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Critical Vertices and Edges in H-free Graphs?
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2 CNAM, Laboratoire CEDRIC, Paris, France, christophe.picouleau@cnam.fr

3 University of Fribourg, Department of Informatics, Fribourg, Switzerland,
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Abstract. A vertex or edge in a graph is critical if its deletion reduces the
chromatic number of the graph by one. We consider the problems of deciding
whether a graph has a critical vertex or edge, respectively. We give a complexity
dichotomy for both problems restricted to H-free graphs, that is, graphs with
no induced subgraph isomorphic to H. Moreover, we show that an edge is
critical if and only if its contraction reduces the chromatic number by one.
Hence, we also obtain a complexity dichotomy for the problem of deciding if a
graph has an edge whose contraction reduces the chromatic number by one.

Keywords. edge contraction, vertex deletion, chromatic number.

1 Introduction

For a positive integer k, a k-colouring of a graph G = (V,E) is a mapping c : V →
{1, 2, . . . , k} such that no two end-vertices of an edge are coloured alike, that is, c(u) 6=
c(v) if uv ∈ E. The chromatic number χ(G) of a graph G is the smallest integer k
for which G has a k-colouring. The well-known Colouring problem is to decide if
χ(G) ≤ k for a given graph G and integer k. If k is not part of the input, then
we call this problem k-Colouring instead. Lovász [15] proved that 3-Colouring is
NP-complete.

Due to its computational hardness, the Colouring problem has been well studied
for special graph classes. We refer to the survey [11] for an overview of the results
on Colouring restricted to graph classes characterized by one or two forbidden in-
duced subgraphs. In particular, Král’, Kratochv́ıl, Tuza, and Woeginger [14] classified
Colouring for H-free graphs, that is, graphs that do not contain a single graph H
as an induced subgraph. To explain their result we need the following notation. For
a graph F , we write F ⊆i G to denote that F is an induced subgraph of a graph G.
The disjoint union of two graphs G1 and G2 is the graph G1 + G2, which has vertex
set V (G) ∪ V (H) and edge set E(G) ∪E(H). We write rG for the disjoint union of r
copies of G. The graphs Kr, Pr and Cr denote the complete graph, path and cycle on
r vertices, respectively. We can now state the theorem of Král et al.

Theorem 1 ([14]). Let H be a graph. If H ⊆i P4 or H ⊆i P1 + P3, then Coloring
restricted to H-free graphs is polynomial-time solvable, otherwise it is NP-complete.

For a vertex u or edge e in a graph G, we let G − u and G − e be the graph
obtained from G by deleting u or e, respectively. Note that such an operation may

? Results in this paper appeared in extended abstracts in the proceedings of ISCO 2016 [21]
and LAGOS 2017 [20].

?? Author supported by the Leverhulme Trust (RPG-2016-258).



reduce the chromatic number of the graph by at most 1. We say that u or e is critical
if χ(G−u) = χ(G)− 1 or χ(G− e) = χ(G)− 1, respectively. A graph is vertex-critical
if every vertex is critical and edge-critical if every edge is critical.

If a problem is polynomial-time solvable, we can ask for a certifying algorithm.
Such an algorithm provides a certificate that demonstrates the correctness of solutions.
For the Colouring problem, a yes-certificate is a k-colouring of the graph and a no-
certificate can be a vertex-critical or edge-critical subgraph of G of size at most f(k) for
some function f depending only on k. To increase our understanding of the Colouring
problem and to obtain certifying algorithms that solve Colouring for special graph
classes, vertex-critical and edge-critical graphs have been studied intensively in the
literature, see for instance [4–6, 8, 10, 12, 13, 16] for certifying algorithms for (subclasses
of) H-free graphs and in particular Pr-free graphs.

