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Abstract

Most of the metric learning mainly focuses on using single feature weights with Lp norms, or the pair
of features with Mahalanobis distances to learn the similarities between the samples, while ignoring the
potential value of higher-order interactions in the feature space. In this paper, we investigate the possibility
of learning weights to coalitions of features whose cardinality can be greater than two, with the help of set-
functions. With the more particular property of submodular set-function, we propose to define a metric for
continuous features based on Lovasz extension of submodular functions, and then present a dedicated metric
learning approach. According to the submodular constraints, it naturally leads to a higher complexity price
so that we use the ξ-additive fuzzy measure to decrease this complexity, by reducing the order of interactions
that are taken into account. This approach finally gives a computationally, feasible problem. Experiments
on various datasets show the effectiveness of the approach.
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1. Introduction

Since the seminal paper of Xing et al. [35], met-
ric learning has attracted much interest in the ma-
chine learning community. Distances and metrics
are widely used in the computer science and math-
ematics areas. The performance of many machine
learning algorithms is strongly related to the cho-
sen distance. For instance, K-means relies on dis-
tance measurements between data points, nearest-
neighbours classifiers use a metric to identify the
nearest neighbours and algorithms such as SVM
need a good kernel to find maximum-margin hyper-
plane. It is now widely known that using a con-
venient metric, or similarity measure, in machine
learning algorithms is fundamental [34, 3, 22].

A common practice consists in considering the
Mahalanobis metric defined by

dM (xi,xj) = (xi − xj)
TM(xi − xj), (1)

where xi and xj are m-dimensional feature vectors
of samples and M is a positive semi-definite matrix
of parameters (otherwise, it is not a metric, but
still can be used as a dissimilarity measure, see,
e.g. [8]) that can be learned. Using such a met-
ric is equivalent to perform a linear projection of

the data by the matrix decomposition M = LTL,
and then use the conventional Euclidean distance
in this new feature space. Using a linear metric
allows writing simple, convex, objective functions
where one of the crucial points is to maintain M
positive semi-definite (PSD), which can be done
by projection onto the PSD cone through eigen-
decomposition. Many metric learning algorithms
are based on this model, such as the Large-Margin
Nearest Neighbors (LMNN) [34] and Information
Theory Measurement Learning (ITML) [11].

In practice, however, the distribution of the data
is often complex, so that nonlinear approaches have
been proposed. In the nonlinear case of metric
learning algorithms, the general principle is to use
a nonlinear embedding or mapping function before
the linear projection, e.g. kernelization. In [9],
the authors directly model nonlinear metrics with
a discriminative objective, while the authors of [7]
propose a kernelization of a linear metric. In χ2-
LMNN[19], authors extend the linear metric learn-
ing approach LMNN to χ2- distances specialized for
histogram data and gave a gradient boosted LMNN
for nonlinear mapping combined with a traditional
Euclidean distance. Another possible approach of

Preprint submitted to Neurocomputing January 13, 2020



learning metric for nonlinear datasets is to con-
sider one local metric for different regions of the
feature space. Learning multiple linear metrics has
the capacity to capture the heterogeneity of com-
plex tasks. Mul-LMNN (Multiple LMNN metric
learning) [33] is the multiple metrics learning ver-
sion of LMNN. Mul-LMNN separates the training
datasets in several clusters with supervised (labels)
or unsupervised (k-means) information. Then, for
each cluster, a metric is learned with LMNN. No-
tice that, this could be considered as local metric
learning for each cluster, the local distance depends
on which nodes are in which cluster and the global
distance could not be symmetric if the pair of data
nodes are in different clusters [37]. Notice also that
several nonlinear metric learning algorithms are nei-
ther linear metric with different nonlinear transfor-
mations or several linear local metrics, but a di-
rect optimization of a nonlinear metric. A typi-
cal example is LSMD (Learning Similarity Metric
Discriminatively) [10], where the authors proposed
the first nonlinear form metric learning with the
Siamese architecture of a CNN (Convolutional Neu-
ral Network)[26]. In this paper, authors train a pair
of CNNs sharing the parameters with the selected
constraints. The CNN leads to a high computa-
tional cost, but the authors demonstrate its advan-
tage for face verification tasks.

Nonetheless, most of the metric distance learning
algorithms are based on the Mahalanobis distance
model, whether linear or nonlinear [3]. Having a
closer look at the Mahalanobis metric shows that
it consists of giving weight to all possible feature
pairs. The use of the inverse of the covariance ma-
trix for M , i.e., the historical Mahalanobis distance,
implies that the weight of a feature pair is propor-
tional to the cofactor of the features. Although the
cofactor of a pair of features depends on all other
pairwise covariances, the actual distance definition
only considers the pairwise combination of features,
whereas p-tuple-wise combinations bring a lot more
information.

In this paper, we are investigating the possibility
of giving (and learning) weights to coalitions of fea-
tures whose cardinality can be greater than two. To
this aim, we propose to consider to define a metric
using a set function. A set function is a function
whose the input is a set, and whose output is a
scalar evaluating of the set. We propose to use set-
functions as a mapping from subsets of features to
a weight value used in the definition of the metric.

Let us consider a simple 3-dimensional example.

V

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Figure 1: Hasse diagram using set-functions on a 3-
dimensional problem.

In Figure 1, one can draw its corresponding Hasse
diagram. If we learn a Mahalanobis metric on this
entity, for each single dimension {1},{2},{3} and
the pairs of dimension {1, 2},{1, 3},{2, 3}, the trans-
formation matrix will give weights while the more
complex coalition {1, 2, 3} gets ignored. We con-
sider a set-function f(S), in this case S ⊆ {1,2,3},
so that each subset of the powerset of V can be
given a weight.

f({1}) f({2}) f({1, 2})
f1 0.5 0.5 1
f2 0.25 0.25 0.25
f3 0.2 0.5 0.7
f4 0.5 0.5 0.7

Table 1: Values of the set-functions used in Figure 2.

The red path in Figure 1 corresponds to one pos-
sible use of learned weights for computing our pro-
posed distance, that is using directly Lovasz exten-
sion Lf (x) [27]. In practice, we see that computing
a distance between two objects using the proposed
df (see Eq. 12) reduces to a weighted path from
∅ to V in the lattice. In Figure 2, the unit balls
for various distances, including the one proposed
(Lovasz distance) in this paper are given, using the
set-functions given in Table 1. As can be seen, it
allows obtaining a wide range of convex shapes, gen-
eralizing both Euclidean distance and Mahalanobis
distance and it is worth to mention that using a set-
function which is not submodular would provide a
nonconvex shape, i.e., not a proper metric. Notice
that using a modular function such as f1 provides
the Euclidean distance as expected since the Lovasz
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(a) Euclidean distance (b) Mahalanobis distance

(c) Lovasz distance with f1 (d) Lovasz distance with f2

(e) Lovasz distance with f3 (f) Lovasz distance with f4

Figure 2: Unit balls (d2(x, 0) ≤ 1) for different metrics. The
set-functions f1, f2, f3 and f4 given in Table 1, respectively.

extension reduces to a linear function f t(x) in that
case.

