
or as fracture conductivi-

ties, δa22 or δb2. Hence, the asymptotic behavior of the solution is determined by the asymptotic
behavior of the generalized fracture coefficients

a11

δ
, δa22, δb2, a12, a21, b1, η.

We test our coupling conditions for three different situations: a barrier test case, a conduit
test case with diffusion dominant fracture, and a conduit test case with advection dominant
fracture. Our results below illustrate well the robustness of our new reduced models.

Barrier test case. In this test case we set a11
δ

= 0.05, keeping the other parameters as in
(54). We show in Figure 4 the matrix and fracture errors erm and erf , and also the solution in
the limit δ = 0. From the error plots, we observe an asymptotic linear (matrix) and quadratic
(fracture) behavior of the convergence rate, w.r.t. the fracture width.

Conduit test case with diffusion dominant fracture. In this test case we set δa22 = 10,
keeping the other parameters as in (54). We show in Figure 5 the matrix and fracture errors
erm and erf , and also the solution in the limit δ = 0. From the error plots, we observe a linear
asymptotic behavior of the convergence rate.

Conduit test case with advection dominant fracture. In this test case we set δb2 = 2,
keeping again the other parameters as in (54). We show in Figure 6 the matrix and fracture
errors erm and erf , and also the solution in the limit δ = 0. We again observe a linear asymptotic
behavior of the convergence rate.

9 Conclusion

We presented a rigorous derivation of coupling conditions for DFM models for general linear
advection-reaction-diffusion problems. The derivation of coupling conditions relies on a Fourier
transform of the physical unknowns in direction tangential to the fracture and an elimination of
the fracture unknowns in Fourier space by performing a continuous Schur complement. Reduced
order coupling conditions are then obtained by straightforward truncation of an expansion in the
fracture width. We compared the coupling conditions to a commonly used family of (diffusion)
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Figure 3: Matrix and fracture errors erm and erf for anisotropic fracture coefficients a11 = 0.001,
a22 = 1000, b2 = 200 from top to bottom, the other coefficients being as in (54).
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Figure 4: Barrier test. Matrix and fracture error plots erm and erf and the solution in the
limit δ = 0.
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Figure 5: Diffusion dominant conduit test. Matrix and fracture error plots erm and erf and
the solution in the limit δ = 0.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

10-6 10-5 10-4 10-3 10-2 10-1

E
R
R
O
R

 O
F

 R
E
D
U
C
E
D

 S
O
L
U
T
IO
N

FRACTURE APERTURE

d*b2=2

linear
matrix

fracture

Figure 6: Advection dominant conduit test. Matrix and fracture error plots erm and erf and
the solution in the limit δ = 0.
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models from the literature and obtained correspondence for the coupling conditions truncated
after the next-to-leading-order terms. We further derived coupling conditions for the fracture
resistivity tending to a constant, to infinity and to zero, and found correspondence to the
literature, which contains results for the special case of the Laplace equation only. For the
general elliptic models, we showed the well posedness for the reduced models. Furthermore,
from the knowledge of the exact solution in Fourier space, we were able to derive error estimates
for the reduced model solutions in the norm of fractional Sobolev spaces. Then, we used trace
and extension inequalities, in order to obtain error estimates in the H1-norm in the matrix
domain and in the H

1
2 -norm in the fracture. In particular, we obtained cubic resp. quadratic

convergence in δ, for diffusion problems with diagonal matrix A. Our rigorous error analysis
is currently restricted to these kind of problems. Extensions to more general problems will be
presented in future work. Our estimates for the convergence rate of the reduced model solutions
has been verified in several numerical tests, and we also presented numerical results which go
beyond our analysis, such as for asymptotic solutions in case of a constant fracture conductivity
δa22 or resistivity δ

a11
. These results illustrate well the robustness of our new reduced models.
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