In this paper we consider the problems Critical Vertex and Critical Edge,
which are to decide if a graph has a critical vertex or critical edge, respectively. We
also consider the edge contraction variant of these two problems. We let G/e denote
the graph obtained from G after contracting e = vw, that is, after removing v and w
and replacing them by a new vertex made adjacent to precisely those vertices adjacent
to v or w in G (without creating multiple edges). Contracting an edge may reduce
the chromatic number of the graph by at most 1. An edge e is contraction-critical if
χ(G/e) = χ(G)−1. This leads to the Contraction-Critical Edge problem, which
is to decide if a graph has a contraction-critical edge.

1.1 Our Results

We prove the following complexity dichotomies for Critical Vertex, Critical
Edge and Contraction-Critical Edge restricted to H-free graphs.

Theorem 2. Let H be a graph. If a graph H ⊆i P4 or of H ⊆i P1+P3, then Critical
Vertex, Critical Edge and Contraction-Critical Edge restricted to H-free
graphs are polynomial-time solvable, otherwise they are NP-hard or co-NP-hard.

We note that the classification in Theorem 2 coincides with the one in Theorem 1.
The polynomial-time cases for Critical Vertex and Contraction-Critical Edge
can be obtained from Theorem 1. The reason for this is that a class of H-free graphs
is not only closed under vertex deletions, but also under edge contractions whenever
H is a linear forest, that is, a disjoint union of a set of paths (see Section 5 for fur-
ther details). However, no class of H-free graphs is closed under edge deletion. We get
around this issue by proving, in Section 2, that an edge is critical if and only if it is
contraction-critical. Hence, Critical Edge and Contraction-Critical Edge are
equivalent.

The NP-hardness constructions of Theorem 1 cannot be used for proving the hard
cases for Critical Vertex, Critical Edge and Contraction-Critical Edge.
Instead we construct new hardness reductions in Sections 3 and 4. In Section 3 we
prove that the three problems are NP-hard for H-free graphs if H contains a claw or
a cycle on three or more vertices. Note that we cannot prove membership in NP, as
Coloring is NP-complete for the class of H-free graphs if H ⊇i K1,3 or H ⊇i Cr for
some r ≥ 3 due to Theorem 1. As such, it is not clear if there exists a certificate. In the
remaining case H is a linear forest. In Section 4 we prove that the three problems are
co-NP-hard even for (C5, 4P1, 2P1 + P2, 2P2)-free graphs (also here we cannot prove
membership in NP, as Colouring is NP-complete for (C5, 4P1, 2P1 + P2, 2P2)-free
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graphs [14]). In Section 5 we combine the known cases with our new results from
Sections 2–4 in order to prove Theorem 2.

1.2 Consequences

Our results have consequences for the computational complexity of two graph blocker
problems. Let S be some fixed set of graph operations, and let π be some fixed graph
parameter. Then, for a given graph G and integer k ≥ 0, the S-Blocker(π) prob-
lem asks if G can be modified into a graph G′ by using at most k operations from
S so that π(G′) ≤ π(G) − d for some given threshold d ≥ 0. Over the last few years,
the S-Blocker(π) problem has been well studied, see for instance [1–3, 7, 9, 19–23].
If S consists of a single operation that is either a vertex deletion or edge contrac-
tion, then S-Blocker(π) is called Vertex Deletion Blocker(π) or Contrac-
tion Blocker(π), respectively. By taking d = k = 1 and π = χ we obtain the
problems Critical Vertex and Contraction-Critical Edge, respectively. We
showed in [20] how the results for Critical Vertex and Contraction-Critical
Edge can be extended with other results to get complexity dichotomies for Vertex
Deletion Blocker(χ) and Contraction Blocker(χ) for H-free graphs.

1.3 Future Work

For some family of graphs {H1, . . . ,Hp} and integer p ≥ 2, a graph G is (H1, . . . ,Hp)-
free ifG isH-free for everyH ∈ {H1, . . . ,Hp}. As a direction for future research we pro-
pose classifying the computational complexity of our three problems for (H1, . . . ,Hp)-
free graphs for any p ≥ 2. We note that such a classification for Coloring is still
wide open even for p = 2 (see [11]). Hence, research in this direction might lead to an
increased understanding of the complexity of the Coloring problem.

