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When Do Gomory-Hu Subtrees Exist?

Gomory-Hu (GH) Trees are a classical sparsification technique for graph connectivity. It is also a fundamental model in combinatorial optimization which finds new applications, for instance, finding highly-connected communities within (social) networks. For any edge-capacitated undirected graph G = (V, E) and any subset of terminals Z ⊆ V , a Gomory-Hu Tree is an edgecapacitated tree T = (Z, E(T )) such that for every u, v ∈ Z, the value of the minimum capacity uv cut in G is the same as in T . It is well-known that we may not always find a GH tree which is a subgraph (or minor if Z = V ) of G. For instance, every GH tree for the nodes of K 3,3 is a 5-star.

We characterize those graph and terminal pairs (G, Z) which always admit such a tree. We show that these are the graphs which have no terminal-K 2,3 minor, that is, a K 2,3 minor each of whose nodes corresponds to a terminal of Z. We then show that the pairs (G, Z) which forbid such K 2,3 "Z-minors" arises, roughly speaking, from so-called Okamura-Seymour instances. These are planar graphs where the outside face contains all the terminals. This characterization yields an unexpected consequence for multiflow problems which extends an earlier line of inquiry due to Lomonosov and Seymour. Fix a graph G and subset Z ⊆ V (G) of terminals. Call (G, Z) cut-sufficient if the cut condition is sufficient to characterize the existence of a multiflow for any demands between nodes in Z, and any edge capacities on G. Then (G, Z) is cut-sufficient if and only if it is terminal-K 2,3 free.

Introduction

The notion of sparsification is ubiquitous in applied mathematics and combinatorial optimization is no exception. For instance, shortest paths to a fixed root node in a graph G = (V, E) are usually stored as a tree directed towards the root. Another classical application is that of Gomory-Hu (GH) Trees [START_REF] Ralph | Multi-terminal network flows[END_REF] which encode all of the minimum cuts of an edge-capacitated undirected graph G = (V, E), with capacities c : E → R + . For each s, t ∈ V , we denote by λ(s, t) the capacity of a minimum cut separating s and t. Equivalently λ(s, t) is the maximum flow that can be sent between s, t in G with the given edge capacities. Gomory and Hu showed that one may encode the O(n 2 ) minimum cuts by a tree on V .

A spanning edge-capacitated tree for G is a spanning tree T = (V, E ) together with a capacity function c : E → R + . Any edge e ∈ E induces a fundamental cut G(L, R), where L and R are the node sets of the two components of T \ e. Here we use δ G (L, R) to denote the associated cut in G, that is, δ G (L, R) = {e ∈ E(G) : e has one endpoint in L and the other in R}. We may omit the subscript if the context is clear and also just write δ(L). The definition holds, however, even for disjoint L, R which do not partition V . Definition 1.1. Let T be a spanning edge-capacitated tree. An edge e = uv ∈ E(T ) is encoding if its fundamental cut G(L, R) is a minimum uv-cut and its capacity is c (e), that is, c(G(L, R)) = c (e).

A Gomory-Hu tree (GH tree for concision) is a spanning edge-capacitated tree whose edges are all encoding. In this case, it is an exercise to prove that any minimum cut can be found as follows. For s, t ∈ V we have that λ(s, t) = min{c (e) : e ∈ T (st)}, where T (st) denotes the unique path joining s, t in T .

It is well-known that there may not always exist a GH tree which is a subgraph of G. For instance, every GH tree for the nodes of K 3,3 is a 5-star (cf. [START_REF] Korte | Combinatorial optimization[END_REF] Section 8.6, p. 169). It is a natural question to understand when the existence of such a subtree is possible. One application is to minimum communication spanning trees. We are given a capacitated network G which represents a logical network with c(ij) denote the bandwidth of the pipe between nodes i, j. The goal is to find a tree T which minimizes the routing cost ij∈E(G) c(ij)T (i, j), where T (i, j) is the length of the ij-path in T . Hu [START_REF] Te | Optimum communication spanning trees[END_REF] showed that the optimal tree corresponds to the GH Tree for G. It is natural to seek a tree whose edges are chosen amongst the pairs ij which already have bandwidth set up.

Our first main result characterizes the graphs which admit GH subtrees. More precisely, we say that G has the GH Property if any subgraph G of G with any edge-capacity function c has a Gomory-Hu tree T that is a subgraph of G . Theorem 1.2. G has the GH Property if and only if G is the 1-sum of outerplanar and K 4 graphs. 1In some applications we only specify a subset Z ⊆ V for which we need cut information. We refer to Z as the terminals of the instance. The Gomory-Hu method allows one to store a compressed version of the GH Tree which only captures cut values λ(s, t) for s, t ∈ Z, and whose vertices are precisely V (T ) = Z.

We use Theorem 1.2 to study the generalized version where we are given a graph-terminal pair (G, Z), where G is again endowed with edge capacities c(e). A GH Z-Tree is then a capacitated tree T = (V (T ), E(T )) (cf. [START_REF] Schrijver | Combinatorial optimization: polyhedra and efficiency[END_REF] Theorem 15.14, p. 250). Formally, the nodes of T form a partition {B(v) : v ∈ Z} of V (G), with z ∈ B(z) for each z ∈ Z. The sets B(v) are sometimes called bags. Hence Definition 1.1 extends as follows. First, for X ⊆ V (T ) we define B(X) = ∪ z∈X B(z). For any adjacent vertices s, t ∈ Z in T , the fundamental cut induced by the edge e = B(s)B(t) of T is then G(B(L), B(R)) where L, R are the two components of T -e. We then say e is encoding if its fundamental cut induces a minimum st-cut in G. As before, if all edges are encoding, then T determines the minimum cuts for all pairs s, t ∈ Z. Definition 1.3. We call a GH Z-tree a GH Z-minor if (i) each bag B(z) induces a connected subgraph of G and (ii) for each st ∈ T , there is an edge of G with one end in B(s) and the other in B(t).

