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Locally bounded k-colorings of trees

C. Bentz 1, C. Picouleau 2

Abstract

Given a tree T with n vertices, we show, by using a dynamic programming approach, that
the problem of finding a 3-coloring of T respecting local (i.e., associated with p prespecified
subsets of vertices) color bounds can be solved in O(n6p−1 log n) time. We also show that our
algorithm can be adapted to the case of k-colorings for fixed k.
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1 Introduction

An important combinatorial problem consists in coloring an undirected graph G = (V,E) with
n = |V | nodes and m = |E| edges. A k-coloring is a mapping f : V → {1, . . . , k} such that
f(x) 6= f(y) for every edge [x, y] ∈ E. In other words, f is a partition of V such that each class
fi, 1 ≤ i ≤ k, is an independent set. It is well known that, for every fixed k ≥ 3, the problem of
deciding if a k-coloring exists for a graph G is NP -complete (see [10]). Note that, for k = 2, a
2-coloring exists if and only if G is bipartite, and a 2-coloring of a bipartite graph can be obtained
in linear time by using basic algorithmic arguments.

A k-coloring f is equitable if the size of each color class fi satisfies bn/kc ≤ |fi| ≤ dn/ke. The
equitable k-coloring problem, i.e., the problem of deciding whether an equitable k-coloring exists,
has been studied for a long time and a well known result of Hajnal and Szemerédi is proved in
[12]: G has an equitable k-coloring for any k ≥ ∆(G) + 1 (∆(G) denotes the maximum degree of a
vertex of G); this bound is sharp. A related problem is the b-bounded k-coloring problem defined
as follows: given G and a nonnegative integer b, decide whether a k-coloring f such that |fi| ≤ b
for all colors i, 1 ≤ i ≤ k, exists. This problem was introduced in [13], and in [4] authors prove
that the b-bounded 3-coloring problem is NP -complete for bipartite graphs (actually, their proof
even shows the NP -completeness of the equitable 3-coloring problem in bipartite graphs), while it
is tractable in this case if b is fixed [4, 13]. For trees, both problems, equitable and b-bounded k-
coloring, are studied in [1, 5, 6, 7, 14]; a linear-time algorithm that solves the b-bounded k-coloring
problem is designed in the first reference. In [3] it is shown that the equitable k-coloring problem
is polynomial-time solvable in bounded tree-width graphs but that the precolored version becomes
NP -complete, even in trees.

Actually, these two problems are special cases of the following problem MINkC: find a k-coloring
f that minimizes F (|f1|, . . . , |fk|), where F (·) is a function that can be computed in polynomial
time and |fi| is the size of the ith color class, for each i. Indeed, the equitable k-coloring problem
is equivalent to finding a k-coloring f that minimizes the following function: F (|f1|, . . . , |fk|) = 0 if
bn/kc ≤ |fi| ≤ dn/ke for each i, F (|f1|, . . . , |fk|) = 1 otherwise. The b-bounded k-coloring problem
consists in finding a k-coloring f that minimizes the following function: F (|f1|, . . . , |fk|) = 0 if
|fi| ≤ b for each i, F (|f1|, . . . , |fk|) = 1 otherwise. Another subproblem of MINkC consists in finding
a k-coloring such that |fi| ≤ bi for each i, i.e., that minimizes the function: F (|f1|, . . . , |fk|) = 0 if
|fi| ≤ bi for each i, F (|f1|, . . . , |fk|) = 1 otherwise. This corresponds to a variant of the problem
studied by Baker and Coffman [1]: in their problem, each color class corresponds to a set of tasks
(nodes) to be executed at a given time; therefore, the cardinality of each color class is bounded by
the total number of processors. In this new variant, each color class can have a different bound: it
emulates the case where some processors may be unavailable at some times (because, for instance,
they are in maintenance mode).

Moreover, when k is fixed, MINkC is equivalent to the following problem EQkC: find a k-coloring
such that |fi| = ni for each i, with

∑k
i=1 ni = n. Indeed, one can solve an instance of MINkC

by testing, for every k-tuple (n1, . . . , nk) with
∑k

i=1 ni = n, whether there exists a k-coloring f
such that |fi| = ni for each i (by solving an instance of EQkC), and, for each such coloring, by
computing its cost, F (|f1|, . . . , |fk|). The optimal solution is the best solution obtained during this
process. A polynomial-time dynamic programming algorithm was designed in [11] to solve EQkC
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in bounded tree-width graphs when k is fixed, by enumerating all the k-tuples (n1, . . . , nk) such
that there exists a k-coloring f that satisfies |fi| = ni for each i (the number of such k-tuples is
O(nk−1), while the number of k-colorings is O(kn)). Also note that the edge-coloring variant of
EQkC in trees was solved by de Werra et al. in [9].

