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Introduction

Much work in graph theory has concentrated on 2-factors which generalize perfect matchings (see for instance [START_REF] Bondy | Graph Theory[END_REF]). A characterization of graphs admitting a 2-factor can be found in [START_REF] Schrijver | Combinatorial Optimization, Polyhedra and Efficiency[END_REF] (Vol A, page 527 ). It is a challenging problem to characterize 2-factor edge critical graphs, i.e., graphs with no 2-factor but which have a 2-factor by adding any new edge. Since such a characterization seems hard to derive, in this paper we will restrict our attention to finding the minimum number of edges in a graph G on n vertices such that for any two non adjacent vertices u, v the graph G+uv has a 2-factor containing uv. Notice that contrary to the 2-factor edge critical graphs here G may contain a 2-factor or not. These graphs will be called minimal 2-factor expandable.

This work is motivated by the following reliability problem: In a complete graph (V, E) on n vertices edges are subject to breakdowns. We want to reinforce a minimal subset F of edges in such a way that any surviving edge in E -F can be expanded with reinforced edges to a 2-factor. A related problem of 1-factor expansion has been studied in [START_REF] Costa | Minimal graphs for matching extensions[END_REF] where a complete characterization of minimal 1-factor expandable graphs has been derived.

We now give some definitions required to formalize our problem.

We will consider a simple finite graph G = (V, E) with n ≥ 3 vertices and m edges. A pair u, v of vertices is a non-edge if uv / ∈ E.

• A subset F ⊆ E is a 2-factor if every vertex v has exactly two edges in F which are incident in v. Equivalently F is a collection of vertex-disjoint cycles covering all vertices.

• G is 2-factor expandable (or shortly expandable) if for every non-edge xy the graph G xy = (V, E ∪ xy) has a 2-factor F with xy ∈ F . In such a case we say that the non-edge xy has been extended to a 2-factor.

• For any fixed n ≥ 3 an expandable graph with a minimum number of edges is a minimum expandable graph (meg(n)). The size of its edge set is denoted by Exp 2 (n).

We intend to determine, for any fixed integer n ≥ 3, the value Exp 2 (n) and to exhibit a graph meg(n).

We now give the notations we use later. For any subset X ⊆ V the subgraph induced by X is denoted by G[X]. We write G -X = G[V \ X] and G -v for G -{v}. N (v) is the set of neighbors of a vertex v; d(v) = |N (v)| is the degree of v; a p-vertex is a vertex of degree p. If p = 0 then v is an isolated vertex; when p = 1 then v is called a leaf

; if d(v) = n -1, then v is universal. The closed neighborhood of v is N [v] = N (v) ∪ {v}. δ(G) (resp. ∆(G)
) is the minimum (resp. maximum) degree of G. An induced path with p edges is called a p-path. By d(u, v) we denote the distance between u and v, i.e., the length of a shortest path (number of edges) between u and v in G. C k (resp. K k ) is the induced cycle (resp. complete graph) on k vertices.

For all definitions related to graphs, see [START_REF] Bondy | Graph Theory[END_REF].

We state our main result which will be proved in the following sections:

Proposition 1.1 The minimum size of a 2-factor expandable graph is:

• Exp 2 (3) = 2, Exp 2 (4) = 4, Exp 2 (5) = 6, Exp 2 (6) = 9, Exp 2 (7) = 10, Exp 2 (8) = 11, Exp 2 (9) = 12;

• Exp 2 (n) = 11 8 n , n ≥ 10.

The paper is organized as follows. In Section 2 some elementary properties of expandable graphs will be stated for later use. Section 3 will be dedicated to the presentation of meg(n) for 3 ≤ n ≤ 9. In Section 4 a lower bound for Exp 2 (n) will be established for n ≥ 10, while it will be shown in Section 5 that it is best possible. Variations of the construction for n = 8p will be presented in Section 5.3 to handle the case n = 0 mod [START_REF] Lovász | Matching Theory[END_REF], n ≥ 14. Finally constructions will be given for 10 ≤ n ≤ 13 in Section 5.4. Some conclusions and suggestions for further research are presented in Section 6.

Properties of expandable graphs

We shall state some basic properties of expandable graphs which will be used to determine Exp 2 (n).

Fact 2.1 If G = (V, E) is not expandable, then no partial graph G = (V, E ), with E ⊂ E, is expandable.
Let G = (V, E) be an expandable graph. 

Proof: d(u, v) = 4 implies that u v ∈ E. Now if d(t) ≤ 3 the non-edge u v cannot be extended. Property 2.6 Let n ≥ 7. If a vertex v is adjacent to two 2-vertices, then v is universal and m ≥ 3 2 n.
Figure 1: The diamond and the bull. In Property 2.7 a black vertex is a 2-vertices, the grey vertex is the head.

Proof: We can assume that δ(G) ≥ 2 since, as seen in the proof of Property 2.2, if there is a leaf G has no 2-vertex. v is universal since, otherwise, there is a non-edge vw that can not be extended. If there are exactly two 2-vertices we have 

Σ u∈V d(u) ≥ (n -1) + 4 + 3(n -3) = 4n
= 6 + 1 2 (n -3)(n -4) ≥ 3 2 n, since n ≥ 7.
Before stating our next property we need to define two graphs. The diamond and the bull are shown in Figure 1. For each of these two graphs the grey vertex is called the head.

Property 2.7 Let G = (V, E) be a connected graph with n ≥ 10. If G contains two vertex disjoint induced subgraphs H 1 and H 2 such that:

• H i is either a diamond or a bull with head h i , i = 1, 2;

• the three vertices inducing the triangle containing the head are 3-vertices;

• any other vertex is a 2-vertex in G;

• h 1 h 2 ∈ E;
then G is not expandable.

Proof: If H 1 , H 2 are two diamonds, then G is the graph shown in Figure 2, but n = 8. So we can suppose that H 1 is a bull. There is a non-edge xy in H 1 such that x is 3-vertex x = h 1 and y is a 2-vertex. Then since H 2 is a bull or a diamond, xy cannot be extended. 3 Meg(n) for 3 ≤ n ≤ 9

We will compute Exp 2 (n) for small values of n.

• Exp 2 (3) = 2: Trivially P 3 the path on three vertices (Figure 3) is a meg(3).

• Exp 2 (4) = 4: The paw (see Figure 3) is expandable.

If G = (V, E) is a meg(4)
with |E| < 4, then from Property 2.1 G is a tree. So G is either P 4 or the claw. None of those is expandable.

• Exp 2 (5) = 6: The butterfly (see Figure 3) is expandable. Suppose there is

G = (V, E) a meg(5) with m ≤ 5. From Property 2.2, δ(G) ≥ 2. So G = C 5
which is not expandable.

Figure 4: G 6 and G 7 two minimal expandable graphs with 6 and 7 vertices.

• Exp 2 (6) = 9: The graph G 6 (see Figure 4) is expandable. Following Fact 2.1 it is sufficient to suppose that there is G = (V, E) an expandable graph with |E| = 8. If G has a leaf, then from Property 2.2 |E| ≥ 9, a contradiction. So δ(G) ≥ 2. Let n 2 be the number of 2-vertices. We have 2 

≤ n 2 ≤ 4. Let n 2 = 2. Let d(v i ) = 2, 1 ≤ i ≤ 2 and d(v i ) = 3, 3 ≤ i ≤ 6. Suppose that v 1 v 2 ∈ E. W.l.o.g. v 1 v 3 , v 2 v 4 ∈ E. If v 3 v 4 ∈ E, then v 3 v 4 cannot be extended. So v 3 v 4 ∈ E. W.l.o.g. v 3 v 5 , v 4 v 6 ∈ E but v 5 , v 6 cannot be 3- vertices. So v 1 v 2 ∈ E. If v i ∈ N (v 1 ) ∩ N (v 2 ), then v i is universal by Property 2.6, which is impossible. Thus w.l.o.g. N (v 1 ) = {v 3 , v 4 }, N (v 2 ) = {v 5 , v 6 }. So G[V -{v 1 , v 2 }] = C 4 . W.l.o.g. v 3 v 4 , v 5 v 6 , v 3 v 5 , v 4 v 6 ∈ E, but v 3 v 6 ∈ E cannot be extended. Let n 2 = 3. W.l.o.g. d(v 1 ) = d(v 2 ) = d(v 3 ) = 2, d(v 4 ) = d(v 5 ) = 3, d(v 6 ) = 4. We have |N (v 6 ) ∩ {v 1 , v 2 , v 3 }| ≥ 2, so v 6 is universal a contradiction. Let n 2 = 4. W.l.o.g. d(v 1 ) = d(v 2 ) = d(v 3 ) = d(v 4 ) = 2. If d(v 5 ) = d(v 6 ) = 4, then |N (v 6 ) ∩ {v 1 , v 2 , v 3 , v 4 }| ≥ 2, so v 6 is universal a contradiction. So we have d(v 5 ) = 3, d(v 6 ) = 5 but |N (v 5 ) ∩ {v 1 , v 2 , v
v 2 , v 1 v 4 , v 2 v 5 , v 3 v 6 , v 3 v 7 ∈ E. If v 6 v 7 ∈ E then v 4 ∈ N (v 6 ) ∩ N (v 7
) and from Property 2.4 d(v 4 ) > 3, a contradiction. So v 6 v 7 ∈ E, and w.l.o.g. v 4 v 6 , v 5 v 7 , v 4 v 5 ∈ E but v 4 v 7 cannot be extended. • Exp 2 (8) = 11: One can check that G 8 (see Figure 5) or the graph shown in Figure 2 So from now on we examine the case where δ(G) = 2, there is no universal vertex and the following condition.