The shapes versatility confirms the generalization
ability of such distance. However, it also opens sev-
eral questions. Especially how to learn such a com-
plex function?

Our work primarily deals with a linear program-
ming approach where the minimum norm point al-
gorithm is used on submodular functions. More
precisely, we provide the new following contribu-
tions:

• through the use of a submodular set-function
and its Lovasz extension, we propose to define
a norm, and therefore a distance metric. The
benefit of this formulation is that the distance
allows considering high-order (up to m) inter-
actions between features, as opposed to 1-order
feature interaction for Lp norms, and 2-order
feature interaction for Mahalanobis distances
(Proposition 1).

• we propose an algorithm LEML (Lovasz Exten-
sion Metric Learning) that allows learning pro-
posed metric, by using linear programming and
convenient writing of submodular constraints
imposed on the set-function as well as the rel-
ative constraints considered in metric learning.

• we present LEML-ξ with a way of decreasing
the (time) complexity of the model while keep-
ing/improving performances, by introducing ξ-
additive set-functions, and constraint simplifi-
cation by the help of the inverse set-function
into the optimization problem.

The python code of our proposed algorithms
can be found on https://github.com/lynnoak/

submodular_metric.
The rest of this paper is organized as follows: In

Section 2, we firstly introduce background knowl-
edge about metric learning algorithms. Then we
list several classical metric learning algorithms and
related current metric learning algorithms. This
section is not only a survey about metric learning
but also an introduction to the algorithms used as
the baseline for comparing with our proposed algo-
rithms in Section 5experiments. In Section 3, we
present the mathematical definition of the set func-
tion and the submodular function. Then further in-
troduce their nature and related applications. This
section focuses on the reasons we choose the sub-
modular function to define the metric. Next, in
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Section 4, we propose our Lovasz extension metric
learning algorithm. Firstly, we recall the definition
Eventually, the experiment design and result of the
proposed algorithm and comparison approaches are
described in Section 5. Conclusion and perspectives
are given in Section 6.

2. Metric Learning

Most of the propositions of metric learning follow
these 3 steps long general process [35, 34, 11, 22]:

• Metric definition: Depending on the idea or
the peculiarity of the dataset, construct a new
distance function d′(x, y) for assessing the sim-
ilarity between the samples x and y. Usu-
ally, d′(x, y) = d(f(x), f(y)) and d(x, y) is a
current distance (for example, Minkowski dis-
tance, Euclidean distance or anything similar)
and f(S) is a transfer function mapping the
original feature space to a latent feature space.

• Constraint selection: Depending on the learn-
ing task and the availability of the target la-
bel or other feedback, the metric learning algo-
rithm requires select constraints C from the in-
formation of samples to learning the new met-
ric.

• Learning metric model: Generally, for learning
a metric, a loss function is proposed to mea-
sure the performance of the new metric with
the parameter matrix M . The loss function
contains two-part, one is the sum of the en-
coded loss based on the new metric from every
triple (i, j, k) in the selected constraints set C,
the other one is the regularization r(M) with
a balance parameter λ.

For the learning model, there have been a num-
ber of approaches in the past fifteen years. A popu-
lar formulation of metric learning using the Maha-
lanobis distance d2M (see Eq. 1) is to find M such
that it minimizes L(M) = `(M, C)+λr(M), where `
is a loss function penalizing unsatisfied constraints,
with C the set of constraints. λ is a trade-off pa-
rameter between the regularization term and the
loss, and r(M) is a regularization function. If feasi-
ble, this model is generally casted as a constrained
optimization problem

min r(M) (2)

s.t. `(M, i) ≤ 0,∀i ∈ C

Most of the metric learning algorithms are us-
ing the Mahalanobis metric definition with a differ-
ent set of constraints selections and regularization
terms [35, 34, 11, 22].

As the basis and goal of metric distance learning,
the definition of the metric itself is crucial. Met-
ric is a concept describing the similarity of entities
in general. Moreover, in mathematics metric is a
function that defines a distance between each pair
of elements of a set.

A metric is a function d : V×V→ R+ on a set V,
∀xi,xj ,xk ∈ V satisfying the following conditions:

1. non-negativity :
d(xi,xj) ≥ 0

2. identity of indiscernibles :
d(xi,xj) = 0⇔ xi = xj

3. symmetry :
d(xi,xj) = d(xj ,xi)

4. triangular inequality :
d(xi,xj) + d(xj ,xk) ≥ d(xi,xk)

The first two conditions define a positive definite
function.

There are many different metrics for different
situations, such as Euclidean distances for flat
databases, Hamming distances for strings, edit dis-
tances for trees or graphs, all of which meet the
above definition. However, some ”metrics” in the
metric learning algorithm only meet the above def-
initions under finite conditions or do not meet the
third triangular inequality condition. These ”met-
rics” can be called (dis)-similarity, and the simi-
larity is used for special learning tasks. Despite the
fact it does not define a strict proper metric, it may
however also reach the desired learning objectives.

Depending on the metric learning approach, con-
straints are given under different forms. Among
them, one can distinguish two popular ones: pair-
wise constraints and relative constraints.

• Pairwise constraints consists in considering
pair of points that should be considered simi-
lar (S) or dissimilar (D) to build the complete
constraint set C = S ∪ D

d(xi,xj) ≤ u, (i, j) ∈ S

d(xi,xj) ≥ l, (i, j) ∈ D

Generally, samples are considered as similar if
they share the same target label y, and dis-
similar otherwise. More precisely, considering
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a generic distance d, we require d(xi,xj) to be
large if (i, j) belongs to the set of dissimilar
observations D. On the other hand, we require
d(xi,xj) to be low if (i, j) belongs to S. The
sets S and D are used as the input constraints.

• Relative constraints relies on relative compar-
isons between samples.

d(xi,xj) ≤ d(xi,xk), (i, j, k) ∈ R

In this setting, we consider triples (i, j, k) ∈ R,
where we consider that xi and xj are more sim-
ilar than xi and xk. Relative triplets (i, j, k)
can be trivially obtained from pairwise con-
straints, where we sample (i, j) from S, and
(i, k) (or (j, k)) from D. In the sequel, we are
using relative constraints R.