We characterize those pairs (G, Z) which admit GH Z-minors for any edge capacities on G. Our starting point is the following elementary observation. Proposition 1.4. K 2,3 with unit capacities has no Gomory-Hu tree that is a subgraph of itself.

Even if GH Z-minors always existed in a graph G, it may still contain a K 2,3 minor. For instance, we could choose Z to be any two nodes in a K 2,3 itself. The proposition implies, however, that it should not have a K 2,3 minor where all nodes in the minor are terminals. Given a set Z of terminals, we say that

H is a terminal minor, or Z-minor, of G if V (H) ⊆ Z and for each z ∈ V (H), there is a bag B(z) ⊆ V (G), such that (i) each bag B(z) contains its terminal z, (ii) each bag is connected in G,
(iii) bags are disjoint : for distinct y, z ∈ V (H), B(y) ∩ B(z) is empty, (iv) if y, z ∈ V (H) are adjacent in H, there is an edge in G(B(y), B(z)).

In other words, it is a minor such that each v ∈ V (H) arises by contracting a connected subgraph which contains a node from Z. Hence a natural necessary condition for G to always contain GH Z-minors is that G must not contain a terminal-K 2,3 minor. We show that this is also sufficient (see Section 5) by building on Theorem 1.2 Theorem 1.5. Let Z ⊆ V . G admits a Gomory-Hu tree Z-minor, for any capacity function, if and only if (G, Z) is a terminal-K 2,3 minor free graph.

Establishing the sufficiency requires a better understanding of terminal minor-free graphs. We show that the family of pairs G, Z which forbid such terminal-K 2,3 minors arises precisely as subgraphs of Z-webs. Z-webs are built from planar graphs with one outside face which contains all the terminals Z and each inner face is a triangle to which we may add arbitrary subgraphs connected to the three nodes. Subgraphs of Z-webs are called Extended Okamura-Seymour Instances.

Theorem 1.6. Let G be a 2-connected terminal-K 2,3 minor free graph. Then either G has at most 4 terminals or it is an Extended Okamura-Seymour Instance.

This immediately implies the following.

Corollary 1.7. G is terminal-K 2,3 free if and only if for any 2-connected block B, the subgraph obtained by contracting every edge not in B is terminal-K 2,3 free.

These results also yields an interesting consequence for multiflow problems. Let G, H be graphs such that V (H) ⊆ V (G). Call a pair (G, H) cut-sufficient if the cut condition is sufficient to characterize the existence of a multiflow for any demands on edges of H and any edge capacities on

G. If Z ⊆ V (G), we also call (G, Z) cut-sufficient if (G, H) is cut-sufficient for any graph on Z. Corollary 1.8. (G, Z) is cut-sufficient if and only if it is terminal-K 2,3 free.
One can compare this to existing results on cut-sufficiency. For instance, Lomonosov and Seymour ( [START_REF] Michael V Lomonosov | Combinatorial approaches to multiflow problems[END_REF][START_REF] Paul | Four-terminus flows[END_REF], cf. Corollary 72.2a [START_REF] Schrijver | Combinatorial optimization: polyhedra and efficiency[END_REF]) characterize the class of demand graphs H such that every supply graph G "works" for H, i.e., (G, H) is cut-sufficient for any graph G with V (H) ⊆ V (G). They prove that any such H is (a subgraph of) either K 4 , C 5 or the union of two stars. A related question asks for which graphs G is it the case that (G, H) is cut-sufficient for every H which is a subgraph of G; Seymour [START_REF] Paul | Matroids and multicommodity flows[END_REF] shows that this is precisely the class of K 5 minor-free graphs. We refer the reader to [START_REF] Chekuri | Flow-cut gaps for integer and fractional multiflows[END_REF] for discussion and conjectures related to cut-sufficiency.

The paper is structured as follows. In the next section we prove that every outerplanar instance has a GH tree which is a subgraph. In Section 3 we present the proof of Theorem 1.2. Section 5 wraps up the proof of Theorem 1.5 using Theorem 1.6 whose proof details are deferred to the appendix; Section 4. We prove Corollary 1.8 in the final Section 6.

Some Notation and a Lemma

For any graph and node pair s, t, there is a minimum cut δ(X) which is central, a.k.a. a bond. That is, G[X], G[V \ X] are connected. We also denote such a cut by G[X, V \ X] and we call X, V \ X the shores of the cut. If needed, we use subscripts to explicitly refer to the graph, e.g., δ G (X). For any X ⊆ V (G) we use shorthand c(X) to denote the capacity of the cut δ(X) = e∈δ(X) c(e). For disjoint sets X, Y ⊆ V (G), c(X, Y ) denotes the sum of capacities of all edges with one endpoint in X, and the other in Y . We consistently use c (e) to denote the computed capacities on edges e in some Gomory-Hu tree.