Cond. 4.2 For any two 2-vertices u, v we have N G (u) ∩ N G (v) = ∅. Let W = {v ∈ V : d(v) = 2}. If |W | = 1 then m ≥ 3n-1 2 . So we assume now that |W | ≥ 2. Let W 1 = {v ∈ W : N G (v) ∩ W = ∅} that is the subset of 2-vertices adjacent to another 2-vertex.
We will use a discharging procedure where a weight w(v) is assigned to every vertex v ∈ V . At each step of the process some w(v)'s are modified but Σ v∈V w(v) = Σ v∈V d(v) is invariant during the procedure. At the beginning we take w(v) = d(v) for every vertex v ∈ V . We will show that at the end of the procedure w(v) ≥ 11 4 for every vertex v ∈ V , so when the procedure will be completed we will have

Σ v∈V w(v) = Σ v∈V d(v) = 2m ≥ 3n -n 4 = 11 4 n .
We treat the vertices according to the following sequence of four steps 1, . . . , 4. At the beginning the vertices with w(v) < 11 4 are 2-vertices. During the procedure these vertices are charged while k-vertices, k ≥ 3, are discharged. At each step a 2-vertex v with w(v) < 11 4 is charged and

u (u = v) is defined as a 2-vertex such that d(v, u) = min{d(v, x) : x ∈ W }. Notice that from Cond. 4.2 we have d(v, u) = 2. The vertices of W 1 are treated in step 1. The vertices of W \ W 1 are treated in steps 2, 3, 4. Let N (v) = {v , v } and N (u) = {u , u }. 1. For all v ∈ W 1 (d(v, u) = 1): Let u = v . If d(v ) ≥ 4, let w(v) ← w(v)+ 3 4 = 11 4 and w(v ) ← w(v ) -3 4 . Else N G (v ) = {v, y, y } with u = y, y . Let w(v) ← w(v) + 3 4 = 11 4 and w(v ) ← w(v ) -1 4 , w(y) ← w(y) -1 4 , w(y ) ← w(y ) -1 4 . 2. For all v ∈ W \ W 1 (d(v, u) ≥ 3, d(v ) ≥ 3 and d(v ) ≥ 3): Let w(v) ← w(v) + 1 2 = 10 4 and w(v ) ← w(v ) -1 4 , w(v ) ← w(v ) -1 4 . 3. For all v ∈ W \ W 1 : • If there is y ∈ N G (v) such that d(y) ≥ 4, let w(v) ← w(v) + 1 4 = 11 4 and w(y) ← w(y) -1 4 ; (Step 3.a) • else -if there is y such that d(v, y) = 2 with d(y) ≥ 5 or d(y) = 4 and N G (y) ∩ W 1 = ∅, let w(v) ← w(v) + 1 4 = 11 4 and w(y) ← w(y) -1 4 ; (Step 3.b) -else, let µ = vv ...u u be a shortest path between u and v: If d(v, u) ≥ 4, let y ∈ N G (v ), y ∈ µ. Let w(v) ← w(v) + 1 4 = 11 4 and w(y) ← w(y) -1 4 . If d(v, u) = 3, let y ∈ N G (v ) with y ∈ µ. If d(y) ≥ 4 or d(y) = 3 and w(y) = 3, let w(v) ← w(v) + 1 4 = 11 4 and w(y) ← w(y) -1 4 . (Step 3.c) 4. For all v ∈ W \ W 1 such that w(v) = 10
4 , let y be such that d(v, y) ≤ 3 and

w(y) ≥ 3: let w(v) ← w(v) + 1 4 = 11 4 and w(y) ← w(y) -1 4 .
Remark 4.1 Notice that there may be several 2-vertices u such that d(v, u) = min{d(v, x) : x ∈ W }. We can choose anyone.

We summarize the main facts of the procedure: After step 1 all vertices v ∈ W 1 have a charge w(v) = 11 4 : it is important to note that from Properties 2.4 and 2.6, in the case where

d(v ) = d(y) = d(y ) = 3, u cannot be adjacent to v , y, y . After step 3, a vertex v ∈ W \ W 1 has a charge w(v) = 11 4 if there is x ∈ V verifying one of the following conditions: a) x is a k-vertex with k ≥ 5 and d(v, x) ≤ 2; b) x is a 4-vertex and d(v, x) = 1; c) x is a 4-vertex, d(v, x) = 2 and N G (x) ∩ W 1 = ∅.
Now we prove that when the discharging procedure is completed we have w(x) ≥ Proof: Let x be a discharged vertex. At the end of step 3, x was discharged only to charge 2-vertices at distance 1 or 2.

From Cond. 4.2, x has at most one 2-vertex in its neighborhood, and any neighbor of x has at most one 2-vertex in its own neighborhood so x has at most d(x) 2-vertices at distance exactly 2. x sends a charge 1 4 or 3 4 to a neighbor, and/or a charge 1 4 to a 2-vertex at distance 2. • d(x) ≥ 5. From above we have w(x) ≥ 5 -

( 3 4 + d(x) 1 4 ) ≥ 3. • d(x) = 4. Assume that N G (x) ∩ W = ∅. Since x sends a charge 1 4 to at most 4 2-vertices, we have w(x) ≥ 4 -4 × 1 4 = 3. Now N G (x) ∩ W = ∅. Let N G (x) ∩ W = {v}. Assume that v / ∈ W 1 .
x sends a charge 1 4 to v at step 2 and another charge 

(x) ≥ 4 -(2 × 1 4 + 3 × 1 4 ) = 11 4 . Now we assume that v ∈ W 1 . Let x = v , u = v with d(u) = 2. By step 1
x sends a charge 3 4 to v. Moreover x can send a charge 1 4 to some 2-vertex z, z = u, with d(x, z) = 2. Assume that x charges three such 2-vertices. Let r, s, t be these vertices and r rr x, s ss x, t tt x be the three corresponding paths. So N G (x) = {v, r , s , t } with d(r ), d(s ), d(t ) ≥ 3. From Cond. 4.2, r , s , t , r , s , t are pairwise distinct. If d(r ) ≥ 4 or d(r ) ≥ 4 then r is not charged from x and so w(x) ≥ Assume that x charges a 2-vertex t at step 2 and a 2-vertex v at step 1. We have 

t ∈ W \ W 1 , v ∈ W 1 , t ∈ N G (x)
(u ) = 4, then N G (u ) ∩ W 1 = ∅ (from step 3.b).
We assume that there is a 2

-vertex t ∈ N G (x) (x may discharge for t in step 2). Let N G (t) = {x, t }. If xu is a non-edge it cannot be extended. So xu ∈ E.
Assume that d(u ) = 3. If t = u then x = u and v u cannot be extended. Hence t = u. From Cond. 4.2 t = u , v . We have v u , v t ∈ E, else they cannot be extended. Moreover u t ∈ E else it cannot be extended. Since n ≥ 10, it exists y / ∈ {v, v , v , u, u , u , x, t, t }. Since v is a 3-vertex, yv ∈ E but v y cannot be extended.

Hence d(u ) = 4 and u ∈ W 1 . Since t is a 2-vertex and d(v, t) = 3, t can play the role of u in step 3.c., and u the role of y (see Remark 4.1). Then w(v) = 11 4 , a contradiction. We assume that w(x ) = 11 4 . From Claim 4.1 x is a 3-vertex and it exists a 2-vertex z such that d(z, x ) = 2, z is charged by x . So there is a 2-path zz x with d(z ) = 3. Since u is charged by x and w(v) = 11 4 , we have that z = u, v. From Cond. 4.2 we have z = u , v . Since d(z ) = 3, we have z v ∈ E or z u ∈ E but this non-edge cannot be extended. So w(x ) ≥ 3 after step 3. Since d(v, x ) = 3, it follows that w(v) = 11 4 and w(x ) = 11 4 after step 4. From Property 2.7 x cannot be the head of another bull B with the same conditions as in B. Hence step 4 can be applied for every vertex v such that w(x) = 10 4 after step 3.