2 Equivalence

We prove the following result, which implies that the problems Critical Edge and
Contraction-Critical Edge are equivalent.

Proposition 1. An edge is critical if and only if it is contraction-critical.

Proof. Let e = uv be an edge in a graphG. First suppose that e is critical, so χ(G−e) =
χ(G)− 1. Then u and v are colored alike in any coloring of G− e that uses χ(G− e)
colors. Hence, the graph G/e, obtained by contracting e in G, can also be colored
with χ(G− e) colors. Indeed, we simply copy a (χ(G− e))-coloring of G− e such that
the new vertex in G/e is colored with the same color as u and v in G − e. Hence
χ(G/e) = χ(G− e) = χ(G)− 1, which means that e is contraction-critical.

Now suppose that e is contraction-critical, so χ(G/e) = χ(G) − 1. By copying a
χ(G/e)-coloring of G/e such that u and v are colored with the same color as the new
vertex in G/e, we obtain a coloring of G− e. So we can color G− e with χ(G/e) colors
as well. Hence χ(G− e) = χ(G/e) = χ(G)− 1, which means that e is critical. ut
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3 Forbidding Claws or Cycles

The claw is the 4-vertex star K1,3 on vertices a, b, c, d and edges ab, ac and ad. In
this section we prove that the problems Critical Vertex, Critical Edge and
Contraction-Critical Edge are NP-hard for H-free graphs whenever the graph H
contains a claw or a cycle on at least three vertices.

A subset K of vertices in G is a clique if any two vertices in K are adjacent to each
other. Let G be a graph class with the following property: if G ∈ G, then so are 2G
and G+Kr for any r ≥ 1. We call such a graph class clique-proof. We will prove that
several classes of H-free graphs are clique-proof. For such classes of H-free graphs we
can apply the following theorem.

Theorem 3. If Coloring is NP-complete for a clique-proof graph class G, then
Critical Vertex, Critical Edge and Contraction-Critical Edge are NP-
hard for G.

Proof. By Proposition 1 it suffices to prove the theorem for Critical Vertex and
Contraction-Critical Edge. We first consider the Contraction-Critical Edge
problem. Let G be a graph class that is clique-proof. From a given graph G ∈ G and
integer ` ≥ 1 we construct the graph G′ = 2G+K`+1. Note that G′ ∈ G by definition
and that χ(G′) = max{χ(G), ` + 1}. We first prove that χ(G) ≤ ` if and only if G′

contains a contraction-critical edge.
Suppose that χ(G) ≤ `. Then χ(G′) = χ(K`+1) = `+1. InG′ we contract an edge of

the K`+1. This yields the graph G∗ = 2G+K`, which has chromatic number χ(G∗) = `,
as χ(K`) = ` and χ(G) ≤ `. As χ(G′) = ` + 1, this means that χ(G∗) = χ(G′) − 1.
Hence G′ contains a contraction-critical edge.

Now suppose that G′ contains a contraction-critical edge. Let G∗ be the resulting
graph after contracting this edge. Then χ(G∗) = χ(G′) − 1. As contracting an edge
in one of the two copies of G in G′ does not lower the chromatic number of G′, the
contracted edge must be in the K`+1, that is, G∗ = 2G + K`. Since this has lowered
the chromatic number, we conclude that χ(G′) = χ(K`+1) = ` + 1 and χ(G∗) =
χ(2G+K`) = max{χ(G), `} = `. The latter equality implies that χ(G) ≤ `.

From the above we conclude that Contraction-Critical Edge is NP-hard. We
can prove that Critical Vertex is NP-hard by using the same arguments. ut

We also need a result of Maffray and Preissmann as a lemma.

Lemma 1 ([17]). The 3-Coloring problem is NP-complete for C3-free graphs.

We are now ready to prove the main result of this section.