We always work with connected graphs and usually assume (without loss of generality) that the edge capacities c(e) have been adjusted so that no two cuts have the same capacity. 2 In particular, the minimum st-cut is unique for any nodes s, t. This also implies that the GH Tree is unique. To see this, let T be a GH tree. Let e = uw ∈ E(T ) an edge of T , consider the fundamental cut G(U, W ) defined by e, with u ∈ U , w ∈ W . G(U, W ) is the unique minimum uw-cut so it must appears in any GH tree. Thus any GH tree T as a unique edge e = u w between U and W , with u ∈ U , w ∈ W . Suppose that u = u (say), and consider the unique minimum uu be its shore containing u. T contains a path traversing u , u, w, w in that order, hence we have U ∩ {u , u, w, w } = {u }. T contains a path traversing u, u , w , w in that order, hence we have U ∩ {u , u, w, w } = {u , w, w }, contradiction. Hence u w = uw, the GH tree is unique. We note that the same arguments also work for GH Z-trees, i.e., any two Z-trees are isomorphic including the composition of bags.
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If C is a subset of nodes, or a subgraph, we use

N (C) (or N G (C) if explicitly needed) to denote its neighbour set {v ∈ V (G) : ∃u ∈ C, uv ∈ E}. Let H be an arbitrary graph. A subgraph R is 3-separated at X if X ⊆ V (R), |X| = 3, X is an independent set in R, and N G (R \ X) = X. A subgraph is 3-separated in H if it is 3-separated at some X.
An Extended OS instance is obtained as follows from a planar graph H whose inside faces are all of size 3. For each inside face we may add a non-planar graph which is 3-separated at the nodes on the face. H is called the planar part of the instance.

As we use the following lemma several times throughout we introduce it now.

Lemma 1.9. Let t ∈ V (G) and X, Y be disjoint subsets which induce respectively a minimum xt-cut and a minimum yt-cut where x ∈ X, y ∈ Y . For any non-empty subset

M of V which is disjoint from X ∪ Y ∪ {t}, we have c(M, V \ (X ∪ Y ∪ M )) > 0.
Proof. We have

c(M ∪ X) + c(M ∪ Y ) = c(X) + c(Y ) + 2c(M, V \ (X ∪ Y ∪ M )) < c(M ∪ X) + c(M ∪ Y ) + 2c(M, V \ (X ∪ Y ∪ M ))
where the second inequality follows from the fact that δ(M ∪ X)

(respectively δ(Y ∪ M )) separates t from X (respectively Y ) but M ∪ X = X (respectively M ∪ Y = Y ).
The definition of the GH Property for G requires that the desired subtrees exist in any subgraph. The property also holds after contracting an edge e. Indeed GH Trees in the contracted graph are in 1-1 correspondence to GH trees in the original graph where we set c(e) = ∞. We obtain a tree in the larger graph by adding a pendant leaf with capacity ∞. Hence: Proposition 1.10. The GH Property is closed under taking minors.

Recall that a 1-sum of two disjoint graphs G = (V, E) and H = (U, F ) is a graph obtained from the union of G and H by identifying a vertex v ∈ V with a vertex u ∈ U . The 1-sum operation is also well-behaved. Suppose that G is obtained by the 1-sum of two graphs H 1 , H 2 at a node v. To see this, note that for any

s, t ∈ V (G), there is a minimum st-cut G[A, B] which is central. Without loss of generality either A ⊆ V (H 1 ) \ v or A ⊆ V (H 2 ) \ v.
If the latter holds, then this cut is exactly the same as the cut δ H 2 (A). One may now verify that a GH Tree for G is obtained by taking the union of GH Trees for H 1 , H 2 . Hence: Proposition 1.11. The GH property is closed under 1-sums.

Outerplanar graphs have Gomory-Hu Subtrees

Theorem 2.1. Any 2-connected outerplanar graph G has a Gomory-Hu tree that is a subgraph of G.

Proof. Let G be an outerplanar graph with outer cycle C = v 1 , v 2 , . . . , v n . As discussed in Section 1.1, we assume that no two cuts have the same capacity, so let T be the unique Gomory-Hu tree of G (see Section 1.1). We want to prove that T is a subgraph of G.

Notice that the shore of any min-cut in G is a subpath v i , v i+1 , . . . , v j-1 , v j (indices taken modulo n) because we assumed for any min-cut δ(S), both S and V -S induce connected subgraphs.

Let v be any node and consider the fundamental cuts associated with the edges incident to v in the Gomory-Hu tree. The shores (not containing v) of these cuts define a partition X 1 , X 2 , . . . X k of V \ {v} where each X i is a subpath of C. We may choose the indices such that v, X 1 , . . . , X k appear in clockwise order on C -see Figure 1.

Claim 2.2. For each i ∈ {1, . . . , k}, there is an edge in G from v to some node in X i .

Proof. We prove this by contradiction, so assume there is no edge from v to some

X i . Notice i / ∈ {1, k} because of the edges of C. Let j ∈ {1, . . . , i -1} maximum with c(v, X j ) = ∅, and let j ∈ {i + 1, . . . , k} minimum with c(v, X j ) = ∅, hence c(v, M ) = ∅ where M := X j+1 ∪ X j+2 . . . ∪ X j -1 . By taking X = X j , Y = X j , t = v, Lemma 1.9 implies that c(M, V \ (X j ∪ X j ∪ M ) > 0.
However, outerplanarity and the existence of edges from both X j and X j to v, imply that there is an edge between v and M , see Figure 2. This contradicts the choice of i, j or j .

Let xy ∈ E(T ) be an edge of the Gomory-Hu tree. We must prove that xy ∈ E(G). Let δ(X) be the fundamental cut associated with xy, with x ∈ X, define Y = V \ X. As in the preceding arguments we may use the fundamental cuts associated to edges incident to x and partition X min-cut shores X 1 , X 2 , . . . , X k ; we do this by ignoring the one shore Y . Similarly, we may partition Y \ {y} into min-cut shores Y 1 , Y 2 , . . . , Y l . We can label these so that X 1 , X 2 , . . . , X k , Y 1 , . . . , Y l appear in clockwise order around C -see Figure 3. There are two cases for the position of x. Either there is some i ∈ {1, . . . , k -1} such that x is between X i and X i+1 or x lies on the "fringe", i.e., it is adjacent to some node of Y by an edge of C. Similarly, either y lies on the fringe or there exists j ∈ {1, . . . , l} such that y is between Y j and Y j+1 . In the fringe cases, either xy ∈ C or the argument is similar and easier to the non-fringe case so we focus on them.