So we have N

G (x) ∩ W = ∅. Let N G (x) = {v , x , x }. We assume that a 2-vertex z, z = v is adjacent to x or x . W. l.o.g. z ∈ N G (x ). Since v ∈ W 1 , we have that vz is a non-edge. From Cond. 4.2 vx , v z / ∈ E and since x = v , vx / ∈ E. If x = u , then v x / ∈ E,
Hence the procedure terminates with w(v) = 11 4 for every 2-vertex.

So after the procedure w(x) ≥ 11 4 for every x ∈ V .

5 Meg(n) for n ≥ 10

A basic module

To build the minimum expandable graphs we define their components. Figure 7 gives the component H. The graph H(2) is as follows (see Figure 8):

H(2) contains 2 copies H 1 , H 2 of H. The vertices of H i are denoted by a i , b i , . . . , h i , 1 ≤ i ≤ 2. The edges between H 1 and H 2 are a 1 b 2 , b 1 a 2 , c 1 c 2 , d 1 d 2 .
Notice that since H 2 is a copy of H 1 , there are symmetries in H(2). In each module, a i , c i , e i , g i is symmetric to b i , d i , f i , h i and a i (resp. b i ) and c i (resp. d i ) play identical roles. As a consequence, if there is a 2-factor containing, for instance, the non-edge a 1 f 1 then, by symmetry, there is also a 2-factor containing c 1 f 1 as well as a 2-factor containing b 1 e 1 or d 1 e 1 , a 2 f 2 , b 2 e 2 , d 2 e 2 , c 2 f 2 . Also, a 1 c 2 plays the same role as a 1 d 2 .

The graph H(p), p ≥ 3, is built from H(p -1) as follows (see Fig. 9): add one copy H p of H to H(p -1). The vertices of H i = (V i , E i ) are denoted by a i , b i , . . . , h i , 1 ≤ i ≤ p. Remove the two edges b 1 a p-1 and d 1 d p-1 of H ( p -1). Add the four edges b 1 a p , a p-1 b p , d 1 d p , c p d p-1 . The modules H i are arranged around a cycle and numbered clockwise from 1 to p. Notice that there is a symmetry on each side of H 1 between H i and H p-i+2 , for i = 2, ..., p/2 + 1. As for H(2), a i (resp. b i ) and c i (resp. d i ) play identical roles: this can be seen by looking at Figure 9. If there is a 2-factor containing, for instance a 1 f 2 , then, there is also a 2-factor containing b 1 f 5 as well as a 2-factor containing c 1 f 2 or d 1 f 5 . Notice also that a p b 1 and d p d 1 , the two edges linking H p to H 1 play the same role.

In the following, we shall shorten many proofs by referring to all these properties as symmetries.

Remark 5.1 The graph H p has a 2-factor: for instance, take the cycle (a 1 , b 2 , a 2 , ..., a p , b 1 , a 1 ) and the p cycles (c i , e i , g i , h i , f i , d i , c i ), i = 1, ..., p.

Remark 5.2 The subgraph induced by

V i ∪V i+1 , 1 < i < p, is hamiltonian. A hamil- tonian cycle is (a i , b i , f i , h i , g i , e i , c i , d i , c i+1 , d i+1 , f i+1 , h i+1 , g i+1 , e i+1 , a i+1 , b i+1 , a i ).

Meg(n) for n = 8p, p ≥ 2

We use a recurrence to prove that H(p) is a meg(8p).

Property 5.1 H(2) is a meg(16).

Proof: H(2) contains m = 22 = 11 8 × 16 edges. We show that H(2) is expandable. Let xy ∈ E. We give, first a chain (x, . . . , y), and then, possibly, a set of cycles that provide a 2-factor of H(2). • xy = a 1 f 1 : (f 1 , h 

• xy = a 1 c 1 : (a 1 , e 1 , g 1 , h 1 , f 1 , b 1 , a 2 , b 2 , f 2 , h 2 , g 2 , e 2 , c 2 , d 2 , d 1 , c 1 ); by symmetry b 1 d 1 , b 2 d 2 , a 2 c 2 can be extended; • xy = a 1 d 1 : (d 1 , c 1 , e 1 , g 1 , h 1 , f 1 , b 1 , a 2 ,
• xy = a 1 g 1 : (g 1 , h 1 , f 1 , b 1 , a 2 , b 2 , f 2 , h 2 , g 2 , e 2 , c 2 , d 2 , d 1 , c 1 , e 1 , a 1 ); by symmetry c 1 g 1 , b 1 h 1 , d 1 h 1 , b 2 h 2 , d 2 h 2 , a 2 g 2 , c
2 g 2 can be extended;

• xy = a 1 a 2 : (a 2 , b 1 , f 1 , h 1 , g 1 , e 1 , c 1 , d 1 , d 2 , c 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 1 ); by symmetry b 1 b 2 , c 1 d 2 , d 1 c 2 can be extended. • xy = a 1 c 2 : (c 2 , d 2 , d 1 , c 1 , e 1 , g 1 , h 1 , f 1 , b 1 , a 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 1 ); by symmetry b 1 d 2 , b 1 c 2 , a 1 d 2 , b 2 c 1 , d 1 b 2 , a 2 c 1 , a 2 d 1 can be extended. • xy = d 1 g 1 : (g 1 , h 1 , f 1 , b 1 , a 2 , b 2 , a 1 , e 1 , c 1 , c 2 , e 2 , g 2 , h 2 , f 2 , d 2 , d 1 ); by symmetry b 1 g 1 , c 1 h 1 , a 1 h 1 , c 2 h 2 , a 2 h 2 , d 2 g 2 , b
2 g 2 can be extended;

• xy = e 1 a 2 : (e 1 , g 1 , h 1 , f 1 , b 1 , a 1 , b 2 , f 2 , h 2 , g 2 , e 2 , a 2 ), (c 1 , d 1 , d 2 , c 2 , c 1 ); by sym- metry b 2 f 1 , b 1 f 2 , a 1 e 2 , d 2 e 1 , c 2 f 1 , d 1 e 2 , c
1 f 2 can be extended;

• xy = e 1 b 2 : (e 1 , g 1 , h 1 , f 1 , d 1 , c 1 , c 2 , d 2 , f 2 , h 2 , g 2 , e 2 , a 2 , b 1 , a 1 , b 2 ); by symmetry a 2 f 1 , a 1 f 2 , b 1 e 2 , c 2 e 1 , d 2 f 1 , c 1 e 2 , d 1 f 2 can be extended; • xy = e 1 f 1 : (e 1 , g 1 , h 1 , f 1 ), (a 1 , b 1 , a 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 1 ), (c 1 , d 1 , d 2 , c 2 , c 1 )
; by symmetry e 2 f 2 can be extended;

• xy = e 1 d 2 : (e 1 , g 1 , h 1 , f 1 , d 1 , c 1 , c 2 , d 2 ), (a 1 , b 1 , a 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 1 ); by sym- metry a 2 e 1 , c 2 f 1 , b 2 f 1 , c 1 f 2 , d 1 e 2 , a 1 e 2 , b 1 f 2 can be extended; • xy = e 1 f 2 : (e 1 , g 1 , h 1 , f 1 , b 1 , a 1 , b 2 , a 2 , e 2 , g 2 , h 2 , f 2 ), (c 1 , d 1 , d 2 , c 2 , c 1 )
; by symmetry e 1 e 2 , f 1 f 2 , e 2 f 1 can be extended;

• xy = e 1 h 2 : (e 1 , g 1 , h 1 , f 1 , d 1 , c 1 , c 2 , d 2 , f 2 , b 2 , a 1 , b 1 , a 2 , e 2 , g 2 , h
2 ); by symmetry e 1 g 2 , f 1 h 2 , f 1 g 2 , e 2 g 1 , f 2 h 1 , f 2 g 1 , e 2 h 1 can be extended;

• xy = f 1 g 1 : (g 1 , h 1 , f 1 ), (b 1 , a 1 , e 1 , c 1 , d 1 , d 2 , c 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 2 , b 1 
); by symmetry e 1 h 1 , f 2 g 2 , e 2 h 2 can be extended;

• xy = g 1 b 2 : (g 1 , h 1 , f 1 , d 1 , d 2 , c 2 , c 1 , e 1 , a 1 , b 1 , a 2 , e 2 , g 2 , h 2 , f 2 , b 2 ); by symmetry c 2 g 1 , a 2 h 1 , d 2 h 1 , a 1 h 2 , d 1 h 2 , b 1 g 2 , c
1 g 2 can be extended; Case 2. x, y / ∈ H 2 : by symmetry this is equivalent to Case 1. Case 3. x ∈ H 2 , y ∈ H 3 . For each xy, we give, first a chain (x, . . . , y), and then, possibly, a set of cycles that provide a 2-factor of H(3).