Theorem 4. Let H be a graph such that H ⊇i K1,3 or H ⊇i Cr for some r ≥ 3. Then
the problems Critical Vertex, Critical Edge and Contraction-Critical Edge
are NP-hard for H-free graphs.

Proof. By Proposition 1 it suffices to prove the theorem for Critical Vertex and
Contraction-Critical Edge. If for a graph H, these problems are NP-hard for
the class of H-free graphs, then they are also NP-hard on the class of H ′-free graphs
for any graph H ′ with H ′ ⊇i H. Therefore we only have to prove the theorem for
the cases where H = K1,3 or H = Cr for every r ≥ 3. If H = K1,3 or H = Cr

for some r ≥ 4, then the class of H-free graphs is clique-proof. Hence, in these cases
NP-hardness immediately follows from Theorems 1 and 3.
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Fig. 1. The Grötzsch graph.

Suppose H = C3. We reduce from 3-Coloring restricted to C3-free graphs. This
problem is NP-complete by Lemma 1. Let G be a C3-free graph that is an instance of 3-
Coloring. We obtain an instance of Critical Vertex or Contraction-Critical
Edge as follows. Take the disjoint union of two copies of G and the Grötzsch graph F
(see Figure 1), which is known to be 4-colorable but not 3-colorable (see [24]). Call
the resulting graph G′, so G′ = 2G + F . As G and F are C3-free, G′ is C3-free. We
claim that G is 3-colorable if and only if G′ has a critical vertex if and only if G′ has
a contraction-critical edge. This can be proven via similar arguments as used in the
proof of Theorem 3, with F playing the role of K`+1. ut

4 Forbidding Linear Forests

In this section we prove our second hardness result needed to show Theorem 2. We
first introduce some additional terminology.

Let G be a graph. The graph G denotes the complement of G, that is, the graph
with vertex set V (G) and an edge between two vertices u and v if and only if u and v
are not adjacent in G. A clique cover of a graph G is a set K of cliques in G, such that
each vertex of G belongs to exactly one clique of K. The clique covering number σ(G)
is the size of a smallest clique cover of G. Note that χ(G) = σ(G). The size of a largest
clique in a graph G is denoted by ω(G).

The hardness construction in the proof of our next result uses clique covers. Král
et al. [14] proved that Coloring is NP-hard for (C5, 4P1, P1 + 2P2, 2P2)-free graphs.
This does not give us hardness for Critical Vertex or Critical Edge, but we can
use some elements of their construction. For instance, we reduce from a similar NP-
complete problem, namely the NP-complete problem Monotone 1-in-3-SAT, which
is defined as follows.1 Let Φ be a formula in conjunctive normal form, that is, Φ consists
of a clause set C, where each clause in C consists of literals from a variable set X.
For an instance Φ of Monotone 1-in-3-SAT it holds that each clause in C consists
of three distinct positive literals from X and each variable of X occurs in exactly
three clauses (observe that this implies that |C| = |X|). The question is whether Φ
has a truth assignment, such that each clause is satisfied by exactly one variable. In

1 The Monotone 1-in-3 SAT problem is also known as the Positive 1-in-3 SAT problem,
and in the literature, monotonicity may also refer to the property that every clause consists
of either only positive literals or only negative literals.
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that case we say that Φ is 1-satisfiable. Moore and Robson proved that the problem is
NP-complete.

Lemma 2 ([18]). Monotone 1-in-3-SAT is NP-complete.

We are now ready to prove the main result of this section.

Theorem 5. The problems Critical Vertex, Critical Edge and Contraction-
Critical Edge are co-NP-hard for (C5, 4P1, 2P1 + P2, 2P2)-free graphs.

Proof. By Proposition 1 it suffices to consider Critical Vertex and Critical
Edge. We will first consider Critical Vertex and show that the equivalent problem
whether a graph has a vertex whose deletion reduces the clique covering number by one
is co-NP-hard for (C5,K4, 2P1 + P2, C4)-free graphs. We call such a vertex critical as
well. The complement of a (C5,K4, 2P1 + P2, C4)-free graph is (C5, 4P1, 2P1+P2, 2P2)-
free. Hence by proving this co-NP-hardness result we will have proven the theorem for
Critical Vertex.