In this paper, we consider a generalization of EQkC, involving “local” (instead of “global”) bounds
on the cardinalities of the color classes. More precisely, given a partition V1, . . . , Vp of the vertex
set V and pk integral bounds n11, . . . , n1k, n21, . . . , n2k, . . . , np1, . . . , npk such that

∑k
j=1 nij = |Vi|

for each i, the problem EQpkC consists in deciding whether there exists a k-coloring such that,
for each i ∈ {1, . . . , p} and for each j ∈ {1, . . . , k}, the number of vertices having color j in Vi
is nij (note that EQkC is equivalent to EQ1kC). One can also define the associated variant of
MINkC, named MINpkC: when k and p are fixed, EQpkC and MINpkC are equivalent. A natural
subproblem of MINpkC (but not of MINkC) is the following generalization of the problem studied
in [1]: given a partition V1, . . . , Vp of V and pk bounds b11, . . . , bpk, decide whether there exists a
k-coloring such that, for each i and j, the number of vertices having color j in Vi is at most bij .
This corresponds to a variant of the problem studied by Baker and Coffman where (i) the number
of available processors can vary over time (because, for instance, some of them may break down)
and (ii) each processor has an associated type, and can execute only tasks of this type (the number
of processors of type i at time j is then bij).

Our main result is a dynamic programming approach that yields a polynomial-time algorithm for
solving EQ13C (and thus MIN13C) in trees. Then, we show that this approach can be generalized
to solve EQpkC in polynomial time when both p and k are fixed.

2 Notations and preliminaries

We consider a tree T = (V,E) with n vertices. We begin by rooting the tree at an arbitrary vertex
r. For any vertex v we denote by Tv the subtree rooted at v, so the whole rooted tree is Tr. The
level of a vertex in Tr is its distance from r. Let dv denote the number of children of a vertex
v in Tr, and let these children be u1, . . . , udv . We also denote by Tv(i) the partial subtree of Tv
containing the vertex v and the subtrees Tu1 , . . . , Tui .

In the dynamic programming algorithm, we proceed level by level, starting with the vertices with
the highest level. This way, when we deal with a vertex v in level l, we know that all its children,
lying in level l + 1, have been examined.

Throughout this paper, a feasible 3-coloring is represented by a triple (a, b, c) where a, b, c are the
cardinalities of the three color classes (several 3-colorings can correspond to the same triple): we
shall call it a colorable triple.

We define Ξ(v, i) as the set of all the possible colorable triples for the subtree Tv(i). For a vertex
v, we will compute successively the sets Ξ(v, 1),Ξ(v, 2), . . . ,Ξ(v, dv). At the end of our algorithm,
we will obtain Ξ(r, dr), i.e., the set of all possible colorable triples of the initial tree T .

Now, given Ξ(v, 1), . . . ,Ξ(v, i− 1), all we need is a way to compute Ξ(v, i) for each i > 1. In fact,
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for each j ∈ {1, . . . , i− 1} and for each colorable triple in Ξ(v, j), we also need to keep track of the
colors in which v may be colored in colorings associated with this colorable triple (there may be
several possible colors), which implies that the same information must be available for the possible
colorable triples of the subtree Tuj , for each child uj of v (assume that this data is stored, with the
colorings, in the Ξ’s). So, assume we know all that is needed (we shall see later how to initialize
the induction), and want to compute Ξ(v, i) for some v and i ≥ 2. More precisely, what is currently
known is, on the one hand, the set of all the possible colorable triples for the subtree Tv(i−1), and,
for each colorable triple, the set of possible colors for v. On the other hand, for each child uj of v,
we know the set of all possible colorable triples for the subtree Tuj (as well as the set of possible
colors for uj in each colorable triple). We want to extend these colorable triples to valid colorable
triples for the partial subtree Tv(i). Thus, we have to combine the colorable triples in Ξ(v, i − 1)
and in Ξ(ui, dui): this point is explained in the next section. First, we need a few more definitions.

Given a vertex v and a colorable triple ξ ∈ Ξ(v, i), we denote by λξ the table of size 3 whose ith

element (denoted by λξ(i)) is equal to 1 if v can be colored with the ith color in ξ and to 0 otherwise.
This table can be viewed as a characteristic vector: it contains the list of the color classes the vertex
v can belong to in colorings associated with this triple.

