Cédric Bentz
email: cedric.bentz@cnam.fr

C Picouleau

Locally bounded k-colorings of trees

Keywords: Bounded Graph Coloring, Tree, Dynamic Programming

HAL is

Introduction

An important combinatorial problem consists in coloring an undirected graph G = (V, E) with n = |V | nodes and m = |E| edges. A k-coloring is a mapping f : V → {1, . . . , k} such that f (x) = f (y) for every edge [x, y] ∈ E. In other words, f is a partition of V such that each class f i , 1 ≤ i ≤ k, is an independent set. It is well known that, for every fixed k ≥ 3, the problem of deciding if a k-coloring exists for a graph G is N P -complete (see [START_REF] Garey | Computers and Intractability, a Guide to the Theory of NP-Completeness[END_REF]). Note that, for k = 2, a 2-coloring exists if and only if G is bipartite, and a 2-coloring of a bipartite graph can be obtained in linear time by using basic algorithmic arguments.

A k-coloring f is equitable if the size of each color class f i satisfies n/k ≤ |f i | ≤ n/k . The equitable k-coloring problem, i.e., the problem of deciding whether an equitable k-coloring exists, has been studied for a long time and a well known result of Hajnal and Szemerédi is proved in [START_REF] Hajnal | Proof of a conjecture of P. Erdős[END_REF]: G has an equitable k-coloring for any k ≥ ∆(G) + 1 (∆(G) denotes the maximum degree of a vertex of G); this bound is sharp. A related problem is the b-bounded k-coloring problem defined as follows: given G and a nonnegative integer b, decide whether a k-coloring f such that |f i | ≤ b for all colors i, 1 ≤ i ≤ k, exists. This problem was introduced in [START_REF] Hansen | Bounded vertex colorings of graphs[END_REF], and in [START_REF] Bodlaender | Restrictions of graph partition problems. Part I[END_REF] authors prove that the b-bounded 3-coloring problem is N P -complete for bipartite graphs (actually, their proof even shows the N P -completeness of the equitable 3-coloring problem in bipartite graphs), while it is tractable in this case if b is fixed [START_REF] Bodlaender | Restrictions of graph partition problems. Part I[END_REF][START_REF] Hansen | Bounded vertex colorings of graphs[END_REF]. For trees, both problems, equitable and b-bounded kcoloring, are studied in [START_REF] Baker | Mutual exclusion scheduling[END_REF][START_REF] Bollobás | Equitable and proportional coloring of trees[END_REF][START_REF] Chen | A note on the m-bounded chromatic number of a tree[END_REF][START_REF] Chen | Equitable Coloring of Trees[END_REF][START_REF] Jarvis | Bounded vertex coloring of trees[END_REF]; a linear-time algorithm that solves the b-bounded k-coloring problem is designed in the first reference. In [START_REF] Bodlaender | Equitable colorings of bounded treewidth graphs[END_REF] it is shown that the equitable k-coloring problem is polynomial-time solvable in bounded tree-width graphs but that the precolored version becomes N P -complete, even in trees.

Actually, these two problems are special cases of the following problem MINkC: find a k-coloring f that minimizes F (|f 1 |, . . . , |f k |), where F (•) is a function that can be computed in polynomial time and |f i | is the size of the i th color class, for each i. Indeed, the equitable k-coloring problem is equivalent to finding a k-coloring f that minimizes the following function:

F (|f 1 |, . . . , |f k |) = 0 if n/k ≤ |f i | ≤ n/k for each i, F (|f 1 |, . . . , |f k |) = 1 otherwise. The b-bounded k-coloring problem consists in finding a k-coloring f that minimizes the following function: F (|f 1 |, . . . , |f k |) = 0 if |f i | ≤ b for each i, F (|f 1 |, . . . , |f k |) = 1 otherwise.
Another subproblem of MINkC consists in finding a k-coloring such that |f i | ≤ b i for each i, i.e., that minimizes the function:

F (|f 1 |, . . . , |f k |) = 0 if |f i | ≤ b i for each i, F (|f 1 |, . . . , |f k |) = 1 otherwise
. This corresponds to a variant of the problem studied by Baker and Coffman [START_REF] Baker | Mutual exclusion scheduling[END_REF]: in their problem, each color class corresponds to a set of tasks (nodes) to be executed at a given time; therefore, the cardinality of each color class is bounded by the total number of processors. In this new variant, each color class can have a different bound: it emulates the case where some processors may be unavailable at some times (because, for instance, they are in maintenance mode).