• xy = g 1 d 2 : (g 1 , h 1 , f 1 , d 1 , d 2 ), (a 1 , e 1 , c 1 , c 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 2 , b 1 , a 1 ); by sym- metry a 2 g 1 , c 2 h 1 , b 2 h 1 , c 1 h 2 , b 1 h 2 , d 1 g 2 , a 1 g 2 can be extended; • xy = g 1 h 2 : (g 1 , h 1 , f 1 , d 1 , d 2 , f 2 , b 2 , a 2 , b 1 , a 1 , e 1 , c
• xy = a 2 a 3 : (a 2 , b 3 , f 3 , h 3 , g 3 , e 3 , a 3 ); (a 1 , b 1 , f 1 , h 1 , g 1 , e 1 , c 1 , d 1 , d 3 , c 3 , d 2 , c 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 1 ); by symmetry b 2 b 3 , d 2 d 3 , c 2 c 3 can be extended; • xy = a 2 c 3 : (a 2 , b 3 , a 3 , e 3 , g 3 , h 3 , f 3 , d 3 , d 1 , c 1 , e 1 , g 1 , h 1 , f 1 , b 1 , a 1 , b 2 , f 2 , h 2 , g 2 , e 2 , c 2 , d 2 , c 3 
); by symmetry d 2 b 3 can be extended;

• xy = a 2 d 3 : (a 2 , b 3 , f 3 , h 3 , g 3 , e 3 , a 3 , b 1 , a 1 , b 2 , f 2 , h 2 , g 2 , e 2 , c 2 , d 2 , c 3 , d 3 ), (c 1 , d 1 , f 1 , h 1 , g 1 , e 1 , c 1 
); by symmetry b 2 c 3 , c 2 b 3 , d 2 a 3 can be extended;

• xy = a 2 e 3 : (a 2 , b 3 , a 3 , b 1 , a 1 , b 2 , f 2 , h 2 , g 2 , e 2 , c 2 , d 2 , c 3 , d 3 , f 3 , h 3 , g 3 , e 3 ), (c 1 , d 1 , f 1 , h 1 , g 1 , e 1 , c 1 ); by symmetry f 2 b 3 , d 2 f
3 , e 2 c 3 can be extended;

• xy = a 2 f 3 : (a 2 , b 3 , a 3 , e 3 , g 3 , h 3 , f 3 ), (a 1 , b 1 , f 1 , h 1 , g 1 , e 1 , c 1 , d 1 , d 3 , c 3 , d 2 , c 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 1 )
; by symmetry e 2 b 3 , f 2 c 3 , d 2 e 3 can be extended;

• xy = a 2 g 3 : (a 2 , b 3 , a 3 , e 3 , c 3 , d 2 , c 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 1 , b 1 , f 1 , h 1 , g 1 , e 1 , c 1 , d 1 , d 3 , f 3 , h 3 , g 3 
); by symmetry h 2 b 3 , g 2 c 3 , d 2 h 3 can be extended;

• xy = a 2 h 3 : (a 2 , b 3 , f 3 , d 3 , c 3 , d 2 , c 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 1 , b 1 , a 3 , e 3 , g 3 , h 3 ), (c 1 , d 1 , f 1 , h 1 , g 1 , e 1 , c 1 
); by symmetry g 2 b 3 , h 2 c 3 , d 2 g 3 can be extended;

• xy = b 2 a 3 : (b 2 , f 2 , h 2 , g 2 , e 2 , a 2 , b 3 , f 3 , h 3 , g 3 , e 3 , a 3 ), (c 1 , d 1 , d 3 , c 3 , d 2 , c 2 , c 1 ), (a 1 , b 1 , f 1 , h 1 , g 1 , e 1 , a 1 
); by symmetry c 2 d 3 can be extended;

• xy = b 2 d 3 : (b 2 , a 2 , b 3 , a 3 , b 1 , a 1 , e 1 , g 1 , h 1 , f 1 , d 1 , c 1 , c 2 , e 2 , g 2 , h 2 , f 2 , d 2 , c 3 , e 3 , g 3 , h 3 , f 3 , d 3 )
; by symmetry c 2 a 3 can be extended;

• xy = b 2 e 3 : (b 2 , a 2 , b 3 , a 3 , b 1 , a 1 , e 1 , g 1 , h 1 , f 1 , d 1 , c 1 , c 2 , e 2 , g 2 , h 2 , f 2 , d 2 , c 3 , d 3 , f 3 , h 3 , g 3 , e 3 
); by symmetry f 2 a 3 , e 2 d 3 , c 2 f 3 can be extended;

• xy = b 2 f 3 : (b 2 , a 1 , e 1 , g 1 , h 1 , f 1 , b 1 , a 3 , b 3 , a 2 , e 2 , g 2 , h 2 , f 2 , d 2 , c 2 , c 1 , d 1 , d 3 , c 3 
, e 3 , g 3 , h 3 , f 3 ); by symmetry e 2 a 3 , f 2 d 3 , c 2 e 3 can be extended;

• xy = b 2 g 3 : (b 2 , a 1 , e 1 , g 1 , h 1 , f 1 , b 1 , a 3 , e 3 , c 3 , d 3 , d 1 , c 1 , c 2 , d 2 , f 2 , h 2 , g 2 , e 2 , a 2 , b 3 , f 3 , h 3 , g 3 
); by symmetry h 2 a 3 , g 2 d 3 , c 2 h 3 can be extended;

• xy = b 2 h 3 : (b 2 , a 2 , b 3 , f 3 , d 3 , c 3 , d 2 , f 2 , h 2 , g 2 , e 2 , c 2 , c 1 , d 1 , f 1 , h 1 , g 1 , e 1 , a 1 , b 1 
, a 3 , e 3 , g 3 , h 3 ); by symmetry g 2 a 3 , h 2 d 3 , c 2 g 3 can be extended;

• xy = e 2 e 3 : (e 2 , g 2 , h 2 , f 2 , b 2 , a 2 , b 3 , a 3 , b 1 , a 1 , e 1 , g 1 , h 1 , f 1 , d 1 , c 1 , c 2 , d 2 , c 3 , d 3 , f 3 , h 3 , g 3 , e
3 ); by symmetry f 2 f 3 can be extended;

• xy = e 2 f 3 : (e 2 , g 2 , h 2 , f 2 , d 2 , c 2 , c 1 , d 1 , d 3 , c 3 , e 3 , g 3 , h 3 , f 3 ); (a 1 , e 1 , g 1 , h 1 , f 1 , b 1 , a 3 , b 3 , a 2 , b 2 , a 1 )
; by symmetry f 2 e 3 can be extended;

• xy = e 2 g 3 : (e 2 , g 2 , h 2 , f 2 , b 2 , a 2 , b 3 , a 3 , e 3 , c 3 , d 2 , c 2 , c 1 , d 1 , d 3 , f 3 , h 3 , g 3 ); (a 1 , b 1 , f 1 , h 1 , g 1 , e 1 , a 1 
); by symmetry h 2 f 3 , f 2 h 3 , g 2 e 3 can be extended;

• xy = e 2 h 3 : (e 2 , g 2 , h 2 , f 2 , b 2 , a 2 , b 3 , f 3 , d 3 , c 3 , d 2 , c 2 , c 1 , d 1 , f 1 , h 1 , g 1 , e 1 , a 1 , b 1 , a 3 
, e 3 , g 3 , h 3 ); by symmetry g 2 f 3 , f 2 g 3 , h 2 e 3 can be extended;

• xy = g 2 g 3 : (g 2 , h 2 , f 2 , b 2 , a 1 , b 1 , f 1 , h 1 , g 1 , e 1 , c 1 , d 1 , d 3 , f 3 , h 3 , g 3 ), (a 2 , e 2 , c 2 , d 2 , c 3 , e 3 , a 3 , b 3 , a 2 )
; by symmetry h 2 h 3 can be extended;

• xy = g 2 h 3 : (g 2 , h 2 , f 2 , b 2 , a 1 , b 1 , a 3 , e 3 , g 3 , h 3 ), (a 2 , e 2 , c 2 , d 2 , c 3 , d 3 , f 3 , b 3 , a 2 ), (c 1 , d 1 , f 1 , h 1 , g 1 , e 1 , c 1 
); by symmetry h 2 g 3 can be extended; The proof is by induction. From Properties 5.1 and 5.2, H(2) and H(3) are expandable. So for p ≥ 3 we assume that H(p) and H(p -1) are expandable.

