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Abstract

This work investigates network-related trajectory features to unravel trips that the most
contribute to the system under-performance. When such trips are identified, features
analysis also permits to identify the best alternatives in terms of routes to make the system
to its optimum. First, data mining is carried out on trajectories obtained from reference
dynamic traffic assignment (DTA) simulations in a real-world network, based on User-
Equilibrium (UE) and System-Optimum (SO). This helps us (i) to target the trajectories
to be changed, and (ii) to identify their main features (trip lengths, experienced travel
time, path marginal costs, and network-related features such as betweenness centrality and
traffic light parameters, etc.). Similarity analysis based on Longest Common Subsequence,
Principle Component Analysis are the main methods that are performed to carry out
descriptive analysis of trajectories. Supported Vector Machine is then used to determinate
the features with regards to their contribution to better network performance.

1 Introduction

In urban areas, the conflict between the increasing mobility demand and limited infrastruc-
tures degrades the level of service of road networks. The resulting consequences include
(i) economic loss resulting from wasted time and fuel in traffic jams and (ii) environmental
pollutions. A key element to determinate the network level of service is the traffic as-
signment (TA) process as it describes how users spread over the network. Different levels
of equilibrium may result from different TA: User equilibrium (UE) and system optimum
(SO) (Wardrop, 1952, Beckmann et al., 1956, Smith, 1979, Mahmassani and Peeta, 1993).
In UE, network users choose their route by minimizing their own travel cost when traveling
from Origin to Destination (O-D). Under SO equilibrium, users choose their travel paths
in such a way that the total travel costs of the whole network are minimized.
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Over the past few decades, increasing sources of traffic data are becoming available:
GPS-based floating car data, Bluetooth data, GPS data from cellphones, etc. (Treiber and
Kesting, 2013) . A variety of vehicle trajectory data gives new insights for better under-
standing the network, user mobility patterns, and the congestion mechanism. This rich
data helps engineers, decision makers, and researchers to propose corresponding strategies
for improving urban mobility (Gonzalez et al., 2008, Saeedmanesh and Geroliminis, 2016,
Lopez et al., 2017). For example, with detailed GPS data from mobile phones, Wang et al.
(2012) show that the congestion of a given network is mostly due to very few network users
who are on the most congested road segments. However, this conclusion is obtained by
decreasing the traffic demand from a certain number of O-D pairs, without giving alter-
native routing solution. Çolak et al. (2016) use mobile phone GPS-data to compute path
travel time and calibrate TA models. They show that if 10 % of drivers adjust their routing
behavior under SO condition instead of selfish routing, the average travel cost of the whole
network drops 40 %. Nevertheless, their static TA model ignores the dynamic interactions
of the traffic, especially the spillback of queues in congested situations.

2 Objective and main contribution

The objective of this work is to investigate network-related trajectory features, in order to
unravel trips that the most contribute to the system under-performance. When such trips
are identified, features analysis also permits to identify the best alternatives in terms of
routes to make the system to its optimum. Re-routing strategies are given to target trips
in order to improve network performance by only considering network-related features.
This avoids computational burden of DTA simulations. The contribution of this work is
threefold:

• By analyzing trajectories in UE and SO equilibrium from DTA simulations, define
the network-related trajectory features, that determinate the users who contribute
the most to the network congestion.

• With the defined network-related trajectory features, propose re-routing strategies
for target users in order to improve the total network performance (e.g., the total
travel times of all vehicles).

• Assess through simulations the performance of the solution and re-routing process in
a real-world test case.

3 Methodology

Figure 1 presents the framework of our methodology. First, descriptive analysis of UE
and SO trajectories is carried out. We define trajectory features from two reference DTA
simulations, under UE and SO condition, with the same traffic volume and departure time.
Trajectories from the SO-based simulation are considered as the optimal travel pattern. We
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identify the most influential features that differ the SO trajectories from UE trajectories.
Principal component analysis (PCA) is carried out to reveal similar trajectory features
under both equilibrium. Longest common subsequence (LCS) is also used to measure the
similarity of trajectories (Kim and Mahmassani, 2015). The users whose trajectories are
of the largest dissimilarity are then targeted to give re-routing strategies.