Notice that, depending on the learning task and the
availability of the target label or other feedback, the
metric learning can be supervised or unsupervised,
with different approaches to select the constraints.
In this paper, we only consider the supervised case,
which means we separate the similar and dissimilar
constraints set with the information of the target
label. However, there are many sources of informa-
tion that one could use, such as rank, order, time-
series, etc. Recently, other approaches have been
proposed for active constraint selection in metric
learning, see [23].

The other important part of the loss function is
the regularization. As most of the machine learning
algorithms, regularization limits the complexity of
the model to avoid over-fitting and obtain better
generalization [2, 4].

As shown in Table 2, the different regularizers
lead to different properties. Most of the linear mod-
els metric learning algorithms are similar on the
constraints selection or could be adapted to mul-
tiple constraints form, however, they have particu-
lar regularization lead to different performance for
metric learning and suited to different datasets.

Now, we briefly introduce several metric learn-
ing algorithms that we use to compare with our
approach in the experiments.

2.1. Large-Margin Nearest Neighbors

Large-Margin Nearest Neighbors (LMNN) [34] is
one of the most popular method for metric learning.
It relies on relative constraints

C = {(i, j, k)|∀(i, j, k) ∈ C, d(xi,xj)+m ≤ d(xi,xk))}

and propose a regularization

tr(MC) =
∑

(i,j)∈S

dM (xi,xj)

based on [36] which is a linear minimization of new
metrics between similar samples. The loss function
is as follow:

L(M) =
∑

(i,j,k)∈D

[dM (xi,xk)− dM (xi,xj)−m]+

(3)

+λ
∑

(i,j)∈S

dM (xi,xj)

where m usually set to 1.
The two parts of this function show the two

objectives:
∑

(i,j,k)∈D[dM (xi,xk) − dM (xi,xj) −
m] indicates that the dissimilar neighbor point
should be farther than the similar one; while∑

(i,j)∈S dM (xi,xj) tries to keep the similar neigh-
bor as close as possible.

LMNN is the most commonly used metric dis-
tance learning algorithm, which has an excellent
performance in most application scenarios, but it
still has limitations as a linear algorithm, and it
does not apply to some special tasks. In the origi-
nal version of LMNN, they select the relative con-
straints with the supervised information, which is
Target label. Therefore, there are many extensions
to the LMNN, such as for nonlinearization, localiza-
tion, online learning. Among the algorithms that
will be discussed in the following sections, one of
them is the nonlinear version of LMNN.

2.2. Information Theoretic Metric Learning

Another popular metric learning method is In-
formation Theory Measurement Learning (ITML)
[11]. The author uses information theory to regu-
larize the loss function with tr(M)−log det(M) and
select similarity and dissimilarity constraints. They
expect to minimize the Kullback-Leibler divergence
of the PSD matrix M of the learning metric and the
initial matrix M0 given the constraints. The final
loss function based on log det divergence is given
by:

L(M) =
∑

`(XTMX) + λ(tr(M)− log det(M))

(4)
where
`(XTMX) = dM (xi,xj)− dI(xi,xj),∀(i, j) ∈ S,
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Regularization Definition Properties
L1 norm r(M) =

∑
‖Mi,j‖ Convex, sparsity, non-smooth

Frobenius Norm or L2 norm r(M) =
∑
M2
i,j Strongly convex, smooth

Linear (trace) norm r(M) = tr(MC) Convex, low rank, (non-smooth)
Information-Theoretic r(M) = tr(M)− logdet(M) Convex, low rank, log det, divergence

Table 2: The difference between different regularizations, where C is a given matrix, for example an identity matrix for
nuclear-norm regularizer)

`(XTMX) = dI(xi,xk) +m− dM (xi,xk),∀(i, k) ∈
D

Like LMNN, ITML is also a classic algorithm
that is inevitable in metric distance learning algo-
rithms. It is worth mentioning that although un-
der many of the same conditions, ITML is more
computationally complex and cost longer time than
LMNN, however, the ITML algorithm has greater
flexibility in selecting constraints and input sam-
ples, and has higher stability. In the ITML paper,
the selection of relative constraints is not only by
the target label but also can be selected by other
methods. Moreover, the authors not only proposed
a regularization method based on KL divergence
but also proposed kernel metric learning, which ex-
tended the possibility of ITML as a nonlinear learn-
ing algorithm. ITML also has many different exten-
sions like LMNN.

2.3. Least Squares Metric Learning

Least Squares Metric Learning (LSML) [25] uses
relative constraints as LMNN and the log det diver-
gence regularization as ITML. In addition to the
combination of the two papers, LSML proposes a
new method of encoding constraint loss, which uses
a squared hinge function and optimizes the residual
sum of squares under the constraints.The squared
hinge function fhinge() is defines as:

fhinge(x) =

{
0 if x ≤ 0
x2 if x > 0

The relative constraints is written as

dM (xk,xl) ≥ dM (xi,xj),∀(i, j, k, l) ∈ C,

where the constraints set C is selected by the pair
(i, j), which is more similar than the pair (k, l). The
final loss function is then written as follows:

L(M) =
∑

l(i,j,k,l)∈C

fhinge(dM (xi,xj) (5)

−dM (xk,xl)) + λ(tr(M)− log det(M))

subject to M � 0
The advantage of the LSML algorithm comes

from the fact that the loss coding is easier to cal-
culate. Although the author does not have LMNN
and ITML in this paper, in the experiments of our
paper, it can be found that LSML takes less time
than LMNN and ITML under the same conditions,
but the performance is relatively more mediocre.

2.4. Local Fisher Discriminant Analysis

LFDA [31] is not particularly proposed as a met-
ric learning algorithm but a linear supervised di-
mensionality reduction method. As a localized vari-
ant of Fisher discriminant analysis, LFDA is par-
ticularly useful when dealing with multimodality,
where one or more classes consist of separate clus-
ters in input space. LFDA takes the local structure
of the data into account so that the multimodal
data can be embedded appropriately. The LFDA
reduce the dimensions with the following transfor-
mation matrix Tlfda:

Tlfda = argmaxT∈Rd×m(TTB′T ) (6)

subject to TTW ′T , and where B′ is the local
between-class scatter matrix and W ′ is the local
within-class scatter matrix. The core optimization
problem of LFDA is solved as a generalized eigen-
value problem.

Because the original article used LFDA as a
method of dimensionality reduction, the authors
did not compare with other metric learning algo-
rithms. However, in the subsequent experiments in
our work, it can be seen that although the accuracy
and stability of LFDA are not as good as classical
algorithms such as LMNN and ITML, the compu-
tational efficiency is much higher than other metric
learning algorithms of the same period.