As mentioned, we reduce from Monotone 1-in-3-SAT, which is NP-complete
due to Lemma 2. Given an instance Φ of Monotone 1-in-3-SAT with clause set C
and variable set X, we construct a graph G = (V,E) as follows. For every clause
c ∈ C, the clause gadget Gc = (Vc, Ec) is a path of length 5. For c = (x, y, z),
we let three pairwise non-adjacent vertices c(x), c(y), c(z) of Gc correspond to the
three variables x, y, z. We denote the other two vertices of Gc by ac1 and ac2, such
that Gc = c(x)ac1c(y)ac2c(z). For each variable xh ∈ X we let the variable gadget
Qxh

consist of the triangle c(xh)c′(xh)c′′(xh)c(xh), where c, c′, c′′ are the three clauses
containing xh. See Figure 2 for an illustration of the construction. We observe that
|V (G)| = 5n and that G is (C5,K4, 2P1 + P2, C4)-free with ω(G) = 3.

c(y) a2
ca1

c
c(x)

c'(x)

c"(x)

c’(y) c’’(y)

c(z)

c’(z)

c’’(z)

Fig. 2. The clause gadget Gc and three variable gadgets Qx, Qy and Qz.

In order to prove co-NP-hardness we first need to deduce a number of properties
of our gadget. We do this via a number of claims.

Claim 1. There exists a minimum clique cover of G, in which each vertex aci (c ∈ C,
1 ≤ i ≤ 2) is covered by a clique of size 2.

We prove Claim 1 as follows. If for some c ∈ C, vertex ac1 or ac2 forms a 1-vertex clique
in K, then we add c(x) or c(z), respectively, to it. This proves Claim 1.

Now let K be a minimum clique cover. By Claim 1, we may assume without loss of
generality that each aci is covered by a clique of size 2. Since the clause gadgets Gc are
pairwise non-intersecting and isomorphic to P5, it takes at least three cliques to cover
the vertices of every Gc. As the vertices aci form an independent set, exactly 2n cliques
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are needed to cover the 2n vertices aci . As each aci is covered by a clique of size 2, we
also find that 2n vertices c(x) are covered by these cliques. Since ω(G) = 3, at least
n/3 other cliques are necessary to cover the n remaining vertices c(x). Hence, K has
size at least 7

3n, that is,

σ(G) ≥ 7

3
n.

We now prove three more claims.

Claim 2. Φ is 1-satisfiable if and only if σ(G) = 7
3n.

We prove Claim 2 as follows. First suppose Φ is 1-satisfiable. We construct a clique
cover K in the following way. If xh is true, then we let K contain the triangle Qxh

.
Since each clause c contains exactly one true variable for each Gc, exactly one vertex
of each Gc is covered by a variable gadget Qxh

. Then K contains two cliques of size 2
covering the four other vertices of Gc. Hence K has size 7

3n. As σ(G) ≥ 7
3n, this implies

that σ(G) = 7
3n.

Now suppose σ(G) = 7
3n. Let K be a minimum clique cover of G. By Claim 1, we

may assume without loss of generality that each aci is covered by a clique of size 2.
Then at least n/3 other cliques are necessary to cover the vertices c(x) that are not
in a 2-vertex clique with a vertex aci . Hence, as σ(G) = 7

3n, these vertices are covered
by exactly n/3 triangles, each one corresponding to one variable x (these are the only
triangles in G). We assign the value true to a variable xh ∈ X if and only if its
corresponding triangle Qxh

is in the clique cover. Then, for each c ∈ C, exactly one
variable is true, namely the one that corresponds to the unique vertex of Gc covered
by a triangle. So Φ is 1-satisfiable. This completes the proof of Claim 2.