Once the users are identified, new DTA simulations are carried out, with pre-defined
optimal patterns for the target users. The others are assigned under UE condition. We then
quantify the network total travel time (TTT) reduction with respect to the reference UE
simulation. This defines the final target trajectories that contribute the most to the network
performance improvement. Then, for these trajectories, the features related to traffic
characteristics from SO simulation are considered as training samplesy. The network-
related features are considered as training points p. Supervised learning with Supported
Vector Machine (SVM) (Ben-Hur et al., 2001) is carried to this training dataset, so that
a relation f : p → y, mapping network-related trajectory features, to trajectory features
that define target users.

At last, a new set of target trajectories can be defined by only using network-related
features. We give them pre-defined optimal patterns and carry out DTA in UE condition to
evaluate the TTT reduction. Furthermore, instead of re-routing by optimal patterns, f can
also help us to define the best alternative paths to make the system to its optimum, based
on the identified network-related trajectory features. The proposed re-routing strategies
are validated by UE simulation.

Figure 1: Flow chart of methodology

4 Case Study on a real-world network

4.1 Network and demand
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The first test case is carried out for the road network of the 6th district of Lyon (Lyon6 ),
France. Figure 2 shows the area of Lyon6. Figure 3 (left) shows the link level representation
of the main road network. There are in total 786 links, 205 intersections and 710 OD pairs
in the network. Figure 3 (right) presents the time-dependent traffic demand in the network.
The total simulation period is 4 hours.

Figure 2: Area of the 6th district of Lyon, France, c© Google Maps 2019
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Figure 3: Flow chart of methodology

4.2 Discriptive analysis

A trajectory i Li is composed by a set of links (lj) and intersections (nk): Li =
{{li,1, . . . , li,j}, {ni,1, . . . , ni,k}}. We focus on path marginal costs (PMC), betweenness
centrality (BC) of intersections. PMC is computed from SO simulation, while the BC can
directly obtained from network topological features.

We use the solution algorithm proposed by (Peeta and Mahmassani, 1995) to solve
the SO problem. Instead of minimizing path travel time, we minimize the path marginal
costs in SO problem. The path marginal costs are computed based on time-dependent link
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marginal costs (LMC). The latter can be obtained from microscopic simulator SYMUVIA,
developped by LICIT laboratory. The time step in the numerical simulation is ∆t = 60 s.
The total number of time steps is T . LMC of lj at time t is denoted as cj,t. The PMC
of Li is denoted as Ci. It is obtained by summing up all the time-dependent LMC on the
trajectory, i.e., Ci = ∑

t

∑
j cj,tδj,t, where δj,t is the incidence indicator. δj,t equals to 1 if

user i enters link j at time t, and equals to 0 otherwise. Figure 4 shows the distribution of
PMC of trajectories from UE and SO reference simulations. It can be observed that the
PMCs decrease from UE simulation to SO simulation.

Figure 4: Distribution of path marginal costs (sec) of trajectories from UE-ref and SO-ref simu-
lation.

The BC of a node n corresponds to the ratio of shortest paths crossing n over all
possible shortest paths for all origin-destination pairs of the network (Freeman, 1977,
Girvan and Newman, 2002). A graph G = (N ,A) has K nodes and J links. N =
{n1, n2, . . . , ni, . . . , nN} is the set of nodes and A = {a1, . . . , ak, . . . , aK} is the set of links
with aij 6= aji. The BC of node n is calculated by

BC(n) =
∑
i 6=j

σij(n)
σij

, (1)

where σij(n) is the number of shortest paths from node i to node j crossing node n, and
σij is the total number of shortest paths from i to j. In our case study, the shortest paths
for calculating BC are measured by distance defined directly based on th(e topological
parameters of the network. Therefore, for the trajectory Li with Ki nodes, we have a vec-
tor of node BC denoted as BCLi

= {BC(ni,1), . . . , BC(ni,Ki
)} and obtain several statistical

values such as it mean, median and standard deviation, etc. Figure 5 shows the distribu-
tion of mean node BC of trajectories from UE and SO reference simulations. It can be
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observed that the mean values of node BC in SO simulation are smaller than that in the
UE simulation.

Figure 5: Distribution of mean node BCs of trajectories from UE-ref and SO-ref simulation.