\ {x} into v X 1 M := X 3 X 4 X 2
x y . By a similar argument there is an edge e ∈ c(y, X 1 ). By Claim 2.2, there are also two edges e ∈ c(x, X 1 ) and e ∈ c(y, Y 1 ).

X 1 X 3 X 4 X 2 X 5 Y 1 Y 2 δ(X)
Let X 1 and similarly δ(Y ) separates y from Y 1 . As δ(X 1 ) is the fundamental cut between x and X 1 , we have that c(X 1 ) < c(X ), and similarly c(Y 1 ) < c(Y ). Now, because of the edges e, e , e , e , by outerplanarity there is no edge between X and Y , hence

X = {x} ∪ X 2 ∪ . . . ∪ X k and Y = {y} ∪ Y 2 ∪ . . . ∪ Y l , δ(X ) is a cut separating x from e e e e x y X 1 X 3 X 4 X 2 X 5 Y 1 Y 2
c(X 1 ) + c(Y 1 ) = c(X ) + c(Y ) + 2c(X 1 , Y 1 ) > c(X 1 ) + c(Y 1 ) + 2c(X 1 , Y 1 )
a contradiction.

Which Instances have Gomory-Hu Subtrees?

The previous result leads to a characterization of graphs with the GH Property: that is, graphs whose capacitated subgraphs always contain a Gomory-Hu Tree as a subtree. In Section 5, we extend this result to the case where a subset of terminals is specified.

We start with a simple observation that K 2,3 does not have a GH subtree.

Proposition 1.4. K 2,3 , when all edges have capacity 1, has no Gomory-Hu tree that is a subgraph of itself.

Proof. Let {u 1 , u 2 }, {v 1 , v 2 , v 3 } be the bipartition. Since the minimum u 1 , u 2 cut is of size 3, a GH tree should contain a u 1 u 2 -path all of whose edges have capacity at least 3. If this path is u 1 v 1 u 2 , then the tree's fundamental cut associated with u 1 v 1 must be a minimum

u 1 v 1 -cut. But this is impossible since δ(v 1 ) is a cut of size 2.
This leads to the desired characterization. 4 Characterization of terminal-K 2,3 free graphs

In this section we prove Theorem 1.6. Throughout, we assume we have an undirected graph G with terminals Z ⊆ V (G). We refer to G as being terminal H-free (for some H) to mean with respect to this fixed terminal set Z.

We first check sufficiency of the condition of Theorem 1.6. Any graph with at most 4 terminals is automatically terminal-K 2,3 free and one easily checks that any extended Okamura-Seymour instance cannot contain a terminal-K 2,3 minor. Hence we focus on proving the other direction: any terminal-K 2,3 minor-free graph G lies in the desired class. To this end, we assume that |Z| ≥ 5 and we ultimately derive that G must be an extended OS instance.

We start by excluding the existence of certain K 4 minors. Proof. Let K + 4 be the graph obtained from K 4 by subdividing one of its edges. By removing the edge opposite to the subdivided edge, we see that K + 4 contains K 2,3 . Hence it suffices to prove that G contains a terminal-K + 4 minor. Consider a terminal-K 4 minor on terminals Z = {s, t, u, v}. We may assume this is obtained from contacting node-disjoint trees T x for each terminal x ∈ Z , such that for any x, y ∈ Z , there is an edge e xy having one extremity in T x and one in T y . We may assume that T x = y∈Z \{x} P [x, y], where P [x, y] is a path from x to an end of e xy and not containing e xy . Denote U := x∈Z V (T x ).

As |Z| ≥ 5 > |Z |, there is some terminal w ∈ Z . If w ∈ U , then let Q be a minimal path which joins w to some w ∈ U ; otherwise let w = w and Q be this singleton. Without loss of generality, w is in T s . Suppose first that w lies in exactly one of the paths P [s, u], P [s, v], P [s, t], say P [s, u]. We then obtain a terminal-K + 4 minor by contracting Q, where w is the terminal which subdivides the minor edge su. Consider next the case where w lies in exactly 2 of the paths, say P [s, u], P [s, v]. In this case, we obtain the desired minor (after contracting Q) by replacing s and use w as the degree 3 node of the K 4 minor. Hence s can play the role of the degree 2 node in a terminal-K + 4 minor, as desired.

In the last case, w lies in all three of the paths P [s, u], P [s, v], P [s, t]. We call this the bad case as we must take more care in selecting Q. Let R := P [s, u] ∩ P [s, v] ∩ P [s, t] and we can assume that w ∈ R. If it were, then we could just replace s by w and consider s our "outside" terminal.

By 2-connectivity there are disjoint paths Q 1 , Q 2 from w to U such that Q i ∩ U = {w i }, where w 1 , w 2 are distinct. If either w i ∈ T s \ R, then we may use Q i to be in one of the good cases. If some w i lies in T x with x = s, we can create a K + 4 minor where w is the degree 2 terminal for the edge sx. We do this by contractions on Q i and Q.

So we now assume w 1 , w 2 are both in R and in particular |R| ≥ 2. Let z be the endpoint of R which is not s. Define U := U \ (V (R) \ z) and note that s, w are in the same component, K, of G = G \ U . By 2-connectivity there exists edges zz , bb with distinct endpoints such that z , b ∈ K and b ∈ U . Suppose this is not the case and let z ∈ K be any neighbhour of z. Since z is not a cut node, there exists r ∈ K \ z which is adjacent to some r ∈ U . If r = z, then rr , zz are the desired edges. Since z is not a cut node, there exists q ∈ K which is adjacent to q ∈ U \ z. If q = z , then zz , qq are the desired edges. Otherwise qq , zr are the edges.