Claim 3. If G has a clique cover K = {K1, . . . ,K 7
3n
}, then each Ki ∈ K consists of

either two or three vertices.

We prove Claim 3 as follows. As σ(G) ≥ 7
3n and |K| = 7

3n, we find that K is a minimum
clique cover. With each v ∈ V , we associate a weight wv ≥ 0 as follows. For Ki ∈ K
and v ∈ Ki, we define wv = 1/|Ki|. Since ω(G) = 3 we have wv ∈ { 13 ,

1
2 , 1}. So we

have ∑
Gc

∑
v∈Vc

wv =
∑
v∈V

wv =

7
3n∑
i=1

∑
v∈Ki

wv =
7

3
n,

where the first equality holds, because the clause gadgets Gc are vertex-disjoint. We
show that for every c we have Σv∈Vcwv ≥ 7

3 . Since every aci has exactly two neighbours
and these neighbours are not adjacent, we have wac

i
∈ { 12 , 1}. If there exists an index i

such that wac
i

= 1, then

∑
v∈Vc

wv ≥ 1 +
1

2
+ 3× 1

3
=

5

2
>

7

3
.

Now, if aci has weight wac
i

= 1
2 for i = 1, 2, then aci is covered by a clique of size 2 and

the second vertex of this clique has weight 1
2 as well by definition. Thus if wac

i
= 1

2 , at

least two vertices of c(x), c(y), c(z) have weight 1
2 . It follows that

∑
v∈Vc

wv ≥ 2× 1

2
+ 2× 1

2
+

1

3
=

7

3
.
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Hence
∑

v∈Vc
wv = 7

3 if and only if each vertex of Gc is in a clique of size 2 or 3. Since∑
Gc

∑
v∈Vc

wv = 7
3n, we obtain

∑
v∈Vc

wv = 7
3 for every c ∈ C. We conclude that

each clique in K is of size 2 or 3. This completes the proof of Claim 3.

Claim 4. If σ(G) > 7
3n, then G has a minimum clique cover K that contains a clique

of size 1.

We prove Claim 4 as follows. Suppose σ(G) > 7
3n. For contradiction, assume that every

minimum clique cover of G has no cliques of size 1. Let K be a minimum clique cover
of G. By Claim 1, we may assume without loss of generality that each aci is covered by
a clique of size 2. Hence the remaining vertex c(x) is covered by some clique Ki ∈ K,
such that either Ki = {c(x), c′(x)} or Ki = {c(x), c′(x), c′′(x)}.

If Ki = {c(x), c′(x)}, then c′′(x) is covered by some clique Kj = {c′′(x), a}. How-
ever, then we can take Ki = {c(x), c′(x), c′′(x)} and Kj = {a} to obtain a minimum
clique cover with |Kj | = 1, a contradiction. Hence Ki = {c(x), c′(x), c′′(x)}. As this
holds for every Gc we find that σ(G) = 7

3n, a contradiction. This completes the proof
of Claim 4.

We claim that Φ is a 1-satisfiable if and only if G has no critical vertex. First suppose
that Φ is 1-satisfiable. By Claims 2 and 3 we find that σ(G) = 7

3n and every clique in
any minimum clique cover of G has size greater than 1. Hence, there is no vertex u
of G with σ(G− u) ≤ σ(G)− 1, that is, G has no critical vertex.

Now suppose that Φ is not 1-satisfiable. By Claims 2 and 4 we find that σ(G) > 7
3n

and that there exists a minimum clique cover that contains a clique {u} of size 1. This
means that σ(G− u) = σ(G)− 1. So u is a critical vertex.

We are left to consider the Critical Edge problem. Just as for the Critical Vertex
problem, we focus on the the complementary problem. For Critical Edge, this is
the problem of deciding if a graph has a non-edge whose addition to the graph (as an
edge) reduces the clique covering number by one. We call such a non-edge critical as
well and prove that this equivalent problem is co-NP-hard for (C5,K4, 2P1 + P2, C4)-
free graphs. In order to do this we modify the previous construction by making the
paths Gc isomorphic to P9. To be more precise, we let Gc = c(x)ac1a

c
2a

c
3c(y)ac4a

c
5a

c
6c(z).