Moreover, when k is fixed, MINkC is equivalent to the following problem EQkC: find a k-coloring such that |f i | = n i for each i, with k i=1 n i = n. Indeed, one can solve an instance of MINkC by testing, for every k-tuple (n 1 , . . . , n k) with k i=1 n i = n, whether there exists a k-coloring f such that |f i | = n i for each i (by solving an instance of EQkC), and, for each such coloring, by computing its cost, F (|f 1 |, . . . , |f k |). The optimal solution is the best solution obtained during this process. A polynomial-time dynamic programming algorithm was designed in [START_REF] Gravier | Complexity of list coloring problems with a fixed total number of colors[END_REF] to solve EQkC in bounded tree-width graphs when k is fixed, by enumerating all the k-tuples (n 1 , . . . , n k) such that there exists a k-coloring f that satisfies |f i | = n i for each i (the number of such k-tuples is O(n k-1), while the number of k-colorings is O(k n)). Also note that the edge-coloring variant of EQkC in trees was solved by de Werra et al. in [START_REF] De Werra | Feasible edge colorings of trees with cardinality constraints[END_REF].

In this paper, we consider a generalization of EQkC, involving "local" (instead of "global") bounds on the cardinalities of the color classes. More precisely, given a partition V 1 , . . . , V p of the vertex set V and pk integral bounds n 11 , . . . , n 1k , n 21 , . . . , n 2k , . . . , n p1 , . . . , n pk such that k j=1 n ij = |V i | for each i, the problem EQpkC consists in deciding whether there exists a k-coloring such that, for each i ∈ {1, . . . , p} and for each j ∈ {1, . . . , k}, the number of vertices having color j in V i is n ij (note that EQkC is equivalent to EQ1kC). One can also define the associated variant of MINkC, named MINpkC: when k and p are fixed, EQpkC and MINpkC are equivalent. A natural subproblem of MINpkC (but not of MINkC) is the following generalization of the problem studied in [START_REF] Baker | Mutual exclusion scheduling[END_REF]: given a partition V 1 , . . . , V p of V and pk bounds b 11 , . . . , b pk , decide whether there exists a k-coloring such that, for each i and j, the number of vertices having color j in V i is at most b ij . This corresponds to a variant of the problem studied by Baker and Coffman where (i) the number of available processors can vary over time (because, for instance, some of them may break down) and (ii) each processor has an associated type, and can execute only tasks of this type (the number of processors of type i at time j is then b ij).

Our main result is a dynamic programming approach that yields a polynomial-time algorithm for solving EQ13C (and thus MIN13C) in trees. Then, we show that this approach can be generalized to solve EQpkC in polynomial time when both p and k are fixed.

Notations and preliminaries

We consider a tree T = (V, E) with n vertices. We begin by rooting the tree at an arbitrary vertex r. For any vertex v we denote by T v the subtree rooted at v, so the whole rooted tree is T r . The level of a vertex in T r is its distance from r. Let d v denote the number of children of a vertex v in T r , and let these children be u 1 , . . . , u dv . We also denote by T v (i) the partial subtree of T v containing the vertex v and the subtrees T u 1 , . . . , T u i .

In the dynamic programming algorithm, we proceed level by level, starting with the vertices with the highest level. This way, when we deal with a vertex v in level l, we know that all its children, lying in level l + 1, have been examined.

Throughout this paper, a feasible 3-coloring is represented by a triple (a, b, c) where a, b, c are the cardinalities of the three color classes (several 3-colorings can correspond to the same triple): we shall call it a colorable triple.

We define Ξ(v, i) as the set of all the possible colorable triples for the subtree T v (i). For a vertex v, we will compute successively the sets Ξ(v, 1), Ξ(v, 2), . . . , Ξ(v, d v). At the end of our algorithm, we will obtain Ξ(r, d r), i.e., the set of all possible colorable triples of the initial tree T . Now, given Ξ(v, 1), . . . , Ξ(v, i -1), all we need is a way to compute Ξ(v, i) for each i > 1. In fact, for each j ∈ {1, . . . , i -1} and for each colorable triple in Ξ(v, j), we also need to keep track of the colors in which v may be colored in colorings associated with this colorable triple (there may be several possible colors), which implies that the same information must be available for the possible colorable triples of the subtree T u j , for each child u j of v (assume that this data is stored, with the colorings, in the Ξ's). So, assume we know all that is needed (we shall see later how to initialize the induction), and want to compute Ξ(v, i) for some v and i ≥ 2. More precisely, what is currently known is, on the one hand, the set of all the possible colorable triples for the subtree T v (i -1), and, for each colorable triple, the set of possible colors for v. On the other hand, for each child u j of v, we know the set of all possible colorable triples for the subtree T u j (as well as the set of possible colors for u j in each colorable triple). We want to extend these colorable triples to valid colorable triples for the partial subtree T v (i). Thus, we have to combine the colorable triples in Ξ(v, i -1) and in Ξ(u i , d u i): this point is explained in the next section. First, we need a few more definitions.