By 2-connectivity, there exist opening disjoint paths R s , R w in K from {s, w } to {z , b }. Without loss of generality, we may contract s into z and w into b (at this point, we do not care which terminal is which). Moreover, since K is connected we may contracted edges to make a minor of K where sw is an edge. The remaining cases are similar to earlier ones. If b lies in one of the paths P [s, x] \ R, then we create a K + 4 minor where w subdivides the edge sx. Similarly, if b ∈ T x for some x = s. Now we have ruled out the existence of terminal-K 4 minors, we start building up minors which can be possible. Proof. Clearly there is a terminal-H minor where H is 2-connected. Choose one which minimizes |V (H)| and suppose there is a non-terminal node in H. In particular we may assume there is an edge sv with s ∈ Z, v / ∈ Z. By minimality, contracting sv decreases the connectivity to 1. Hence, {s, v} is a cut separating two nodes t and t . Thus, there are two disjoint tt -paths, one containing s and the other v. That is, there is a circuit C containing s, t, v, t in that order.

By minimality of H, we also have that H -sv is not 2-connected. It follows that H -sv contains a cut node {z} where s, v lie in distinct components of H -sv -z. This would contradict the existence of C, and this completes the proof.

As |Z| ≥ 5, the previous proposition implies that there is a terminal-C 4 minor. Proof. By Proposition 4.2, let H be a 2-connected terminal-minor of G with V (H) = Z. Consider an ear-decomposition of H, starting with longest cycle C 0 and ears P 1 , . . . , P k . Then all ears are single edges (from which the proposition follows), otherwise let P i be an ear that is not a single edge, with i minimum. The two ends of P i are nodes x, y of C 0 . If x and y are consecutive in C 0 , this contradicts the maximality of C 0 . If they are not consecutive, C 0 ∪ P i is a subdivision of K 2,3 .

We let k = |Z| henceforth. A terminal-C k minor of G can also be represented as a collection of k node-disjoint subtrees T 1 , . . . , T k , where each T i contains exactly one terminal t i . There also exist edges e 1 , . . . , e k , where e i has one extremity u i in T i and the other, v i+1 , in T i+1 . The subscript k + 1 is taken to be 1; the edges in the subtrees are the contracted edges and the edges e 1 , . . . , e k are the undeleted edges. We define s i as the only node in

V (P [t i , u i ]) ∩ V (P [u i , v i ]) ∩ V (P [v i , t i ]),
where V (P [x, y]) is the node set of the path with ends x and y in the tree T i . Thus,

T i is P [s i , u i ] ∪ P [s i , v i ] ∪ P [s i , t i ].
We denote by S i the path from t i to s i in T i and we take our representation so that k i=1 |S i | minimized. We denote by P i the path from s i to s i+1 . Proposition 4.4.

k i=1 |S i | = 0.
Proof. By contradiction, suppose |S 1 | > 0 and so t 1 does not lie in the graph induced by D = P 1 ∪ . . . ∪ P k ∪ S 2 ∪ . . . ∪ S k . By 2-connectivity, there are two disjoint minimal paths from t 1 to distinct nodes x and y in D. Moreover we can assume that x = s 1 lies on P k ∪ P 1 . To see this, suppose that z ∈ S 1 is the closest node to s 1 which is used by the one of the paths (possibly z = t 1 ). We may then re-route one of the paths to use the subpath of S 1 from z to s 1 .

If y is contained in one of P k , P 1 , it is routine to get another representation of the minor where all the S i are at least as short, and S 1 is empty, contradicting the minimality of our choice of representation. A similar argument holds if y ∈ S k ∪ S 2 .

So we assume y ∈ D \ (P k ∪ P 1 ∪ S k ∪ S 2 ). We now find a terminal-K 2,3 minor, and that is again a contradiction. To see this, let T i be a tree which contains the second node y. As k ≥ 5, we may assume either

i ∈ [4, k -1], or i ∈ [3, k -2]
. Suppose the latter as the two cases are similar. We obtain a terminal-K 2,3 where the two degree-3 nodes correspond to the terminals in T i and T k . The degree-2 nodes will correspond to t 1 , t 2 and t k-1 -see Figure 5.

Hence there is a circuit C containing every terminal, in cyclic order t 1 , t 2 , . . . t k . Proposition 4.5. There are no two node-disjoint paths, one from t i to t i , the other from t j to t j , with i < j < i < j .

Proof. By contradiction. For convenience, let's denote s = t i , t = t i , s = t j and t = t j . Let P be the st-path and Q the s t -path. We may assume that we choose P and Q to minimize their total number of maximal subpaths disjoint from C. We consider the set (not multi-set) of edges E(C) ∪ E(P ) ∪ E(Q), and only keep s, s , t, t as terminals. This defines a subgraph G of G of maximum degree 4 by construction. Contract edges in E(C) ∩ (E(P ) ∪ E(Q)), and then contract edges so that nodes of degree 2 are eliminated. This gives a minor H where the only nodes not of degree 4 are s, t, s , t , which have degree 3. E(H) ∩ E(P ) induces an st-path P in H, E(H) ∩ E(Q) induces an s t -path Q in H. P and Q are again nodedisjoint. We call the remaining edges of E(C) in H C-edges. They induce a cycle which alternates between nodes of P and Q . To see this, suppose that e is such an edge joining x, y ∈ V (P ) (the case for Q is the same). We could then replace the subpath of P between x, y by the subpath of C which was contracted to form e. This would reduce, by at least 1, the number of maximal subpaths of P disjoint from C, a contradiction.
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Consider the two nodes u and v of Q adjacent to s, such that s , u , v , t appear in that order on Q . u and v each has one more incident C-edge, whose extremities (respectively) are u, v and must then be on V (P ) \ {s}. We create a terminal-K 4 minor on s, s , t, t as follows -see Figure 6, where u, v may be in either order on P . We contract all the edges of P except the one e s incident to s, and all the edges of Q except the one e u incident to u in the direction of t , we get a terminal-K 4 minor with the edges su , sv , uu , vv , e s and e u . One easily checks that this leads to the desired terminal-K 4 minor. This contradiction completes the proof.

s u v t s u v t P Q Figure 6:
How to get a terminal-K 4 minor: red parts are contracted into single nodes, the blue edges will then form a K 4 .