2.5. Geometric Mean Metric Learning

Geometric Mean Metric Learning (GMML), [40]
is a new method for forming Euclidean metrics
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based on the first principle of intuitionistic geomet-
ric inference. The authors use pairwise constraints,
and the loss function is given by

L(M) =
∑

(xi,xj)∈S

dM (xi,xj)+
∑

(xi,xj)∈D

dM−1(xi,xj)

(7)
The main difference is that they use geodesic

convexity as the generalization of ordinary (lin-
ear) convexity to (nonlinear) manifolds and met-
ric spaces. To this aim, the authors define AζB =
A1/2(A−1/2BA−1/2)tA1/2 with t ∈ [0, 1] as the step
length of a geodesic path joining A and B.

They finally obtain the following matrix update:

M = (S + λM−10 )−1ζ(D + λM0)

where S =
∑

(xi,xj)∈S(xi − xj)(xi − xj)
>,

D =
∑

(xi,xj)∈D(xi − xj)(xi − xj)
>,

and λ is the regularization parameter.
GMML has several very attractive features

through the Riemannian geometry of the positive
definite matrix, which has inherent geometric ap-
peal and is easy to interpret. Compared to the
widely used LMNN and ITML methods, GMML
is faster than several orders of magnitude.

2.6. Gradient boosted LMNN

In [19, 20], the authors introduce gradient
boosted LMNN (GB-LMNN), which are explicitly
designed to be nonlinear and easy to use. GB-
LMNN applies gradient-boosting to learn nonlinear
mappings directly in function space.

To generalize the LMNN objective function to a
non-linear transformation φ(x), the Euclidean dis-
tance with transformation is denoted as:

dφ(xi,xj) = (φ(xi)− φ(xj))
>(φ(xi)− φ(xj)), (8)

and extend the loss function of LMNN as follow:

L(φ) =
∑

(i,j,k)∈D

[dφ(xi,xk)− dφ(xi,xj)−m]+ (9)

+λ
∑

(i,j)∈S

dφ(xi,xj)

The transformation φ(x) is defined with gra-
dient boosted method as an additive function:
φt(x) = φt−1(x) + αht(x) where ht(x) ≈
arg minh∈tr L(φt−1(x) + αht(x)) initialize with the
linear transformation learned by LMNN, φ0. The
α is the learning rate and tr denotes the set of all
regression trees of limited depth r.

As an extension of LMNN, GB-LMNN takes ad-
vantage of the robustness, speed, parallelism, and
insensitivity to a single additional hyperparameter.

3. Submodular Function and Extension

In this paper, we consider the possibility of giving
weights to coalitions of features whose cardinality
can be greater than two. To this aim, we use set-
functions f(S) : 2V → [0, 1], which maps subsets S
of a ground set V to unit interval values. Notice
that, Notice that, in general, the definition of set-
function is f(S) : i|i ∈ V → R, and the codomain
of f(S) is not restricted to be the unit interval but
belongs to R. This definition allows the associa-
tion of weights to subsets, in our case, subsets of
features. The possibility of giving a weight to each
element of the Hasse diagram of the feature space
allows obtaining a very flexible measure.

For assuring the condition of metric or norm, we
select a special set function, that is submodular
function. The mathematical definition of the sub-
modular function is as following:

A set function f(S) is submodular if and only if
∀S1,S2 ⊆ V ,

f(S1) + f(S2) ≥ f(S1 ∪ S2) + f(S1 ∩ S2) (10)

In terms of optimization, submodular functions
can be seen as the discrete equivalent of continuous
convex functions. An alternative definition [32] of
submodularity is given as f(S1 ∪ {j}) − f(S1) ≥
f(S2 ∪ {j}) − f(S2), where S1 ⊆ S2 ⊆ V and ele-
ments j ∈ V, j /∈ S2. Defined this way, adding an
element i to a larger set S2 does not increase f(S)
as much as adding the same element j to a smaller
set S1. Figure 3 shows example for submodularity
as f(Sa,b∪{i})−f(Sa,b) ≥ f(Sa,b,c,d∪{i})−f(Sa,b).
This property is known as the diminishing return
[30] or diminishing marginal utility. It performs like
the concavity, and in other ways it resembles con-
vexity. Consequently, problems which concern opti-
mizing a convex or concave function can also be de-
scribed as the problem of maximizing or minimizing
a submodular function subject to some constraints.
Thanks to the diminishing returns property, sub-
modular functions have been the topic of research
in economics and operation research for quite a long
time [32].

More recently, submodular functions have at-
tracted interest in the machine learning community
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Figure 3: f(Sa,b∪{i})−f(Sa,b) ≥ f(Sa,b,c,d∪{i})−f(Sa,b)

(see, e.g., [1]), because of their potential use (clus-
tering, covering, feature selection, social networks)
and their similarity to convex functions. In this
work, we propose to use set-functions, and in partic-
ular submodular set-functions, to weight coalition
of features.

3.1. Lovasz Extension

For optimizing a submodular minimum or max-
imum problem, we generally apply for the set-
function extension. Notice that, most of the ex-
tensions of set functions try to touch the concave
closure of the convex closure of the set function,
while they did not require the set function is sub-
modular or not.

Lovasz extension [27] (also known as the Cho-
quet integral) is one of the most popular extensions
that help to solve the set-function minimization, in
particular, the submodular function minimization.
Lovasz extension allows extending a set-function
defined on the vertices of the unit hypercube to
the full unit hypercube [0, 1]|V|. Another appeal-
ing property of the Lovasz extension is its ability to
draw a link between set-functions and convex func-
tions.

The Lovasz extension Lf () of x ∈ [0, 1]m with
respect to a set-function f() is defined as:

Lf (x) =

∫ +∞

0

f({x ≥ z})dz+ (11)∫ 0

−∞
[f({x ≥ z})− f(V )]dz

or, in the discrete case,

Lf (x) =

2m∑
i=1

x(i)
[
f({j|xj ≥ x(i)})− f({j|xj ≥ x(i+1)})

]
where x(i) denotes a nondecreasing permutation of

the input vector x such that x(2m) ≥ · · · ≥ x(1) and
x(2m+1) =∞ by convention where m is the number
of dimension of x

Example: Let us consider a two-dimensional ob-
servation x = [0.87, 0.34], so
x1 = 0.87, x2 = 0.34,
x(1) = 0.34,x(2) = 0.87,x(3) =∞
and the set-function f1 showed in Figure 2 with
f({∅}) = 0, f({1}) = 0.5,
f({2}) = 0.5, f({1, 2}) = 1.
The Lovasz extension of x with respect to f(S) is
equal to

Lf (x) = x(1) ×
[
f({j|xj ≥ x(1)})− f({j|xj ≥ x(2)})

]
+ x(2) ×

[
f({j|xj ≥ x(2)})− f({j|xj ≥ x(3)})

]
= 0.34× (f({1, 2})− f({1}))
+ 0.87× (f({1} − f({∅}))
= 0.605

An interesting property of the Lovasz extension
is its ability to draw a link between set-functions
and convex functions. With [1, 27], we know that
a set-function f(S) is submodular, if and only if
Lf (x) is convex. For a set function f : 2V → R, the
convex closure f− : [0, 1]‖V ‖ → R is the point-wise
highest convex function from [0, 1]‖V‖ to R that al-
ways lowerbounds f(S). The minimum values of
f(S) and f− are equal. If S is a minimizer of f(S),
1S is a minimizer of f−. Moreover, if x is a mini-
mizer of f−, then every set in the support of P−f (x)
is a minimizer of f(S).