Given a vertex v and a colorable triple ξ ∈ Ξ(v, i), we denote by λ ξ the table of size 3 whose i th element (denoted by λ ξ (i)) is equal to 1 if v can be colored with the i th color in ξ and to 0 otherwise. This table can be viewed as a characteristic vector: it contains the list of the color classes the vertex v can belong to in colorings associated with this triple.

The dynamic programming algorithm

We describe informally our approach. The main idea is that any colorable triple in Ξ(v, i), i > 1, can be obtained by pairing the color bounds of a colorable triple in Ξ(v, i -1) and of a colorable triple in Ξ(u i , d u i), and then merging them. By trying all the possible combinations, we are sure to obtain all the possible colorable triples in Ξ(v, i). However, some combinations will lead to the same resulting triple, so we have to merge them as well (see below for a detailed explanation). Moreover, some combinations are forbidden, because v and u i belong to two color classes merged together (and thus we do not obtain a valid coloring, since there is an edge [u i , v]). An important remark is that we do not compute Ξ(v, d v) directly by using Ξ(u 1 , d u 1), . . . , Ξ(u dv , d u dv), i.e., without computing Ξ(v, 1), . . . , Ξ(v, d v -1) first. It would be interesting to determine whether such an approach is possible. Also note that the computations of Ξ(v, i) and Ξ(w, j) for two distinct vertices v and w on the same level are independent; therefore, one can compute them in parallel (if several processors are available, for instance), and reduce the running time by a multiplicative factor of n/h(T) (h(T) being the height of the tree T).

Formally, the main step, i.e., the computation of Ξ(v, i), i > 1, can be stated as follows:

Given Ξ(v, i -1) and Ξ(u i , d u i), Ξ(v, i) = {(ξ = (a 1 + b 1 , a 2 + b 2 , a 3 + b 3), λ ξ) such that
λ ξ (j) = min(1, λ (a 1 ,a 2 ,a 3) (j) × h =j λ (b 1 ,b 2 ,b 3) (h)), ∀j ∈ {1, 2, 3}} (1)
at least one color class (this is why feasible combinations must satisfy 3 j=1 λ ξ (j) ≥ 1). Eventually, we detail the computation of λ ξ (j). The j th color class in ξ being obtained by merging the j th color class in (a 1 , a 2 , a 3) and the j th color class in (b 1 , b 2 , b 3), v can belong to this color class (i.e., λ ξ (j) = 1) if and only if v can belong to the j th color class in (a 1 , a 2 , a 3) (i.e., λ (a 1 ,a 2 ,a 3) (j) = 1) and u i can belong to a color class different from the

j th in (b 1 , b 2 , b 3) (i.e., h =j λ (b 1 ,b 2 ,b 3) (h) ≥ 1).
Now, let us examine the running time. Sets Ξ(v, i) are represented by balanced binary trees like Red-Black trees or AVL (see [START_REF] Cormen | Introduction to Algorithms[END_REF]). So, denoting by n v (i) the number of vertices of T v (i), and considering that the number of triples (a, b, c) satisfying a

+ b + c = n is O(n 2), basic operations like search or insertion take O(log n v (i) 2) = O(log n v (i)) time in the worst case. If ν v (i) denotes the number of colorable triples in Ξ(v, i), then the computation of Ξ(v, i), i > 1, from Ξ(v, i -1) in the main step takes O(ν v (i -1) • ν u i (d u i) • log ν v (i)) = O(n v (i) 4 • log n v (i)) = O(n 4 log n) time (since checking if a new triple ξ is already in the current Ξ(v, i) takes O(log n v (i) 2) time). The initialization step takes O(ν v (1) • log ν v (1)) = O(n v (1) 2 • log n v (1
)) time. Thus the whole running time of our algorithm is bounded by O(n 5 log n).

2

Corollary 1 EQ3C can be solved in O(n 5 log n) time in trees, by using the algorithm given in Section 3.

Generalizations

We describe in this section how the algorithm given in Section 3 to solve EQ3C can be adapted to EQpkC when both p and k are fixed. The general outline (initialization and main steps) of the approach is quite similar to the case where k = 3 and p = 1; we consider colorable pk-tuples instead of colorable triples, and the size of a characteristic vector λ ξ is k. When assigning a color j to a vertex v ∈ V i , we set to 1 the (k(i -1) + j) th component of the associated pk-tuple. For instance, during the initialization step, the j th of the k colorable pk-tuples associated with a leaf v ∈ V i has all its components equal to 0, except from its (k(i -1) + j) th component, which is equal to 1.