To conclude the characterization of terminal-K 2,3 minor free graphs, we use (a generalization of) the celebrated 2-linkage theorem. Take a planar graph H, whose outer face boundary is the cycle t 1 , t 2 , . . . , t k , and whose inner faces are triangles. For each inner triangle, add a new clique of arbitrary size, and connect each node of the clique to the nodes of the triangle. Any graph built this way is called a (t 1 , . . . , t k )-web, or a {t 1 , . . . , t k }-web if we do not specify the ordering.

Note that a Z-web, for some set Z, can be described via Okamura-Seymour instances (OSinstance). An OS-instance is a planar graph where all terminals appear on the boundary of the outer face. An Extended OS Instance is obtained from an OS-instance by adding arbitrary graphs, called 3-separated sets, each connected to up to three nodes of some inner face of the Okamura-Seymour instance. We also require that any two 3-separated sets in a common face cannot be crossing each other in that face. Extended OS instances are precisely the Z-webs. Theorem 4.6 (Seymour [START_REF] Paul | Disjoint paths in graphs[END_REF], Shiloach [START_REF] Shiloach | A polynomial solution to the undirected two paths problem[END_REF], Thomassen [START_REF] Thomassen | 2-linked graphs[END_REF] ). Let G be a graph, and s 1 , . . . , s k ∈ V (G). Suppose there are no two disjoint paths, one with extremity s i and s i , and one with extremity s j and s j , with i < j < i < j .

Then G is the subgraph of an (s 1 , s 2 , . . . , s k )-web.

The linkage theorem is usually stated in the special case when k = 4, but the extension presented here is folklore. One can reduce the general case to the case k = 4 by identifying the nodes s 1 , . . . s k with every other inner node of a ring grid with 7 circular layers and 2k rays, and choosing 4 nodes of the outer layer, labelling them s, t, s , t in this order, and connecting them in a square -see Figure 7. Is is easy to prove that there are two node-disjoint paths, one with extremity s and s , the other with extremities t and t in the graph built this way if and only there are two disjoint paths as in the theorem in the original graph (for instance, use the middle layer to route the path from s to s i with only 2 bends, then the remaining graph is a sufficiently large subgrid to route the three other paths). Because the grid is 3-connected, its embedding is unique and we get that G is embedded inside the inner layer of the ring, from which the general version of the theorem is deduced. This now completes the proof of Theorem 1.6. We now establish Corollary 1.7.

Proof. If G is terminal-K 2,3 minor-free, then clearly contacting all blocks but one must create a terminal-K 2,3 free instance.

Conversely, suppose that G has a terminal-K 2,3 minor. Since this minor is 2-connected, it must be a minor of a graph obtained by contracting or deleting all the edges of every 2-connected component except one. Let's call that last block B. Hence the terminal-K 2,3 minor is a minor of the graph obtained by contracting all the edges not in B.

5 General Case: Gomory-Hu Terminal Trees in terminal-K 2,3 minor free graphs.

In this section we prove Theorem 1.5 using the characterization of terminal-K 2,3 minor free graphs.

The high level idea is a reduction to Theorem 2.1 by contracting away the non-terminal nodes in the graph.

In the following we let (G, Z) denote a connected graph G and terminals Z ⊆ V (G). In this section we study graphs which always have GH Z-trees which are GH Z-minors -see Definition 1.3. We also call these bag minors. We say that T occurs as a weak bag minor if it occurs as a bag minor in the graph obtained by deleting some non-terminal nodes (so some bags get smaller). An example where we have the weak but not the (strong) property is for K 2,3 where Z consists of the degree 2 nodes and one of the degree 3 nodes, call it t. Clearly this is terminal-K 2,3 minor free since it only has 4 terminals. The unique GH Z-tree T is obtained from G by deleting the non-terminal node and assigning capacity 2 to all edges in the 3-star. Hence T is obtained as a minor (in fact a subgraph) of G. However, the bag B(t) consists of the 2 degree-3 nodes which do not induce a connected subgraph. Hence T does not occur as a bag minor. Fortunately, such instances are isolated and arise primarily due to instances with at most 4 terminals. We handle these separately. Proposition 5.2. Let G be an undirected, connected graph and Z be a subset of at most 4 terminals. If no two central cuts have the same capacity, then the unique GH Z-Tree T occurs as a weak bag minor. Moreover, if T is a path, then it occurs as a bag minor.

We defer the proof of this and the following lemma to an appendix. Proof. If G has a terminal-K 2,3 minor, then consider setting capacities as follows. If an edge was deleted to produce the minor, we set its capacity to 0. If an edge was contracted its capacity is ∞. The remaining edges have capacity 1. It is clear that minimum cuts for this instance correspond to cuts within the K 2,3 minor itself. Hence G does not have the desired bag minor.

We now consider the converse direction and hence assume that G is a terminal-K 2,3 minor free graph. Let G be some subgraph of G with edge capacities c(e) > 0, perturbed so that all minimum cuts are unique. We show that the unique GH Z-tree occurs as a (possibly weak) bag minor.