For a submodular set-function f(S), the Lovasz
extension Lf (x) is non-decreasing, and the convex
closure are one and the same [1]. So the mini-
mizer of the submodular function is equal to the
minimizer of the Lovasz extension.

3.2. Related Machine Learning Approaches based
on Submodular Function

Through the years, there have been several
propositions for both submodular function mini-
mization [15], and the generally NP-hard submod-
ular maximization problem requiring approxima-
tion [21]. In the machine learning area, there are
already several approaches using the submodular
function [1].

In [28], the authors present an algorithm opti-
mizing the F-score to learn a multi-label classifier.
For the multi-label task, the submodular function is
used for the intersection of pairwise of all the labels.
Then they minimum the submodular function via
the graph-cuts. This article focuses the multi-label
classification and proves the submodular function
can process well with the intersection of pairwise
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information, which in our case is the feature space
dimensions and in the case is the labels.

With the help of Lovasz extension, the related
optimization problem of the submodular function
becomes simpler. In [39], the authors developed
the tractable convex surrogates submodular losses
with Lovasz hinge. They analyzed the conventional
methods of set prediction, namely margin rescal-
ing and slack rescaling. However, these two meth-
ods lead to tight convex substitution and increase
incorrect prediction. Instead of them, the Lovasz
extension is applied to the access loss function to
calculate the gradient or cut plane. Experiments
with real image datasets demonstrate that Lovasz
hinges perform better than other algorithms.

4. Lovasz Extension Metric Learning

Besides using the submodular function for a ma-
chine learning task we mentioned in the previous
section, there are also several algorithms are con-
sidering define a metric for learning with the Lovasz
extension of a submodular function.

In [18], they extend Bregman divergences to a
specific class Lovasz Bregman divergences, in which
the parameters are the Lovasz extension of a sub-
modular function, and learning the proposed diver-
gences to rank based clustering. The authors use
the Lovasz Bregman divergences as a measure and
give several properties (non-negativity and convex-
ity, equivalence classes, linearity and linear separa-
tion), however, they did not prove it is metric and
try metric learning method on it.

The authors studied the possibility of learning
higher-order distances according to the submodular
functions in [16], which is similar to our goal, but
they are limited to binary vectors. They demon-
strate the possibility of defining metrics through
submodular functions and show the performance of
submodular Hamming metrics for metric minimiza-
tion tasks (experiment with clustering) and metric
maximization tasks (experiment with diversified k-
best).

In [1], the authors give another proof of the links
between submodularity and convexity. Unlike our
use of submodular constraints to find metrics, the
author uses the support function of the submodular
function as the regularizer for optimizing the loss
and focuses on supervised learning tasks such as
variable form or feature selection.

We first define a new metric with the Lovasz ex-
tension, and second how to learn the associated set-
function for a metric learning task.

4.1. Norm and Metric

For the metric learning algorithms previously
mentioned, most of the metric they learn is a
distance transformation with Mahalanobis met-
ric [35, 29, 34, 11, 2] , while several of them are
not [25, 10]. Metric learning algorithms thus need
to prove the defined metric satisfies the conditions
of metric we mentioned in Section 2, such as the
metric learning with neural networks [10]. More
generally, when updating the metric matrix M , one
has to ensure that it remains PSD, so that the prop-
erties of a metric hold.

Our proposed algorithm is proved by a proposed
norm to define a metric, because it is well known
that if N is a norm, then d(xi,xj) = N(xi − xj) is
a metric.

A norm is a function that assigns a strictly non-
negative length or size to each vector in a vector
space, which has a direct link with a metric. The
mathematical definition of a norm is a function N :
V→ R+ on a vector space V satisfying the following
conditions:

1. separates points :
N(x) = 0⇔ x = 0

2. absolute homogeneity :
N(ax) = |a|N(x)∀x ∈ V ∀a ∈ R

3. triangular inequality :
N(xi) +N(xj) ≥ N(xi + xj) ∀xi,xj ∈ V

In the linear case, all norms are exceptional cases
of the Minkowski gauge with a bounded convex set.

Consequently, defining a metric with the Lovasz
extension reduces to prove that the Lovasz exten-
sion defines a norm, given some conditions on f(S).
In particular, we mentioned that for a submodular
function f(S), its Lovasz extension and the convex
closures are one and the same, so we are able to
define a norm with the Lovasz extension of a sub-
modular function. In the sequel, we consider the
vector space V as [0, 1]m.

4.2. Lovasz Extension Metric

In this paper, we propose to define a norm and
therefore a distance metric which could break the
limits of the Mahalanobis metric.
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Proposition 1. The function Lf (|x|) : R|V| → R+

is a norm if and only if f() is a submodular set-
function.

Proof. It is straightforward to show that Lf (|x|)
satisfies the separate points and absolute homo-
geneity conditions, whatever f(S). We now turn to
the triangular inequality condition. Let us assume
that f(S) is a submodular set-function. By defini-
tion, the function is positively homogeneous. A set-
function f(S) is submodular, if and only if Lf (x) is
convex (see [1, 27]). The convexity of Lf (x) implies
convexity of Lf (|x|) (by composition of convex non-
decreasing functions). By convexity of Lf (|x|), we
have 1

2Lf (|xi|) + 1
2Lf (|xj |) ≥ Lf (| 12xi| +

1
2 |xj |) =

1
2Lf (|xi| + xj |), by homogeneity of Lf (x). On the
other hand, if Lf (|x| is a norm, then it is convex,
implying convexity of Lf (x), and therefore submod-
ularity of f(S), concluding the proof.

Lemma 4.1. The function (Lf (|x|p))
1
p : Rd → R+

is a norm for any p ≥ 1.

Finally, we define the Lovasz extension metric
df (xi,xj) using the squared Lovasz extension norm
as follow:

d2f (xi,xj) = Lf
(
(xi − xj)

2
)

(12)

Notice that Equation 12 can be easily general-
ized on p-power Lovasz extension norms, exactly
the same way as Lp norms of Euclidean spaces.