Laval and Castrillón (2015) present that the mean capacity of a corridor can be de-
termined by three dimensionless values: (i) mean red time to mean green time ratio :
ρ = µred

µgreen
, (ii) mean block length to mean green time ratio: λ = µl

µgreen
and (iii) the

coefficient of variance of green light time, red light time, and block length. For the dimen-
sionless, the traffic flow is in unit of saturation capacity (Q), the density in units of jam
density (κ). The mean capacity of a corridor can be approximated by

Capavg = min{ 1
1 + ρ(0.58δλ+ 1.64λ2 − 5.3λ+ 4.99); µgreed

µcycle
×Q}. (2)

Figure 6 shows the distribution of mean node BC of trajectories from UE and SO
reference simulations. It can be observed that the mean MFD capacities in SO simulation
are smaller than that in the UE simulation.

4.3 Results

Descriptive analysis shows that trajectories with high path marginal costs (PMC) are
among the first trajectories to be targeted. In addition, by analyzing different trajectories
from UE and SO simulations, there are many trajectories with large difference of mean BC
and mean MFD capacity from the two reference simulations. In order to test which features
are the most influential ones in terms of improving network performance, several scenarios
are carried out with following groups of target users. The O-D matrix and network are
the same as those in reference UE simulation (UE-ref) and SO simulations (SO-ref). The
cumulated traffic demand is 9005 vehicles during 4 hours. The targeting strategies are:
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Figure 6: Distribution of mean MFD capacity of trajectories from UE-ref and SO-ref simulation.

(i) PMC-based targeting: 10 % trajectories with biggest PMC reduction from UE-ref to
SO-ref. The total number of target trajectories is 900.

(ii) BC-based targeting: 10 % trajectories with the largest mean node BCs in the refer-
ence UE simulation.

(iii) DiffBC-based targeting: 10 % trajectories with the largest reduction of mean node
BCs in from UE-ref to SO-ref simulation.

(iv) Cap-based targeting: 10 % trajectories with the largest mean corridor MFD capacity
in the reference UE simulation.

(v) DiffCap-based targeting: 10 % trajectories with the largest reduction mean corridor
MFD capacity from SO-ref to UE-ref simulation.

The results of the above simulation scenarios are presented in Table 1. In the refer-
ence DTA simulations, the TTT reduces 5.05105 seconds in the reference SO simulation,
compared to the TTT in UE simulation. Results of the above scenarios show that if we
change trajectories of 10 % users by targeting trajectories with big difference of node BC
(scenario (iii)) or with big node BC (scenario (ii)), the TTT reduction reaches 71 % and
28 % of the TTT reduction in the reference cases, respectively. The relative TTT reduction
is computed by Equation 3. We have also carried out 6 scenarios with random targeting
strategy: to randomly choose 10 % of the users and give them predefined optimal routes.
Among these, there are two scenarios that result in 49 % and 43 % of relative TTT re-
duction. There are two others bring about 10 % of relative TTT reduction. There is one
scenario where we get approximatly the same TTT as in UE-ref simulation, and there is
another one where we get larger TTT when compared to the UE-ref simulation.
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∆TTTrelative = 100 %× (TTTUE−ref − TTTUE−predefine)
TTTUE−ref − TTTSO−ref

. (3)

Table 1: Simulation results of UE-reference and SO- reference senarios of Lyon6 network. (TTT:
total travel time (s). The relative TTT reduction is computed by Equation 3.)

Statistics UE-ref SO-ref PMC-based BC-based DiffBC-based Cap-based DiffCap-based

Unfinished trips 91 91 93 88 90 94 87

TTT (s) 3.62× 106 3.12× 106 3.56× 106 3.48× 106 3.27× 106 3.58× 106 3.50× 106

∆TTT − 5.05× 105 0.68× 105 1.41× 105 3.59× 105 0.46× 106 1.23× 106

∆TTTrelative − − 13 % 28 % 71 % 9 % 24 %

TT per user (min) 7.25 6.24 6.58 6.45 6.04 6.62 6.48

These results show that the node BC is one of the network-related trajectory features
that the most contribute to the network under-performance. Although the descriptive
analysis shows that the mean corridor MFD capacity has significantly changed from UE
simulation to SO simulation, the case study results indicate that by targeting the largest
improvement of mean MFD might not be the best strategy. Ongoing works are being
carried out to identify other network-related trajectory features, for example, traffic signal
characteristics. The objective is to define the best combination of identified network-related
trajectory features, in order to define the best re-routing alternatives to make the system
to its optimum.
Keywords: trajectory data analysis; network-related trajectory features; system optimum
(SO); supervised learning
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