We deal first with the case where G has cut nodes. Note that one may iteratively remove any leaf blocks which do not contain terminals. This operation essentially does not impact the GH Z-Tree. Now consider any block L. Contracting all other blocks into L will put a terminal at each cut node in L. Since this minor is K 2,3 -free, we assume for now that Z actually included all these extra nodes and show the desired bag minor exists for this terminal set. This is sufficient since we can later retrieve the desired bag minor for the original terminal set via Lemma 5.3. One checks that a GH Z-Tree is obtained by gluing together the appropriate GH terminal trees in each block. Moreover, since each cut node is a terminal, if each block's tree is a bag minor (resp. weak bag minor), then the whole tree is a bag minor (resp. weak bag minor). Therefore it is now sufficient to prove the result in the case where G is 2-connected.

If G has at most 4 terminals, then Proposition 5.2 asserts that it has a weak bag minor for a GH tree. Moreover, if it has less than 4 terminals, then it's GH Tree is a path and hence occurs as a bag minor. So we now assume that G contains at least 5 terminals and hence it is an extended OS instance whose outside face is a simple cycle, by Theorem 1.6. Lemma 6.2 (see next section) implies that we can replace each 3-separated set by a degree-3 node and the resulting graph is planar and has the same pairwise connectivities amongst nodes in Z. It is easy to check that any Z-tree bag minor in this new graph is also such a minor in the original instance. Therefore, it is sufficient to show that any planar OS instance with terminals on the outside face has the desired GH tree ("strong") bag minor.

Denote by t 1 , t 2 , . . . , t |T | the terminals in the order in which they appear on the boundary of the outer face. Let {B(t) : t ∈ Z} be the bags associated with the (necessarily unique) GH Z-tree T . We show that (i) each G [B(t)] is connected and (ii) for any st ∈ T , there is some edge of G between B(s) and B(t).

Consider the fundamental cuts associated with edges incident to some terminal t. Let X 1 ,X 2 , . . . X k be their shores which do not contain t. Since any min-cut is central, each X i intersects the Proof. For each α ∈ {x, y, z}, let c α be the value of a minimum cut in F separating α from {x, y, z} \ {α}. We use S α to denote the shore of such a cut in F , where α ∈ S α . We replace F in G by a claw where the central node is a new node u H , and leaves are x, y and z, and the capacity of u H α is c α for any α ∈ {x, y, z}. We claim that this transformation preserves the values of minimum cuts between sets of terminals.

Notice that c α ≤ β∈{x,y,z}\{α} c α , hence a minimum cut induced by S in G where x ∈ S but y, z ∈ S will also have u H ∈ S . For such a set S in G with x ∈ S, u H , y, z ∈ S, we may then identify a cut with the same capacity in G induced by S := S ∪ S x . Reciprocally, given a cut S of G with x ∈ S, y, z ∈ S, the cut S := S \ (V (F ) \ {x, y, z}) has capacity at most the capacity of S. Thus the values of minimum terminal cuts are preserved.

Since the 3-separated graphs are non-crossing, we may iterate the process to obtain the following. Lemma 6.2. For any extended OS instance G we can replace each 3-separated graph by a degree-3 node to obtain an equivalent (planar) OS instance G . It is equivalent in that for any partition Z 1 ∪ Z 2 = Z, the value of a minimum cut separating Z 1 , Z 2 in G is the same as it is in G .

We now return to the proof of the corollary. First, if there is a terminal-K 2,3 minor then we obtain a "bad" multiflow instance as follows. For each deleted edge we assign it a capacity of 0. For each contracted edge we assign it a capacity of ∞. The remaining 6 edges have unit capacity. We now define four unit demands. One between the two degree-3 nodes of the terminal minor and a triangle on the remaining three nodes. It is well-known that this instance has a flow-cut gap of 4 3 cf. [START_REF] Chekuri | Flow-cut gaps for integer and fractional multiflows[END_REF][START_REF] Chakrabarti | When the cut condition is enough: A complete characterization for multiflow problems in series-parallel networks[END_REF]. Now suppose that G is terminal-K 2,3 free and consider a multiflow instance with demands on Z. By Lemma 6.2, we can replace each 3-separated graph by a degree-3 node and this new OS instance will satisfy the cut condition if the old one did. Hence the Okamura-Seymour Theorem [START_REF] Okamura | Multicommodity flows in planar graphs[END_REF] yields a half-integral multiflow in the new instance.

We now show that the flow in the modified instance can be mapped back to the original extended OS instance. We do this one 3-separated graph at a time. Consider the total flow on paths that use the new edges through s obtained via the reduction. Let d(xy), d(yz), d(zx) be these values. We claim that these can be routed in the original F . First, it is easy to see that this instance on F satisfies the cut condition. Any violated cut δ F (S) would contain exactly one of x, y, z, say x. Hence this cut would have capacity less than d(xy) + d(xz) but since this flow routed through s, this value must be at most c x which is a contradiction. Finally, the cut condition is sufficient to guarantee a multiflow in any graph if demands only arise on the edges of K 4 , cf. Corollary 72.2a [START_REF] Schrijver | Combinatorial optimization: polyhedra and efficiency[END_REF]. Hence we can produce the desired flow paths in F .
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 1 Figure 1: Edges of T into each component of T \ v on outer face.
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 43 Consider a 2-connected terminal-K 2,3 minor free graph and let k be maximum such that G contains a terminal-C k minor. Then k = |Z|.
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 5 Figure 5: Reducing |S 1 | of finding terminal-K 2,3 minors depending on the position of y.
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 7 Figure 7: Gadget for the proof of the general linkage theorem.
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 51 The pair (G, Z) has the GH Minor Property if for any subgraph G with capacities c , there is a GH Tree which occurs as a bag minor in G . The pair (G, Z) has the weak GH Minor Property if such GH trees occur as a weak bag minor.
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 53 Let T be a GH Z-Tree bag minor for some capacitated graph G and let v ∈ Z. Let uv ∈ T be the edge of T incident to v of maximum weight. If we set B (u) = B(v) ∪ B(u) and B (x) = B(x) for each x ∈ Z \ {u, v}, then the resulting partition defines a GH (Z \ v)-Tree T which is a bag minor. Theorem 1.5. Let G be an undirected graph and Z ⊆ V . (G, Z) has the weak GH Minor Property if and only if (G, Z) is a terminal-K 2,3 minor free graph. Moreover, if none of G's blocks is a 4-terminal instance, then (G, Z) has the GH Minor Property.