3 The dynamic programming algorithm

We describe informally our approach. The main idea is that any colorable triple in Ξ(v, i), i > 1,
can be obtained by pairing the color bounds of a colorable triple in Ξ(v, i − 1) and of a colorable
triple in Ξ(ui, dui), and then merging them. By trying all the possible combinations, we are sure to
obtain all the possible colorable triples in Ξ(v, i). However, some combinations will lead to the same
resulting triple, so we have to merge them as well (see below for a detailed explanation). Moreover,
some combinations are forbidden, because v and ui belong to two color classes merged together (and
thus we do not obtain a valid coloring, since there is an edge [ui, v]). An important remark is that
we do not compute Ξ(v, dv) directly by using Ξ(u1, du1), . . . ,Ξ(udv , dudv

), i.e., without computing
Ξ(v, 1), . . . ,Ξ(v, dv − 1) first. It would be interesting to determine whether such an approach is
possible. Also note that the computations of Ξ(v, i) and Ξ(w, j) for two distinct vertices v and w on
the same level are independent; therefore, one can compute them in parallel (if several processors
are available, for instance), and reduce the running time by a multiplicative factor of n/h(T ) (h(T )
being the height of the tree T ).

Formally, the main step, i.e., the computation of Ξ(v, i), i > 1, can be stated as follows:

Given Ξ(v, i− 1) and Ξ(ui, dui),

Ξ(v, i) = {(ξ = (a1 + b1, a2 + b2, a3 + b3), λξ) such that
3∑
j=1

λξ(j) ≥ 1, where

(a1, a2, a3) ∈ Ξ(v, i− 1) and (b1, b2, b3) ∈ Ξ(ui, dui), and where
λξ(j) = min(1, λ(a1,a2,a3)(j)×

∑
h6=j

λ(b1,b2,b3)(h)),∀j ∈ {1, 2, 3}}

(1)
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Now, let us show how to initialize the induction (initialization step). For a leaf v, we have three
possible colorable triples: ξ1 = (1, 0, 0) = λξ1 , ξ2 = (0, 1, 0) = λξ2 and ξ3 = (0, 0, 1) = λξ3 . It
remains to describe how we compute Ξ(v, 1) for a non-leaf vertex v. Given a colorable triple
ξ = (a, b, c) ∈ Ξ(u1, du1), we can define at most three potential colorable triples for Ξ(v, 1): ξ1 =
(a + 1, b, c), ξ2 = (a, b + 1, c) and ξ3 = (a, b, c + 1). Here are the conditions for these three
combinations to define feasible colorable triples:

• if λξ 6= (1, 0, 0) then ξ1 is feasible, so we add ξ1 to Ξ(v, 1) and set λξ1 = (1, 0, 0);

• if λξ 6= (0, 1, 0) then ξ2 is feasible, so we add ξ2 to Ξ(v, 1) and set λξ2 = (0, 1, 0);

• if λξ 6= (0, 0, 1) then ξ3 is feasible, so we add ξ3 to Ξ(v, 1) and set λξ3 = (0, 0, 1).

Note that, in both steps, each time we examine a new combination, we have to check whether it
exists or not among the colorable triples already computed in Ξ(v, i) (i.e., we must not add twice
a given triple obtained by two different combinations of colorable triples, in order to store only a
reasonable number of triples). Therefore, we go through the colorable triples already computed in
Ξ(v, i), and if we find a triple ξ identical to our current combination ξ

′
, we set λξ(i)← min(1, λξ(i)+

λξ′ (i)) for each i and do not add ξ
′

in Ξ(v, i).

As an example, consider a vertex u with two possible colorable triples ξ1 = (α, β, γ) and ξ2 =
(α, β + 1, γ − 1) such that (for instance) λξ1 = λξ2 = (1, 1, 1). If we want to extend these colorable
triples for u to colorable triples for its father v, we can, for example, start with ξ1 and color v with
the second color (i.e., the color associated with the color class of cardinality β): this way, we obtain
a triple ξ3 = (α, β + 1, γ) with λξ3 = (0, 1, 0). Then, we consider ξ2 and color v with the third
color: we obtain a triple ξ4 = (α, β + 1, γ) with λξ4 = (0, 0, 1). Since ξ3 = ξ4, we cannot keep both
of them: we store only ξ3 and set λξ3 = (0, 1, 1).