We now prove that for any p ≥ 3, H(p + 1) is expandable.

Let xy ∈ H(p + 1). We examine several cases. ∈ F , we add to F the hamiltonian cycle on V p+1 ∪ V p (see Remark 5.2) to obtain a 2-factor in H(p + 1). Case 2.2. y ∈ V p ∪ V p+1 . By symmetry, y ∈ V p+1 is equivalent to y ∈ V 2 and, if p ≥ 4, y ∈ V p is equivalent to y ∈ V 3 seen just before.

Case 1. x, y / ∈ V 1 ∪ V p+1 . Let
It remains the case p = 3, y ∈ V 3 : we remove from H(4) the modules H 2 and H 4 and we obtain H (2) isomorphic to H(2). Looking at the 2-factors obtained in H( 2) 

for xy / ∈ E, x ∈ V 1 , y ∈ V 2 ,
y ∈ V i , i = 2. If y ∈ V 1 , by symmetry, this is equivalent to the case x ∈ V 1 , y ∈ V p+1 treated in Case 2.
If y ∈ V i , i = 3, ..., p -1, these cases are equivalent to cases x ∈ V 2 , y ∈ V p-i+3 which were treated in Case 1.

If y ∈ V p , this is equivalent to x ∈ V 2 , y ∈ V 3 treated in Case 1.

If y ∈ V p+1 , this is equivalent to x, y ∈ V 2 treated in Case 1.

Case 3.2 y ∈ V 2 , p ≥ 4. There are two adjacent modules H i and H i+1 with i = 2 and i + 1 = p + 1. We remove these modules and add the edges a i-1 b i+2 and d i-1 c i+2 . We obtain a graph H (p -1) isomorphic to H(p -1) which has a 2-factor F containing xy by assumption.

If a i-1 b i+2 ∈ F but d i-1 c i+2 / ∈ F , then a i-1 b i+2 is substituted for a i-1 b i a i b i+1 a i+1 b i+2
; adding the two cycles (c j , d j , f j , h j , g j , e j , c j ), i ≤ j ≤ i + 1, we have a 2-factor in H(p + 1). By symmetry, the case where

d i-1 c i+2 ∈ F and a i-1 b i+2 / ∈ F is equivalent. If both a i-1 b i+2 and d i-1 c i+2 are in the 2-factor of H (p-1), then a i-1 b i+2 is substituted for a i-1 b i a i b i+1 a i+1 b i+2 and d i-1 c i+2 for d i-1 c i , e i g i h i f i d i c i+1 e i+1 g i+1 h i+1 f i+1 d i+1 c i+2 to obtain a 2-factor in H(p + 1). Fi- nally, if neither a i-1 b i+2 nor d i-1 c i+2
are in the 2-factor of H (p -1), then adding the hamiltonian cycle covering V i ∪V i+1 (see Remark 5.2) we obtain a 2-factor in H(p+1).

Case 3.3 y ∈ V 2 , p = 3, x ∈ V 4 . We remove the module H 3 from H(4) and add the edges a 2 b 4 and d 2 c 4 : we get a graph H (3) isomorphic to H(3) in which xy can Let x = i : we have y ∈ {i, j, k, l, a 1 }. First we suppose that y is not a neighbor of a 1 . We know that ya 1 can be extended in H(p), so in the corresponding 2-factor there is a cycle with the sequence ya 1 . Substituting ya 1 for yia 1 and adding the cycle (j, k, l, j) we have a 2-factor for H +4 (p). Now let y = e 1 : We know that e 1 f 1 can be extended in H(p). The corresponding 2-factor contains (e 1 , g 1 , h 1 , f 1 , e 1 ) and a cycle C with the edge a 1 b 1 . Substituting the sequence a 1 b 1 for a 1 ie 1 g 1 h 1 f 1 b 1 and adding (j, k, l, j) we have a 2-factor of H +4 (p). When y ∈ {b 1 , b 2 } we proceed as follows: e 1 f 1 can be extended in H(p), the corresponding 2-factor contains (e 1 , g 1 , h 1 , f 1 , e 1 ), a cycle C with a 1 y, and a cycle C with c 1 d 1 . So substituting the sequence a 1 y for a 1 iy, the sequence c 1 d 1 for c 1 e 1 g 1 h 1 f 1 d 1 and adding (j, k, l, j) we have a 2-factor of H +4 (p).

Let x = k (resp.x = j): We proceed as for x = i but instead of a 1 i we take a 1 iljk (resp. a 1 ilkj).

The graph H +5 (p), is obtained from H +2 (p) by subdividing the edge a 1 b 1 into the path a 1 lkb 1 , adding a 2-vertex r together with two edges rl, rk. See Figure 10. Property 5.9 H +5 (p) is a meg(8p + 5).

Proof: H +5 (p) contains m = 11p + 7 = 11 8 × (8p + 5) edges. From Property 5.6 we know that H +2 (p) is expandable. Let xy ∈ E. If xy is also an non-edge of H +2 (p) and the corresponding 2-factor contains a 1 b 1 then we substitute the sequence a 1 b 1 for a 1 lrkb 1 ; else if a 1 b 1 is not in the 2-factor, so we add the cycle (k, l, r, k) to the 2-factor. In both cases we obtain a 2-factor for H +5 (p). Property 5.10 G 10 is a meg [START_REF] Wang | Bipartite matching extendable graphs[END_REF].

Now let xy

= a 1 b 1 : (a 1 , b 2 , a 2 , b 3 , a 3 , . . . , b p , a p , b 1 ), (c 1 , j, i, e 1 , g 1 , h 1 , f 1 , d 1 , c 1 ), (c i , e i , g i , h i , f i , d i , c i ), 2 ≤ i ≤ p,
Proof: G 10 contains m = 14 = 11 8 × 10 edges. Let xy ∈ E.

• xy = ad: (a, b, c, e, f, h, j, i, g, d) yields a 2-factor; by symmetry ae, jf, jg can be extended;

• xy = af : (a, b, c, e, g, d, f ), (h, i, j, h) yields a 2-factor; by symmetry ag, jd, je can be extended;

• xy = ah: (a, b, c, e, f, d, g, i, j, h) yields a 2-factor; by symmetry ai, jb, jc can be extended;

• xy = aj: (a, b, c, e, f, d, g, i, h, j) yields a 2-factor;

• xy = be: (b, a, c, e), (d, g, i, j, h, f, d) yields a 2-factor; by symmetry cd, hg, if can be extended;

• xy = bf : (b, a, c, e, g, d, f ), (h, i, j, h) yields a 2-factor; by symmetry cg, hd, ie, bg, cf, he, id can be extended;

• xy = bh: (b, a, c, e, f, d, g, i, j, h) yields a 2-factor; by symmetry ci, bi, ch can be extended;

• xy = de: (d, f, h, j, i, g, e), (a, b, c, a) yields a 2-factor; by symmetry f g can be extended.

The graph G 11 shown in Figure 12 is obtained from G 10 by the addition of the vertex k, the removal of dg, ef and the addition of dk, ek, f k, gk to E. • xy = dg: (d, f, k, e, g), (a, b, c, a), (h, i, j, h) is a 2-factor; by symmetry ef can be extended;

• xy = ak: (a, b, c, e, g, i, j, h, f, d, k) is a 2-factor; by symmetry jk can be extended;

• xy = bk: (b, a, c, e, g, i, j, h, f, d, k) is a 2-factor; by symmetry ck, hk, ik can be extended.

The graph G 12 shown in Figure 13 is obtained from G 10 by the addition of the vertices k, l, the removal of dg, ef and the addition of dk, ek, f l, gl, kl to E. • xy = dg: (d, b, a, c, e, k, l, f, h, j, i, g) is a 2-factor; by symmetry ef can be extended;

• xy = kf : (k, l, g, e, c, a, b, d, f ), (h, i, j, h) is a 2-factor; by symmetry kg, dl, el can be extended;

• xy = ka: (k, d, f, l, g, e, c, b, a), (h, i, j, h) is a 2-factor; by symmetry lj can be extended;

• xy = kb: (k, d, f, l, g, e, c, a, b), (h, i, j, h) is a 2-factor; by symmetry kc, lh, li can be extended;

• xy = kj: (k, l, g, e, c, a, b, d, f, h, i, j) is a 2-factor; by symmetry la can be extended;

• xy = ki: (k, l, g, e, c, a, b, d, f, h, j, i) is a 2-factor; by symmetry kh, lb, lc can be extended.

The graph G 13 shown in Figure 14 is obtained from G 10 by the addition of the vertices k, l, o, the removal of ac. {a, k, l, o} induce the diamond with ao ∈ E . Property 5.13 G 13 is a meg(13).