4.3. Learning Lovasz Extension Metric

Following usual metric learning formulation, we
are now able to write the following optimiza-
tion problem using relative constraints C where
dM (xi,xk) ≥ dM (xi,xj) + γ∀(i, j, k) ∈ C, given
a submodular set-function f(S),

minf
∑

(i,j,k)∈C

`(i, j, k) + λr(f) (13)

where the r is the regularizer on f(S), and ` is the
hinge loss defined as `(i, j, k) = [γ + d2f (xi, xj) −
d2f (xi, xk)]+. In the sequel, and following earlier
works, the margin γ is set to 1. Written as a con-
strained optimization problem, it gives

min r(f(S)) (14)

s.t. `(i, j, k) ≤ 0,∀(i, j, k) ∈ C
f(S) is submodular

Algorithm 1 describes our proposition LEML
(Learning Lovasz Extension Metric), and the de-
tails of generating the relative constraints and sub-
modular constraints are in the next section.

Algorithm 1 Lovasz Extension Metric Learning

Input: X, Y , m,κ,γ = 1 r
Output: f
1: C = 0
2: b = 0
3: Generate relative constraints from label
4: for n from 1 to κ do
5: Randomly sample triple (i, j, k) from the label Y

with Yi == Yj and Yi! = Yk
6: Sort the order of differnce (xi − xj)2(l) of (i,j) for

the Lovasz extension
7: Sort the order of differnce (xi − xk)2(l) of (i,k) for

the Lovasz extension
8: Cn = Sorted((xi − xj)2(l))− Sorted((xi − xk)2(l))
9: bn = γ

10: end for
11: Generate submodular constraints
12: for n from κ+1 to κ+nc do
13: Generate a vector Vn with [1,0,-1] for submodular

constraints
14: VS1 = −1, VS2 = −1,VS1∪S2 = 1,VS1∩S2 = 1,
15: Cn = Vn
16: bn = 0
17: end for
18: min fT r subject Cf ≤ b
19: solve with linear inequality programming
20: return f

Although we are aware that one can consider
sparse linear programming solutions [38] to tackle
this problem, we do not consider this family of ap-
proaches in this work. Naturally, it can be used to
improve our proposition further.

4.4. Set-function Vector and Constraints Matrix

In order to adapt to compute the Lo-
vasz extension metric Lf (x) of the set-
function f(S), we use the following vec-
tor notation for the set-function: f =

(f({1}), f({2}), · · · , f({1, 2}), · · · , f({1, · · · , d}))T .

Therefore the submodularity of f(S) can be writ-
ten as an inequality. In particular, by using a
matrix of {−1, 0, 1} values, one can write each of
the 1

22|V|(2|V| + 1) submodular constraints, see Ta-
ble 3 for a simple illustration with |V| = 3. Let
Cs be such a matrix. Consequently, the submodu-
larity constraint of Equation 14 can be written as
Csf ≤ 0.
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submodular constraint f({1}) f({2}) f({3}) f({1, 2}) f({1, 3}) f({2, 3}) f({1, 2, 3})
f({1}) + f({2}) ≥ f({1, 2}) -1 -1 0 1 0 0 0
f({1, 2}) + f({2, 3}) ≥ f({2}) +
f({1, 2, 3})

0 1 0 -1 0 -1 1

...
...

...
...

...
...

...
...

Table 3: Submodular constraints, as a ternary matrix S, with linear inequalities on a small subsample for which |V| = 3.

Same as the submodularity constraint, the rela-
tive constraints `(i, j, k) = d(i, k) − d(i, j) − γ ≤
0∀(i, j, k) ∈ C could also be rewritten as Crf ≤ b
where the b is the constant margin vector with all
value are equal to the margin γ and the matrix Cr
is computed from the learned metric and selected
samples in set C.

For computing the Lovasz extension metric, we
rewrite the metric d2f (xi,xi) with m-dimensions as
following:

d2f (xi,xj) = Lf
(
(xi − xi)

2)
=

m∑
k=1

(xi − xj)2(k)[f({l|(xi − xj)2l ≥ (xi − xj)2(k)})

− f({l|(xi − xj)2l ≥ (xi − xj)2(k+1)})]

= f(�)
[
0− (xi − xj)2(m)

]
+ f((xi − xj)2(1))

[
(xi − xj)2(m) − (xi − xj)2(m−1)

]
· · ·

+ f(V \ (xi − xj)2(m))[(xi − xj)2(2) − (xi − xj)2(1)]

+ f(V)[(xi − xj)2(1) − 0]

where (xi−xj)2(k) is the permutation defined within
Equation 12,V is the full set of all m-dimensions of
the features.

Direct manipulation of the Lovasz extension of
the set-function f leads to the following expression,
d2f (xi,xj) = aijf as a calculated vector aij for i-th
and j-th sample multiply with the submodular set
function vector, where:

aij =



0− (xi − xj)2(m)

0
· · ·

(xi − xj)2(m) − (xi − xj)2m−1
0
· · ·
0
· · ·

(xi − xj)2(2) − (xi − xj)2(1)
0
· · ·

(xi − xj)2(1) − 0



, (15)

Therefore, the inequality CTr f + b ≤ 0 can be
finally written as

CTr =
(
a1ij − a1ik, · · · ,aκij − aκik

)
, (16)

corresponding to the κ constraints of C, and the
alij − alik is the calculated vectors for l-th selected
constraints triple of (i, j, k)-th sample.

Because the Lovasz extension metric Lf (x) is lin-
ear in f(S), with such a form of set-function, the
Equation (14) can be written as a linear inequality
program:

min fT r (17)

s.t. CT f + t ≤ 0

0 ≤ f ≤ 1

where

C =

(
CTr
CTs

)
, t =

(
b
0

)
, (18)

and r is the unit 2m dimensional vector as the reg-
ularization for set-function vector f .

In practice, all constraints cannot be satisfied
with real data, so that we introduce non-negative
slack variables βi for each of these constraints. We
subsequently add the penalty term α

∑m
i=1 βi to

fT r, where α is a trade-off parameter (set to 1 in our
experiments). Solving the revised program gives
the solution denoted as LEML afterwards.
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4.5. Constraints based on ξ-additive Fuzzy Measure
So far, we get the algorithm to learn a Lovasz ex-

tension metric, however, with a higher price of com-
putational complexity. The number of values to be
learned, for a m-dimensional dataset is 2m−2. Fur-
thermore, as indicated earlier, the number of con-
straints for verifying submodularity is 1

22m(2m+1).
That makes the problem intractable for sizeable di-
mensional data sets. A somewhat naive way of tack-
ling this inability is to reduce the dimension of the
data. Use dimension reduction methods and then
learn the metric in the new feature space. However,
the dimension reduction and metric learning would
not be jointly learned, and so the resulting metric
would be sub-optimal.