It now remains to examine the whole running time. The number of pk-tuples (a 11 , . . . , a pk) such that a 11 + . . . + a pk = n is at most O(n pk-1). Moreover, using a Red-Black tree (see Section 4), each checking can be implemented within O log n k-1 time. Hence, the whole running time is O n n pk-1 n pk-1 log n pk-1 = O n 2pk-1 log n pk-1 , i.e., O(n 2pk-1 log n) for fixed p, k. An interesting open problem would be to determine whether this complexity may be improved or not.

However, it is possible that, for particular problems (such as EQkC), one can obtain faster algorithms. In particular, some of these problems might be solved without enumerating all the colorable k-tuples, and so one may hope to obtain efficient algorithms even for arbitrary values of k.

3 j=1λ

 3 ξ (j) ≥ 1, where (a 1 , a 2 , a 3) ∈ Ξ(v, i -1) and (b 1 , b 2 , b 3) ∈ Ξ(u i , d u i),and where

Concluding remarksIt can be noticed that our approach does not solve efficiently the case where k is not fixed, but the problem of enumerating all the valid colorable k-tuples cannot be tractable in this case, since the size of the solution (i.e., the number of k-tuples associated with feasible k-colorings) would not be polynomial in n.

Now, let us show how to initialize the induction (initialization step). For a leaf v, we have three possible colorable triples: ξ 1 = (1, 0, 0) = λ ξ 1 , ξ 2 = (0, 1, 0) = λ ξ 2 and ξ 3 = (0, 0, 1) = λ ξ 3 . It remains to describe how we compute Ξ(v, 1) for a non-leaf vertex v. Given a colorable triple ξ = (a, b, c) ∈ Ξ(u 1 , d u 1), we can define at most three potential colorable triples for Ξ(v, 1): ξ 1 = (a + 1, b, c), ξ 2 = (a, b + 1, c) and ξ 3 = (a, b, c + 1). Here are the conditions for these three combinations to define feasible colorable triples:

• if λ ξ = (1, 0, 0) then ξ 1 is feasible, so we add ξ 1 to Ξ(v, 1) and set λ ξ 1 = (1, 0, 0);

• if λ ξ = (0, 1, 0) then ξ 2 is feasible, so we add ξ 2 to Ξ(v, 1) and set λ ξ 2 = (0, 1, 0);

• if λ ξ = (0, 0, 1) then ξ 3 is feasible, so we add ξ 3 to Ξ(v, 1) and set λ ξ 3 = (0, 0, 1).

Note that, in both steps, each time we examine a new combination, we have to check whether it exists or not among the colorable triples already computed in Ξ(v, i) (i.e., we must not add twice a given triple obtained by two different combinations of colorable triples, in order to store only a reasonable number of triples). Therefore, we go through the colorable triples already computed in Ξ(v, i), and if we find a triple ξ identical to our current combination ξ , we set λ ξ (i) ← min(1, λ ξ (i)+ λ ξ (i)) for each i and do not add ξ in Ξ(v, i).

As an example, consider a vertex u with two possible colorable triples ξ 1 = (α, β, γ) and ξ 2 = (α, β + 1, γ -1) such that (for instance) λ ξ 1 = λ ξ 2 = (1, 1, 1). If we want to extend these colorable triples for u to colorable triples for its father v, we can, for example, start with ξ 1 and color v with the second color (i.e., the color associated with the color class of cardinality β): this way, we obtain a triple ξ 3 = (α, β + 1, γ) with λ ξ 3 = (0, 1, 0). Then, we consider ξ 2 and color v with the third color: we obtain a triple ξ 4 = (α, β + 1, γ) with λ ξ 4 = (0, 0, 1). Since ξ 3 = ξ 4 , we cannot keep both of them: we store only ξ 3 and set λ ξ 3 = (0, 1, 1).

Validity and Complexity

In this section, we show the following theorem:

Theorem 1 Given a tree T , the algorithm defined in Section 3 enumerates all the triples (a, b, c) such that there exists a 3-coloring

Proof: We first consider the initialization step. If λ ξ = (1, 0, 0), ξ 1 = (a + 1, b, c) cannot be associated with a feasible coloring, because v and u 1 would belong to the same color class in this case (both being in the first one). In the other cases, u 1 can belong to one of the two other color classes, and thus we obtain a feasible coloring. The same argument can be used for ξ 2 , and hence for ξ 3 . Now, let us consider the main step. Formula (1) ensures that we examine all the possible combinations of a colorable triple in Ξ(v, i -1) and of a colorable triple in Ξ(u i , d u i). However, to check if a combination corresponds to a feasible coloring, we must also verify that v can belong to