Property 2 . 1 GProperty 2 . 3 Property 2 . 4

 212324 is connected. Proof: If u and v are in two distinct components, then clearly uv cannot be extended. Property 2.2 If G has a leaf, then for n = 5 we have m ≥ 7 and for n ≥ 6 we have m ≥ 3 2 n. Proof: Let u be a 1-vertex of G. If G is expandable, then G -u induces a clique. So for n = 5 we have m ≥ 7 and for n ≥ 6 we obtain m ≥ 3 2 n. If G contains a universal vertex and n ≥ 5, then m ≥ 3 2 (n -1). Proof: Assume that G has a universal vertex. If there is no leaf, then Σ u∈V d(u) ≥ n -1 + 2(n -1) = 3(n -1), else from Property 2.2 m ≥ 3 2 (n -1). Let G contain a 2-vertex v with N (v) = {a, b} and ab ∈ E. If there is c ∈ N (a) ∩ N (b), c = v, then d(c) ≥ 4. Proof: Consider any extension of ab: the triangle (a, b, v) is in the 2-factor. Since c is necessarily covered by another cycle, we have d(c) ≥ 4. Property 2.5 Let G contain two 2-vertices u, v. If d(u, v) = 4 with the 4-path uu tv v, then d(t) > 3.

-6 and m ≥ 3 2 n

 2 since n ≥ 7. If a, b, c are three 2-vertices, then any non-edge xy with x, y = a, b, c cannot be extended since any 2-factor containing xy would use exactly two edges among va, vb, vc. Thus G -{a, b, c} is a clique. So we have m

Figure 2 :

 2 Figure 2: Two diamonds with h 1 h 2 ∈ E.

Figure 3 :

 3 Figure 3: P 3 , the claw, the paw, the butterfly (from left to right).

Figure 5 :

 5 Figure 5: The graph G 8 is a meg(8).

11 4 Claim 4 . 1

 441 for every vertex x of G. First we prove that any vertex x with d(x) ≥ 3 has a charge w(x) ≥ 11 4 at the end of the procedure. Then we prove that any 2-vertex x has a charge w(x) = 11 4 at the end of the procedure. At the end of step 3 any vertex x with d(x) ≥ 3 verifies w(x) ≥ 11 4 . Moreover if d(x) ≥ 5 or d(x) ≥ 4 and N G (x) ∩ W = ∅, then w(x) ≥ 3.

1 4

 1 at step 3.a. Moreover during steps 3.b and 3.c, x can send a charge 1 4 to a 8 2-vertex at distance 2: since v / ∈ W 1 , there are at most d(x)-1 such 2-vertices. Thus we have w

11 4 .

 4 So we can assume that d(r ) = 3 and d(r ) ∈ {2, 3}. If d(r ) = 2, then from Cond. 4.2 r = u, so r rr xv is a 4-path between the 2-vertices r and v, and by Property 2.5 d(r ) = 4, a contradiction. Thus d(r ) = d(s ) = d(t ) = 3, and r, s and t are not charged at step 1. Since r is charged by x, this can only be done at step 3.c (case d(v, u) = 4): Here x plays the role of y, with d(x) = 3 and w(x) = 3, and r corresponds to v in the path µ, also x ∈ µ. So µ is a 3-path rr z z with z ∈ W . Since d(v) = 4, z ∈ N G (x), i.e., xz / ∈ E. If z = u, then xz cannot be extended. Thus there is a 4-path zz r xv and from Property 2.5 d(r ) ≥ 4, a contradiction. So x charges v and at most two 2-vertices and thus w(x) ≥ 4 -( 3 4 + 2( 1 4 )) = 11 4 . • d(x) = 3. Assume that x charges two 2-vertices u and v at step 1. We have u, v ∈ W 1 and since d(x) = 3, u and v cannot be adjacent. So there are a 2vertex s adjacent to u and a 2-vertex t adjacent to v. If x ∈ N G (u), then from Cond. 4.2 d(v, x) = 2. Hence there is a path suxv v with {xv, xs, uv, uv , vs} / ∈ E and by Cond. 4.2 again sv ∈ E. Thus suxv v is a 4-path and by Property 2.5 we have d(x) ≥ 4, a contradiction. It follows that d(u, x) = d(v, x) = 2 and there is a path suu xv vt. By step 1 u , v are 3-vertices. If u v ∈ E it cannot be extended, so u v ∈ E. But now uv cannot be extended. Hence x charges at most one 2-vertex at step 1.

  and from Cond. 4.2 d(v, x) = 2. So there is a path uvv xt with u ∈ W 1 . From Cond. 4.2 it is a 4-path and by Property 2.5, d(v ) ≥ 4. But from step 1 x cannot charge v. So a vertex x cannot charge a 2-vertex in step 2 and a 2-vertex in step 1. By Cond. 4.2 x charges at most one 2-vertex in step 2. If follows that x charges at most one 2-vertex in steps 1 and 2. So before step 3 we have w(x) ≥ 11 4 . Since d(x) = 3, during step 3, x can be discharged only if w(x) ≥ 3. Thus after step 3 we have w(x) ≥ 11 4 . Hence after step 3 every vertex x with d(x) ≥ 3 has a charge w(x) ≥ 11 4 . Since in step 4 a vertex x is discharged only if w(x) ≥ 3, we have the following: At the end of the procedure any vertex x with d(x) ≥ 3 verifies w(x) ≥ 11 4 . Now we consider the 2-vertices. Claim 4.2 At the end of the procedure any vertex v ∈ W verifies w(v) = 11 4 . Proof: After step 1 the vertices v ∈ W 1 satisfy w(v) = 11 4 . Now let v ∈ W \ W 1 . At the end of step 2 we have w(v) = 10 4 . • d(v, u) ≥ 5. From a), b), c) if there exists x a k-vertex with k ≥ 4 and d(v, x) ≤ 2, then we have w(v) = 11 4 after step 3.b. Else let y be defined as in step 3.c. Any 2-vertex is at distance at least three from y. So y is not discharged for another 2-vertex before the treatment of v. Thus w(y) = 3 and step 3.c can be applied to v and then w(v) = 11 4 . • d(v, u) = 4. There is a 4-path vv xu u and x has no adjacent 2-vertex. From Property 2.5 d(x) ≥ 4 and from c) we have w(v) = 11 4 . • d(v, u) = 3. From Step 3.a, if v has a neighbor y with d(y) ≥ 4 then w(v) = 11 4 . From now any neighbor of v is a 3-vertex. There is a path v vv u uu such that vv u u is a 3-path. From Cond. 4.2 u , u , v , v are pairwise distinct. Let N G (v ) = {v, u , x}. If x = v , then v u cannot be a non-edge else it cannot be extended, so v u ∈ E but the non-edge vu cannot be extended, thus x = v . Assume that w(v) = 10 4 after step 3. From step 3.c, x is a 3-vertex and w(x) = 10 4 . Moreover v , v are 3-vertices (from step 3.a), 3 ≤ d(u ) ≤ 4 and if d

vv xx z is a 4 -

 4 path and by Property 2.5 d(x) ≥ 4, a contradiction. Thus x = u . Since x = x , N (x ) ∩ W = ∅, the 2-vertex z is unique and z = u. Moreover xu ∈ E. Since w(v) = 10 4 , x has discharged 1 4 to u, u being the unique 2-vertex apart v at distance 2 from x. It follows that u is a 3-vertex, hence B = G[{u, u , v, v , x}] is a bull with x for head. Moreover w(u) = 11 4 and u is charged from x.

Figure 7 :

 7 Figure 7: The subgraph H with two 2-vertices and six 3-vertices.

Figure 8 :

 8 Figure 8: Two representations of H(2). (The vertices index are omitted).

Figure 9 :

 9 Figure 9: Two representation of H(5). (The vertex indices are omitted).

  2 / ∈ F , we substitute b 1 a 2 for b 1 a 3 b 3 a 2 and we add the cycle (c 3 , d 3 , f 3 , h 3 , g 3 , e 3 , c 3 ) to obtain a 2-factor in H(3). The case b 1 a 2 / ∈ F and d 1 d 2 ∈ F is symmetric. If b 1 a 2 ∈ F and d 1 d 2 ∈ F , we substitute b 1 a 2 for b 1 a 3 b 3 a 2 and d 1 d 2 for d 1 d 3 f 3 h 3 g 3 e 3 c 3 d 2 to obtain a 2-factor in H(3).