Again the resulting graph G is (C4, C5,K4, 2P1 + P2)-free.
First suppose that Φ is 1-satisfiable. By using the same arguments as before we find

that every clique in any minimum clique cover of G has size greater than 1. Hence, as
G is K4-free, every clique in any minimum clique cover K of G has size 2 or 3. This
means that we can only merge two cliques of K into one new clique via adding an edge
if both cliques already have some edge in common. However, then the union of these
two cliques induces a subgraph of G isomorphic to 2P1 + P2. This is not possible, as
G is 2P1 + P2-free. We conclude that G has no critical non-edge.

Now suppose that Φ is not 1-satisfiable. Then, by using the same arguments as
before, we can prove that there exists a minimum clique cover K that contains a
clique {u} of size 1. By the adjusted construction of Gc we find that u is adjacent to
exactly one vertex of a 2-vertex clique {v, w} of K (in the previous construction with
copies of P5 instead of copies of P9, it could have happened that u is adjacent to only
vertices that belong to distinct 3-vertex cliques of K, namely when u = aci for some
1 ≤ i ≤ 2 and c ∈ C). We may assume without loss of generality that u is adjacent
to v but not to w. Then by adding the edge uw, which yields the graph G + uw, we
merge the two cliques {u} and {v, w} into one new clique {u, v, w}. Hence we obtain
σ(G+ uw) = σ(G)− 1. So uv is a critical non-edge of G. This completes the proof of
Theorem 5. ut
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5 The Proof of Theorem 2

We are now ready to prove Theorem 2, which we restate below. In particular, the
three problems are NP-hard for H-free graphs if H contains a claw or a cycle on three
or more vertices and they are co-NP-hard if H contains an induced subgraph from
{C5, 4P1, 2P1 + P2, 2P2}.

Theorem 2. (restated) If a graph H ⊆i P4 or of H ⊆i P1 + P3, then Critical
Vertex, Critical Edge and Contraction-Critical Edge restricted to H-free
graphs are polynomial-time solvable, otherwise they are NP-hard or co-NP-hard.

Proof. Let H ⊆i P1 +P3 or H ⊆i P4. Let G be an H-free graph. By Theorem 1 we can
compute χ(G) in polynomial time. We note that any vertex deletion results in a graph
that is H-free as well. Hence in order to solve Critical Vertex we can compute the
chromatic number of G− v for each vertex v in polynomial time and compare it with
χ(G). As (P1 + P3)-free graphs and P4-free graphs are closed under edge contraction
as well, we can follow the same approach for solving Contraction-Critical Edge.
By Proposition 1 we obtain the same result for Critical Edge.

Now suppose that neither H ⊆i P1 + P3 nor H ⊆i P4. If H has a cycle or an
induced claw, then we use Theorem 4 to obtain NP-hardness. Assume not. Then H
is a disjoint union of r paths for some r ≥ 1. If r ≥ 4 we use Theorem 5 to obtain
co-NP-hardness. If r = 3 then either H = 3P1 ⊆i P1 + P3, which is not possible, or
H ⊇i 2P1 +P2 and we can apply Theorem 5 again to obtain co-NP-hardness. Suppose
r = 2. If both paths contain an edge, then 2P2 ⊆i H. If at most one path has edges,
then it must have at least four vertices, as otherwise H ⊆i P1 + P3. This means that
2P1 +P2 ⊆i H. In both cases we apply Theorem 5 to obtain co-NP-hardness. If r = 1,
then H is a path on at least five vertices, which means 2P2 ⊆i H. We apply Theorem 5
again to obtain co-NP-hardness. ut

Acknowledgments. We thank two anonymous reviewers for helpful comments on our
paper.
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