  Theorem 1.2. G has the GH Property if and only if G is the 1-sum of outerplanar and K 4 graphs.Proof. First suppose that G is such a 1-sum. Each outerplanar block in this sum has the GH Property by Theorem 2.1. So consider a K 4 block and a subgraph G with edge capacities. If G is K 4 , then clearly any GH tree is a subtree. Otherwise G is a proper subgraph of K 4 and hence is outerplanar. It follows that each block has the GH Property. Because the GH property is closed by 1-sum, G has the GH property.Suppose now that a 2-connected graph G has the GH property. Because the GH property is closed by minor operations, G has no K 2,3 minor. Outerplanar graphs are graphs with forbidden minors K 2,3 and K 4 , see[START_REF] Schrijver | Combinatorial optimization: polyhedra and efficiency[END_REF] p. 28. Hence if G is not outerplanar, then it has a K 4 minor. Notice that any proper subdivision of K 4 contains a K 2,3 , as well as any graph built from K 4 by adding a path between two distinct nodes. Hence G must be K 4 itself. The result now follows.

The one sum of two disjoint graphs G, H is the graph obtained by identifying a single node u ∈ G with some node v ∈ H.

This can be achieved in a standard way by adding multiples of 2 -δ where δ = O(|E|).
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outside face in a subpath of its boundary. Hence, similar to Claim 2.2 (cf. Figure 1), we can order them X 1 ,. . . ,X k in clockwise order on the boundary with t between X k and X 1 .

The next two claims complete the proof of the theorem.

Claim 5.4. For each terminal t, G [B(t)] is connected.

Proof. By contradiction, suppose that G [B(t)] = G \(X 1 ∪. . .∪X k ) has more than one component. Note first that the component containing t must contain a subpath of the outside face which, together with the X i 's, includes all nodes on the outside face. Now let K be a component which doesn't contain t. If N (K) ⊆ X i for some i ∈ {1, . . . , k}, then δ(K ∪ X i ) is a cut separating t from any node in X i with capacity smaller than δ(X i ). This contradicts that X i induces a minimum st-cut for some s ∈ X i .

Let K be a component of G [B(t)] not containing t, and j < j such that N (K) intersects X j and X j . Then one can define a circuit D which traversing C from X j to X j , and then traverses K and terminates at X j . Choose D, j and j such that the area inside D is maximal.

Let M be the union of K, X j , . . . , X j and all the components inside D, and M = M \(X j ∪X j ). By Lemma 1.9 applied to X = X j , Y = X j , we have c(M , V \ M ) > 0. Hence there is an edge from K or a vertex inside D to V \ M , contradicting planarity. Claim 5.5. For each i ∈ {1, . . . , k}, there is an edge from a node in B(t) to a node in X i .

Proof. By contradiction, suppose δ(B(t), X i ) = ∅, for some i ∈ {1, . . . , k}. Let j maximum and j minimum such that j < i < j , δ(B(t), X j ) = ∅ and δ(B(t), X j ) = ∅. Note that j and j are defined because X 1 and X k are adjacent to B(t) by the outer cycle. If we define M := X j+1 . . . ∪ X j -1 , then c(M, V \ (M ∪ X j ∪ X j )) = 0, contradicting Lemma 1.9 where we take X = X j , Y = X j .

A Consequence for Multiflows

Recall from the introduction that for a graph G and Z ⊆ V (G), we call (G, Z) cut-sufficient if for any multi-flow instance (capacities on G, demands between terminals in Z), we have feasibility if and only if the cut condition holds.

Proof. We first establish a lemma which we use again in the previous section. Lemma 6.1. Let G be an extended OS instance and F be a 3-separated graph whose attachment nodes to the planar part are {x, y, z}. We can define a new graph G from G by removing V (F ) \ {x, y, z} and add a new node s with edges sx, sy, sz with capacities c x , c y , c z so that minimum cuts separating disjoint sets of terminals in Z have the same capacities in G and in G.

A Proof of Proposition 5.2 and Lemma 5.3

We start with a proof of Proposition 5.2.

Proof. We first consider the case where we have 4 terminals and let T be the unique GH tree. Suppose that T is a star with center node 1 and let B 1 , B 2 , B 3 , B 4 be the bags. Since each fundamental cut of T is central (in G) we have that B 2 , B 3 , B 4 each induces a connected subgraph of G. Let Y ⊆ B 1 be those nodes (if any) which do not lie in the same component of G[B 1 ] as 1. We may try to produce T as a weak bag minor of G by deleting Y . This fails only if for some j ≥ 2, c(B 1 \ Y, B j ) = 0 (the only real edges between B j , B 1 are incident to Y ). Suppose this occurs for say j = 2 (the other cases are the same

Hence by uniqueness of minimum cuts, c(R) > c(B 3 ). Similarly, c(S) > c(B 4 ). This is contradiction completes the first part.

Consider now the case where T is a path, say 1, 2, 3, 4. Since each fundamental cut is central, Proof. Clearly T is a bag minor and every fundamental cut of T , other than uv's, is still a fundamental cut of T . It remains to show that for any a, b ∈ Z \ v, there is a minimum ab-cut that does not correspond to the fundamental cut of uv. This is immediate if the unique ab-path P in T does not contain uv. If it does contain uv, then since a, b = v, the ab-path in T contains some edge vw. But since c (vw) ≤ c (uv), the result follows.