Fact 5 . 1

 51 Let xy / ∈ H(p), p ≥ 3. If x, y = h 1 , then any 2-factor containing xy contains a p b 1 or d p d 1 . Proof: Let F be a 2-factor containing xy and assume that none of a p b 1 and d p d 1 are in F . To cover b 1 and d 1 , F must contain the edges b 1 a 1 , b 1 f 1 , d 1 c 1 and d 1 f 1 . Clearly these 4 edges cannot be completed in a 2-factor if x and y = h 1 . Property 5.3 H(p) is a meg(8p), p ≥ 4. Proof: H(p) contains m = 11p = 11 8 × 8p edges.

F be a 2 -

 2 factor containing xy in H(p). From Fact 5.1, a p b 1 ∈ F or d p d 1 ∈ F . If F contains a p b 1 but not d p d 1 , then a p b 1 is replaced by a p b p+1 a p+1 b 1 ; adding the cycle (c p+1 , d p+1 , f p+1 , h p+1 , g p+1 , e p+1 , c p+1 ) we have a 2-factor in H(p + 1). By symmetry, the case where d p d 1 ∈ H(p) and a p b 1 / ∈ H(p) is equivalent. If both a p b 1 and d p d 1 are in F , then a p b 1 is substituted for a p b p+1 a p+1 b 1 and d p d 1 for d p c p+1 e p+1 g p+1 h p+1 f p+1 d p+1 , d 1 to obtain a 2-factor in H(p + 1).Case 2. x ∈ V 1 .Case 2.1. y / ∈ V p ∪ V p+1 . From our assumption xy can be extended in H(p -1). If the 2-factor in H(p -1) contains a p-1 b 1 but not d p-1 d 1 , then a p-1 b 1 is substituted for a p-1 b p a p b p+1 a p+1 b 1 ; adding the two cycles (c j , d j , f j , h j , g j , e j , c j ), p ≤ j ≤ p + 1, we have a 2-factor in H(p+1). By symmetry, the case where the 2-factor in H(p-1)contains d p-1 d 1 but not a p-1 b 1 is equivalent. If both a p-1 b 1 and d p-1 d 1 are in the 2-factor of H(p -1), then a p-1 b 1 is substituted for a p-1 b p a p b p+1 a p+1 b 1 and d p-1 d 1 for d p-1 c p e p g p h p f p d p c p+1 e p+1 g p+1 h p+1 f p+1 d p+1 d 1 to obtain a 2-factor in H(p + 1). Finally, if a p-1 b 1 , d p-1 d 1 /

  we see that they all contain exactly three edges among a 1 b 2 , b 1 a 2 , c 1 c 2 , d 1 d 2 . Thus in H (2), any 2-factor F containing xy / ∈ E, x ∈ V 1 , y ∈ V 3 contains also exactly three edges among a 1 b 3 , b 1 a 3 , c 1 c 3 , d 1 d 3 or, equivalently, they all miss exactly one edge among a 1 b 3 , b 1 a 3 , c 1 c 3 , d 1 d 3 . To obtain a 2-factor in H(4), we make the following substitutions: if a 1 b 3 / ∈ F , we replace c 1 c 3 by c 1 c 2 d 2 c 3 , d 1 d 3 by d 1 d 4 c 4 d 3 , b 1 a 3 by b 1 a 4 e 4 g 4 h 4 f 4 b 4 a 3 and we add the cycle (b 2 , a 2 , e 2 , g 2 , h 2 , f 2 , b 2 ); if b 1 a 3 / ∈ F , we replace c 1 c 3 by c 1 c 2 d 2 c 3 , d 1 d 3 by d 1 d 4 c 4 d 3 , a 1 b 3 by a 1 b 2 f 2 h 2 g 2 e 2 a 2 b 3 and we add the cycle (a 4 , e 4 , g 4 , h 4 , f 4 , b 4 , a 4 ); if c 1 c 3 / ∈ F , we replace b 1 a 3 by b 1 a 4 b 4 a 3 , a 1 b 3 by a 1 b 2 a 2 b 3 , d 1 d 3 by d 1 d 4 f 4 h 4 g 4 e 4 c 4 d 3 and we introduce the cycle (c 2 , e 2 , g 2 , h 2 , f 2 , d 2 , c 2 ); finally, if d 1 d 3 / ∈ F , we replace b 1 a 3 by b 1 a 4 b 4 a 3 , a 1 b 3 by a 1 b 2 f 2 h 2 g 2 e 2 a 2 b 3 , c 1 c 3 by c 1 c 2 d 2 c 3 and we introduce the cycle (c 4 , d 4 , f 4 , h 4 , g 4 , e 4 , c 4 ). Case 3. x ∈ V p+1 . Case 3.1.

Figure 10 :

 10 Figure 10: The graph H +5 (p) is a meg(11p + 7).

  and (k, l, r, k) is a 2-factor. Let x = k (the case x = l is symmetric). If y = a 1 : a 1 y can be extended in H +2 (p); the corresponding 2-factor contains the path a 1 • • • y; we substitute it for krla 1 • • • y and we have a 2-factor forH +5 (p). If y = a 1 : (k, r, l, a 1 ), (c 1 , d 1 , d p , c p , d p-1 , c p-1 , . . . , d 2 , c 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 2 , b 3 , f 3 , h 3 , g 3 , e 3 , a 3 , b 4 , f 4 , h 4 , g 4 , e 4 , a 4 , . . . , b p , f p , h p , g p , e p , a p , b 1 , f 1 , h 1 , g 1 , e 1 , i, j, c 1 ) is a 2-factor.Let x = r. Remark that all 2-factors containing the non-edge ky contain also kr; to extend ry we replace krla 1 • • • y (resp.(k, r, l, a 1 )) by rkla 1 • • • y (resp.(r, k, l, a 1 )) in the 2-factors above.

5. 4 Figure 11 :

 411 Figure 11: The graph G 10 is a meg(10).

Figure 12 :

 12 Figure 12: The graph G 11 is a meg(11).

Property 5 .Figure 13 :

 513 Figure 13: The graph G 12 is a meg(12).

Figure 14 :

 14 Figure 14: The graph G 13 is a meg(13).

  [START_REF] Bondy | Graph Theory[END_REF] , v 4 }| ≥ 2 and v 5 is universal a contradiction. • Exp 2 (7) = 10: The graph G 7 (see Figure 4 ) is expandable. Following Fact 2.1 it is sufficient to suppose that there is G = (V, E) an expandable graph with |E| = 9. Since |E| < 3 2 n, from Property 2.2 we have δ(G) ≥ 2. Let n 2 be the number of 2-vertices. From Property 2.6 two 2-vertices have no common neighbor, so n 2 ≤ 3. If n 2 ≤ 2 we have |E| ≥ 10. So n 3 = 3, w.l.o.g. v 1 , v 2 , v 3 are the 2-vertices. Since |E| = 9, we have that v 4 , v 5 , v 6 , v 7 are 3-vertices. Using Property 2.6 again, w.l.o.g. v 1

  are expandable. Following Fact 2.1 it is sufficient to suppose that there is G = (V, E) an expandable graph with |E| = 10. From Properties 2.2 and 2.6 δ(G) ≥ 2 and each 2-vertex has at least one proper neighbor of degree at least three. Thus there are at most four 2-vertices. Since |E| = 10, there are four 2-vertices, says v 1 , v 2 , v 3 , v 4 , and four 3-vertices v 5 , v 6 , v 7 , v 8 each of them linked to exactly one 2-vertex. W.l.o.g.v 1 v 2 , v 3 v 4 , v 1 v 5 , v 2 v 6 , v 3 v 7 , v 4 v 8 ∈ E. From Property 2.4 v 5 v 6 , v 7 v 8 ∈ E. So v 5 v 7 , v 5 v 8 , v 6 v 7 , v 6 v 8 ∈ E, but v 5 v 6 cannot be extended.We will first derive a lower bound of Exp 2 (n) for n ≥ 10. It will be shown in the next section that it is best possible.

	4 A lower bound for Exp 2 (n), n ≥ 10
	Lemma 4.1 If G = (V, E) with n ≥ 10 is expandable, then m ≥ 11 8 n .
	Proof: From Property 2.1 G is connected. Since n ≥ 10, we have 3n-1 2 8 n . If there is a 1-vertex then from Property 2.2, m ≥ 3 11 2 n. If there is a universal ≥ vertex, then from Property 2.3, m ≥ 3n-1 2 . If δ(G) ≥ 3, then m ≥ 3 2 n. If two 2-vertices have a common neighbor, then from Property 2.6, m ≥ 3 2 n.
	Figure 6: The graph G 9 is a meg(9).
	• Exp 2 (9) = 12: One can check that G 9 (see Figure 6) is expandable. Following
	Fact 2.1 it is sufficient to suppose that there is G = (V, E) an expandable
	graph with |E| = 11. Property 2.2 implies that δ(G) ≥ 2 so there are at
	least five 2-vertices. From Property 2.6 each 2-vertex has a proper neighbor
	of degree at least three, which is impossible.