To deal with this problem, we propose in this
work to consider the extension of the concept of ξ-
additive fuzzy measure, see [17], to set-functions
to simplify the optimization problem. To do so,
we consider pseudo-Boolean functions, that can ex-
press set-functions as a polynomial of degree m.
Formally, we define a ξ-additive set-function as an
additive set-function whose corresponding pseudo-
Boolean function has a polynomial development of
degree at most ξ. Interestingly, if a set-function is
ξ-additive, it means that there are no interactions
between subsets of more than ξ elements.

Therefore, ξ-additive set-functions restrict their
values to sets S for which we have |S| ≤ ξ. This
drastically reduces the number of variables required
to fully define the set-function f(S), going from 2m

to 2ξ, with ξ << m. Note that this definition differs
from the proposition of [5], where the objective is to
find the subset verifying this cardinality constraint.

Additionally, it also corresponds to the fact that
the inverse of the function f(S) (also known as Mo-
bius Transform, see [17]), defined as

f−1(S) =
∑
T⊂S

(−1)|S\T |f(T ), for all S ⊆ V (19)

vanishes for subsets whose cardinal is greater than
ξ.

The Lovasz extension can be written using the
inverse function as

Lf (x) =
∑
T⊆V

f−1(T ) min
i∈T

xi, (20)

therefore simplifying the problem. Note that there
is a one-to-one correspondence between f(S) and
f−1, since we have

f(S) =
∑
T⊂S

f−1(T ) (21)

In order to obtain a metric, the set-function f(S)
must remain submodular (see Proposition 1). One
can write the submodular constraint imposed on
f(S) with its inverse f−1(S). Furthermore, writing
the submodular constraint on the set-function with
the help of its inverse function allows to decrease the
number of constraints of the optimization problem.

Proposition 2. Let f : 2|V | → [0, 1] be a set-
function and f−1(S) : 2|V | → [0, 1] its inverse
function defined by Equation 19, then a) and b) are
equivalent.

a) f(S) is a submodular set-function,

b)
∑
T⊂S1∪S2,T 6⊂S1,T 6⊂S2

f−1(T ) ≤ 0.

Proof. Let us introduce, for every T in V , I(T ) =
{ξ|1 ≤ ξ ≤ 2, T ⊂ Sξ}. Submodularity of f(S) can
be written as

f(S1 ∪ S2) + f(S1 ∩ S2) ≤ f(S1) + f(S2) (22)

for Sξ in V . Using Equation 19, we write
f(S1 ∩ S2) =

∑
T⊂S1∩S2

f−1(T ),
and developing f(S1 ∪ S2) gives∑
I(T ) 6=∅ f

−1(T ) +
∑
T⊂S1∪S2,T 6⊂S1,T 6⊂S2

f−1(T ).
Consequently, Equation 22 is satisfied if and only

if ∑
T⊂S1∩S2

f−1(T ) +
∑

I(T ) 6=∅

f−1(T )

+
∑

T⊂S1∪S2,T 6⊂S1,T 6⊂S2

f−1(T ) (23)

≤
∑
T⊂S1

f−1(T ) +
∑
T⊂S2

f−1(T )

holds.
Finally, it is straightforward to obtain∑
T⊂S1∪S2,T 6⊂S1,T 6⊂S2

f−1(T ) ≤ 0
from Equation 23, concluding the proof.

Using this formulation, the number of con-
straints for preserving submodularity decreases to
1
82m(m2 −m), which is much more reasonable for
practical problems. More precisely, incorporating
the constraint b) of Proposition 2 allows decreasing
the size of the ternary matrix Cs, whose size was
initially 1

22m(2m+ 1). Moreover, we use the propo-
sition relying on ξ-additive set-functions, i.e. we
restrict the computation of the inverse set-function
f−1, given by Equation 19, on sets S for which
|S| ≤ k holds. In that case, this is even reduced to
1
82ξ(ξ2 − ξ), where ξ << m, typically lower than

12



10. Combining this reduction and a ξ-additive set
function leads to a tractable problem.

The solution obtained with this ξ-additive ap-
proach, and implementing submodular constraints
following Proposition 2., is denoted as LEML-ξ
hereafter.

5. Experiments and Result

Now, we conduct experiments which demon-
strate the performance, and in particular the clas-
sification generalization performance, of the pro-
posed method of metric learning on some real-world
datasets. We use 8 data sets from the UC Irvine
Machine Learning Repository [24], and their main
characteristics are given in Table 4. All the experi-
ments are done on a MacBook Pro with 2.3 GHz In-
tel Core i5 CPU, 16 GB 2133 MHz LPDDR3 RAM
and Python 3.7. The only exception is GMML [40],
that were run on Matlab.

Dataset m c n

seeds 7 3 210
sonar 60 2 208
iono 34 2 351

balance 4 3 625
glass 10 7 214

digits 64 10 1797
liver 6 2 347

segment 19 7 2310

Table 4: UCI datasets used in the experiments. c indicates
the number of classes.

In the first part of the experiments, we are us-
ing LEML(Lovasz Extension Metric Learning), that
is using all possible orders of feature interactions.
In particular, the only constraints are related to
submodularity and relative constraints. We com-
pare the results obtained with the proposed method
LEML against several state-of-the-art linear and
non-linear metric learning algorithms: LMNN [34],
ITML [11], LSML [25], LFDA [31], GMML[40] and
GB-LMNN [19, 20]. Finally, we also give the results
obtained without metric learning, which is the Euc.
that means Euclidean distance for M = Id.

We compute the accuracy of each model on the
task of K-nearest neighbours classification, using
cross-validation. All the accuracy and the cost time
are the averages of 10 runs. The number of neigh-
bours K is selected between [3, 5], and the folds

of cross-validation are set between [3, 15] accord-
ing to the experience which are similar to LMNN
[34], ITML [11] and GB-LMNN [19, 20]. We tested
different values, without significant modification on
the comments that can be drawn from the results.
The given results are obtained with K = 5 and 10-
folds cross-validation. In order to build the set R
of relative constraints, we use the labels and ran-
domly select the triples of objects (xi,xj ,xk) for
which (xi,xj) have the same labels and (xi,xk)
have different labels. For the number of constraints
κ, in LMNN [34] they use all supervised informa-
tion and limit with maximum number of iteration;
in ITML [11] it could be a user-select number of
constraints and limit with maximum number of it-
eration; in LSML [25] they choose 100 for all dataset
and compared algorithms; in GMML [40] and GB-
LMNN [19, 20] the number of constraints depends
on the size of datasets. To be fair, for all learn-
ing algorithms (which could select the number of
constraints with the original code), we set the same
maximum number of constraints, which κ = 100,
and as shown in Figure 4, after testing several dif-
ferent sets, the ranks are similar.