4 Validity and Complexity

In this section, we show the following theorem:

Theorem 1 Given a tree T , the algorithm defined in Section 3 enumerates all the triples (a, b, c)
such that there exists a 3-coloring f of T verifying |f1| = a, |f2| = b and |f3| = c. Moreover, it
runs in O(n5 log n) time.

Proof: We first consider the initialization step. If λξ = (1, 0, 0), ξ1 = (a + 1, b, c) cannot be
associated with a feasible coloring, because v and u1 would belong to the same color class in this
case (both being in the first one). In the other cases, u1 can belong to one of the two other color
classes, and thus we obtain a feasible coloring. The same argument can be used for ξ2, and hence
for ξ3. Now, let us consider the main step. Formula (1) ensures that we examine all the possible
combinations of a colorable triple in Ξ(v, i− 1) and of a colorable triple in Ξ(ui, dui). However, to
check if a combination corresponds to a feasible coloring, we must also verify that v can belong to
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at least one color class (this is why feasible combinations must satisfy
∑3

j=1 λξ(j) ≥ 1). Eventually,
we detail the computation of λξ(j). The jth color class in ξ being obtained by merging the jth

color class in (a1, a2, a3) and the jth color class in (b1, b2, b3), v can belong to this color class (i.e.,
λξ(j) = 1) if and only if v can belong to the jth color class in (a1, a2, a3) (i.e., λ(a1,a2,a3)(j) = 1)
and ui can belong to a color class different from the jth in (b1, b2, b3) (i.e.,

∑
h6=j λ(b1,b2,b3)(h) ≥ 1).

Now, let us examine the running time. Sets Ξ(v, i) are represented by balanced binary trees like
Red-Black trees or AVL (see [8]). So, denoting by nv(i) the number of vertices of Tv(i), and
considering that the number of triples (a, b, c) satisfying a + b + c = n is O(n2), basic operations
like search or insertion take O(log nv(i)2) = O(log nv(i)) time in the worst case. If νv(i) denotes
the number of colorable triples in Ξ(v, i), then the computation of Ξ(v, i), i > 1, from Ξ(v, i − 1)
in the main step takes O(νv(i − 1) · νui(dui) · log νv(i)) = O(nv(i)4 · log nv(i)) = O(n4 log n) time
(since checking if a new triple ξ is already in the current Ξ(v, i) takes O(log nv(i)2) time). The
initialization step takes O(νv(1) · log νv(1)) = O(nv(1)2 · log nv(1)) time. Thus the whole running
time of our algorithm is bounded by O(n5 log n). 2

Corollary 1 EQ3C can be solved in O(n5 log n) time in trees, by using the algorithm given in
Section 3.

5 Generalizations

We describe in this section how the algorithm given in Section 3 to solve EQ3C can be adapted
to EQpkC when both p and k are fixed. The general outline (initialization and main steps) of the
approach is quite similar to the case where k = 3 and p = 1; we consider colorable pk-tuples instead
of colorable triples, and the size of a characteristic vector λξ is k. When assigning a color j to a
vertex v ∈ Vi, we set to 1 the (k(i− 1) + j)th component of the associated pk-tuple. For instance,
during the initialization step, the jth of the k colorable pk-tuples associated with a leaf v ∈ Vi has
all its components equal to 0, except from its (k(i− 1) + j)th component, which is equal to 1.

It now remains to examine the whole running time. The number of pk-tuples (a11, . . . , apk) such
that a11 + . . . + apk = n is at most O(npk−1). Moreover, using a Red-Black tree (see Section 4),
each checking can be implemented within O

(
log
(
nk−1

))
time. Hence, the whole running time is

O
(
n
(
npk−1

) (
npk−1

)
log
(
npk−1

))
= O

(
n2pk−1 log

(
npk−1

))
, i.e., O(n2pk−1 log n) for fixed p, k. An

interesting open problem would be to determine whether this complexity may be improved or not.

6 Concluding remarks

It can be noticed that our approach does not solve efficiently the case where k is not fixed, but the
problem of enumerating all the valid colorable k-tuples cannot be tractable in this case, since the
size of the solution (i.e., the number of k-tuples associated with feasible k-colorings) would not be
polynomial in n.
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However, it is possible that, for particular problems (such as EQkC), one can obtain faster algo-
rithms. In particular, some of these problems might be solved without enumerating all the colorable
k-tuples, and so one may hope to obtain efficient algorithms even for arbitrary values of k.
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