  1 , g 1 , e 1 , c 1 , d 1 , d 2 , c 2 , e 2 , g 2 , h 2 , f 2 , b 2 , a 2 , b 1 , a 1 ); by symmetry d 1 e 1 , c 1 f 1 , b 1 e 1 , c 2 f 2 , d 2 e 2 ,a 2 f 2 , b 2 e 2 can be extended;

  1 , c 2 , e 2 , g 2 , h 2 ); by symmetry g 1 g 2 , h 1 h 2 , h 1 g 2 can be extended; We show that H(3) is expandable. Let xy ∈ E. Case 1. x, y / ∈ H 3 . Looking at the 2-factors given for H(2), we observe that they all contain at least one of the two edges b 1 a 2 , d 1 d 2 and then we can build a 2-factor containing xy in H(3) from a 2-factor F containing xy in H(2). If b 1 a 2 ∈ F and d 1 d

	Proof: H(3) contains m = 33 = 11 8 × 24 edges.
	Property 5.2 H(3) is a meg(24).

Acknowledgements:

The authors express their gratitude to the anonymous referee for its constructive comments and remarks, which helped to improve the readability and the correctness of this paper.

be extended. Let F be a 2-factor of H (3) containing xy.

Looking at the 2-factors given for H(3) to complete an edge xy / ∈ H(3) with x ∈ V 2 and y ∈ V 3 , we see that they all contain a 2 b 3 or d 2 c 3 . Equivalently, F contains a 2 b 4 or d 2 c 4 .

If F contains a 2 b 4 but not d 2 c 4 , then a 2 b 4 is substituted for a 2 b 3 a 3 b 4 ; adding the cycle (c 3 , d 3 , f 3 , h 3 , g 3 , e 3 , c 3 ) we have a 2-factor in H [START_REF] Costa | Minimal graphs for matching extensions[END_REF]. By symmetry, the case where H (3) contains 

Meg(n)

for n = 0 mod [START_REF] Lovász | Matching Theory[END_REF], n ≥ 14 Now, we give minimal expandable graphs when n ≥ 14 is not a multiple of 8. The graphs H -1 (p), H -2 (p), p ≥ 2, are obtained from H(p) by contracting one edge g i h i , respectively two edges g i h i , g j h j , i = j. The vertex resulting of the contraction of gh is denoted by gh. 

The graph H +2 (p) is obtained from H(p) as follows: the two edges a 1 e 1 , c 1 e 1 are subdivided into the paths (a 1 , i, e 1 ), (c 1 , j, e 1 ), respectively; the edge ij is added.

Proof: H +2 (p) contains m = 11p + 3 = 11 8 × (8p + 2) edges. We show that H +2 (p) is expandable. Let xy ∈ E. In the case where x, y ∈ {a 1 , c 1 , e 1 } we proceed as follows: we know that xy can be extended in H(p); the corresponding 2-factor contains either the subsequence a 1 e 1 c 1 , or a 1 e 1 g 1 or c 1 e 1 g 1 . In the first case the subsequence is substituted for a 1 ie 1 jc 1 , in the second for a 1 ije 1 g 1 , in the third for c 1 jie 1 g 1 . So xy can be extended in H +2 (p). Now let x = i (the case where x = j is similar). If y = c 1 , g 1 , we know that e 1 y can be extended in H(p); the corresponding 2-factor contains e 1 g 1 ; we replace it by ije 1 g 1 . If y = c 1 (resp. y = g 1 ): in H(p), the 2-factor corresponding to the non-edge g 1 c 1 (resp. g 1 a 1 ) contains c 1 e 1 a 1 ; we replace it by c 1 je 1 ia 1 .

If y = g 1 : in H(p), the 2-factor corresponding to the non-edge g 1 a 1 contains c 1 e 1 a 1 ; we replace it by c 1 je 1 ia 1 .

So iy can be extended in H +2 (p). Now let x = e 1 . We know that g 1 y can be extended in H(p); the corresponding 2-factor contains both g 1 h 1 and a 1 e 1 c 1 (or c 1 e 1 a 1 , but by symmetry this case is the same). We substitute the first subsequence for e 1 g 1 h 1 and the second for a 1 ijc 1 and e 1 y can be extended in H +2 (p).

The graph H +3 (p), p ≥ 2, is obtained from H(p) by adding a triangle (i, j, k) and the two edges ia 1 , ja 1 to H(p).

Proof: H +3 (p) contains m = 11p + 5 = 11 8 × (8p + 3) edges. Let xy ∈ E. If x, y ∈ {i, j, k}, then the 2-factor of H +3 (p) corresponds to the 2-factor of H(p) plus the cycle (i, j, k, i).

Let x = i (the case x = j is the same): note that y ∈ {i, j, k, a 1 }. Suppose first that y is not a neighbor of a 1 in H(p): ya 1 can be extended to a 2-factor and substituting ya 1 for yikja 1 , (i = x), we have a 2-factor for H +3 (p). Now let y = e 1 . We know that e 1 f 1 can be extended in H(p). The corresponding 2-factor contains (e 1 g 1 h 1 f 1 e 1 ) and a cycle C with the edge a 1 b 1 . Substituting a 1 b 1 for a 1 jkie 1 g 1 h 1 f 1 b 1 we have a 2-factor of H +3 (p). Let y ∈ {b 1 , b 2 }; e 1 f 1 can be extended in H(p), and the corresponding 2-factor contains (e 1 , g 1 , h 1 , f 1 , e 1 ), a cycle C with the edges a 1 b 1 and a 1 b 2 , and a cycle C with the edge c 1 d 1 . So replacing a 1 y by a 1 jkiy and c 1 d 1 by c 1 e 1 g 1 h 1 f 1 d 1 we have a 2-factor of H +3 (p).

For x = k, if y = a 1 we proceed as above by replacing the sequence ikj by kij. If y = a 1 , we do as follows: we know that g 1 a 1 can be extended in H(p); the corresponding 2-factor contains e 1 a 1 g 1 . Then substituting e 1 a 1 g 1 for e 1 g 1 and adding (a 1 , i, j, k, a 1 ) we obtain a 2-factor of H +3 (p).

The graph H +4 (p), p ≥ 2, is obtained from H(p) by adding a diamond (i, j, k, l), ij ∈ E and the edge ia 1 to H(p).

Proof: H +4 (p) contains m = 11p + 6 = 11 8 × (8p + 4) edges. Let xy ∈ E. If x, y ∈ {i, j, k, l}, then to obtain a 2-factor of H +4 (p) we add the cycle (i, k, j, l, i) to the 2-factor of H(p) obtained for the extension of xy.

For xy = ij we take a 2-factor covering H(p) (see Remark 5.1) and the cycle (i, j, l, k, i) to obtain a 2-factor of H +4 (p).

Proof: G 13 contains m = 18 = 11 8 × 13 edges. Let xy ∈ E. If x, y ∈ {a, k, l, o}, then we take F the corresponding 2-factor of G 10 . F has bac as subsequence. Substituting bac for bc and adding (a, k, o, l, a) we have a 2-factor for G 13 . If xy = ao then (a, k, l, o) and an hamiltonian cycle of G 10 -a is a 2-factor for G 13 .

Let x = a. If y ∈ {d, f, h, j} we know from Property 5.10 that there exists a 2-factor F for G 10 which does not contain ac. So adding (k, l, o, k) we have a 2-factor for G 13 .

• y = c: (a, b, d, f, h, j, i, g, e, c), (k, l, o, k) is a 2-factor;

• y = e: (a, b, c, e), (d, g, i, j, h, f, d), (k, l, o, k) is a 2-factor;

• y = g: (a, b, c, e, f, d, g), (h, i, j, h), (k, l, o, k) is a 2-factor;

• y = i: (a, b, c, e, g, d, f, h, j, i), (k, l, o, k) is a 2-factor. Now when x ∈ {k, l, o} we use the 2-factors we obtained above for x = a: the first sequence begins with kola or loka or okla instead of a.

Conclusion

We have determined the values of Exp 2 (n) for all values of n. It could be interesting to characterize the meg(n), for instance by a (finite ?) collection of forbidden induced subgraphs. Furthermore one could consider a generalization of the basic problem: the edges of a complete graph K n are coloured in blue and in red. We want to color a minimal set of red edges in white so that any red edge uv can be extended to a 2-factor using only white edges. In our case, we had only white and red edges. Furthermore instead of just one red edge we could require that any appropriate subset of d red edges could be extended to a 2-factor by adding only white edges. More generally we could consider k-factors, k ≥ 3, or even other structured set of edges.