As mentioned earlier, due to the complexity of
the model, our first proposition, LEML, is not
able to process datasets for which the dimension
is (even moderately) large. Consequently, we first
use a PCA on the data whose dimension is greater
than 10: sonar, ionosphere, digits, and segment, for
which the lost variance is 12.02, 21.97, 26.26 and
0.008, respectively. The other datasets remained
unchanged. For a fair comparison, and avoid the
potential benefit obtained from PCA, the result of
all other metric learning algorithms are also ob-
tained after PCA projection. Results without PCA
for other metric learning approaches were worse
than those obtained with PCA.

Accuracy and running time obtained on the 8
datasets for each method are given in Table 5. As
can be seen, the proposed LEML generally per-
forms better than all the other metric learning al-
gorithms (with the notable exception of Ionosphere
and Segment datasets). More precisely, given the
average rank of each method, we obtain the follow-
ing ranking LEML � GB −LMNN � GMML �
LFDA ∼ LMNN � LSML � ITML � Euc..
Notice that for low dimensional datasets, the run-
ning time of the proposed method is low, and
quickly increases with the dimension of the data.
Statistical significance of the results are assessed
using a Friedman test [14] as suggested by [12].
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Figure 4: Different numbers of constraints

Figure 5: 3-dimensional embedding of Seeds dataset using
different metrics.

Figure 6: 3-dimensional embedding of Balance dataset using
different metrics.

The value of the Friedman test, FF = 7.10 >
F0.05(8, 56) shows the significance of the difference
between the ranks.

Figures 5 and 6 give 3D embeddings obtained
with various metric learning algorithms on two 3-
classes datasets, Seeds and Balance. It appears that
our proposition allows better visual discrimination
of the classes than existing approaches, which could
be experimentally evaluated with real users.

The second part of the experiments uses the
modified LEML-ξ. In particular, it uses the con-
straint obtained by using the result of Proposition
2 (in which submodularity constraints can be writ-
ten using the inversion f−1). For LEML-ξ, we use
the ξ-additive constraints on f(S) to decrease the
complexity. In this experiment, we use the same
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Dataset Euc. LMNN ITML LSML LFDA GMML GB-LMNN LEML LEML-ξ

balance 72.66 78.86 (16.95s) 77.17 (7.35s) 73.82 (0.01s) 80.22 (0.01s) 80.34(0.42s) 68.90(0.23s) 81.02 (0.01s) 81.12 (0.01s)
digits 93.77 94.33 (254.0s) 90.94 (0.71s) 92.83 (0.01s) 94.10 (0.07s) 94.73(1.76s) 94.87(4.60s) 93.89 (126.0s) 94.05 (2.60s)
glass 61.02 65.21 (4.19s) 57.24 (7.53s) 64.27 (3.95s) 58.17 (0.01s) 64.86(0.32s) 66.79(0.39s) 68.70 (0.94s) 68.17 (0.09s)
iono 85.75 87.17 (6.58s) 85.18 (6.12s) 86.04 (0.09s) 77.18 (0.09s) 87.56(0.16s) 94.32(2.32s) 86.61 (150.9s) 88.60 (2.54s)
liver 66.48 63.87 (36.11s) 62.26 (7.55s) 65.70 (5.43s) 66.14 (0.02s) 64.72(0.85s) 66.48(3.52s) 66.48 (0.01s) 66.59 (0.01s)
seeds 82.57 88.52 (2.45s) 87.62 (14.30s) 88.10 (2.71s) 89.48 (0.01s) 88.67(0.61s) 88.10(2.42s) 90.95 (0.02s) 90.49 (0.01s)
sonar 50.87 55.69 (2.80s) 48.92 (3.11s) 51.53 (0.02s) 52.86 (0.01s) 55.83(1.04s) 66.76(2.07s) 56.63 (124.9s) 59.02 (2.17s)
segment 78.10 82.52 (76.75s) 80.29 (1.26s) 85.67 (0.05s) 83.61 (0.01s) 83.34(1.03s) 83.42(2.12s) 84.38 (168.8s) 83.81 (2.76s)

Table 5: Accuracy of KNN with different metrics learning algorithm and their running time in seconds.

datasets as in the previous experiment, but we make
ξ of the ξ-additive varies from 1 to min(10,m). A
value of ξ = 1 means that there is no interaction be-
tween features, and only singletons are considered.
Increasing ξ adds orders of interaction, and finally
reaches the order of interaction tackled by LMEL
approach without ξ-additive method. It can be seen
that each time we decrease ξ, the number of free pa-
rameters of f(S) is divided by 2, so that running
time of the method is now very reasonable, even for
quite large dimensional data. Table 5 also gives the
results obtained through a grid search of ξ (last col-
umn). Interestingly, one can see that LEML-ξ often
gives better results than LEML, showing that using
all the m-tuple-wise combinations are not always
necessary, and may even penalize the performances
(e.g. balance, ionosphere, liver, and sonar).

The results for varying ξ are given in Figure 7.
According to these results, one can draw the follow-
ing comments. As can be expected, increasing ξ al-
lows obtaining a better classification accuracy on al-
most all datasets. One interesting point is that go-
ing from order 1 (weighted feature) to order 2 (e.g.
Mahalanobis) is generally sufficient to obtain better
results. Increasing to high-order can be worth the
computational effort (e.g. Balance), but sometimes
the difference is not significant (e.g. Digits). One
possible future work could be finding the optimal ξ
concerning a given loss function, or optimal ξ that
trades-off accuracy for computation. Nonetheless,
experimental results show that the LEML-ξ allows
successfully consider large scale problem (outper-
forms other metric learning algorithms, both in ac-
curacy and running time), by choosing a sufficiently
low value of ξ.

6. Conclusions and Future Works

In this paper, we present a new metric distance
based on the Lovasz extension of a submodular set-
function and give the necessary conditions for defin-
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Figure 7: Evolution of the LEML-ξ classification perfor-
mance using ξ-additive constraints, where ξ is varying from
1 (single feature weighting) to min(10,m).
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ing a proper metric. Then, we present a linear pro-
gram allowing them to learn this metric and some
variations around the constraints imposed on the
set-function. Experiments show the efficiency of
the proposition on rather low dimensional datasets,
by outperforming state-of-the-art metric learning
approaches in terms of accuracy. Potential future
work will consist of improving the algorithm, in spe-
cial, by proposing online updates through stochas-
tic gradient descent in order to scale well with the
dimension of the data. We also plan to add a reg-
ularization term on the set-function f into the ob-
jective function. We will also study generalization
bounds of the proposition, following recent work in
[6]. One more interesting topic of research is related
to representation learning, also linked with metric
learning, using submodular functions as presented
in [13]. Further investigations can be conducted in
this domain through the use of deep models.

References

[1] Francis Bach. Learning with submodular functions:
A convex optimization perspective. Foundations and
Trends R© in Machine Learning, 6(2-3):145–373, 2013.
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