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Abstract. The embedding of anchoring systems in the retrofitting of Reinforced Concrete (RC)
structures by means of Fiber Reinforced Polymers (FRP) often implies local failure modes associated
to high stress concentrations. In order to account for such mechanical behaviours in standard finite
element computations, an explicit representation of interfaces is required. This strategy presents, how-
ever, several limitations in terms of computational cost and mesh-related issues. On the other hand,
implicit models may not be sufficiently accurate in order to reproduce the aforementioned localized
phenomena. Specific finite elements for the simulation of pull-out mechanisms are here presented.
The presence of interfaces is taken into account by enriching the displacement approximation by
means of additional unknowns defined at the element level. Static-condensation, therefore, allows
preserving the structure of the finite element procedure and limiting the computational effort.

1 INTRODUCTION

The good performances of FRP materials in
enhancing the bearing capacity and ductility of
RC structures have been well-acknowledged by
extensive experimental campaigns during the
last decades. One of the main issues related to
this technology is, however, the stress transfert
between concrete and reinforcements, in partic-
ular under flexural loading conditions. Suitable
anchoring systems are therefore required [1–4].
These often consist in composite meshes which
are glued through drilled holes to concrete. The
latter are highly recommended especially in
case of joints between vertical and horizontal

elements, where non-anchored FRP strips fail
in ensuring the load transfer, as pointed out
in [5, 6]. The introduction of anchors mobi-
lizes the tensile resistance of the reinforcement
with shear stresses developing at the interface
between FRP and concrete. The overall fail-
ure is then associated in most cases with the
anchor pull-out or its rupture, where debond-
ing is often due to cracking of nearby concrete
[4–6]. The choice of an appropriate numeri-
cal model for simulating the bending behaviour
of RC structures strenghtened with FRP must
then take into account the aforementioned ob-
servations. In order to deal with full-scale sim-
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Figure 1: 2D body with an embedded reinforcement.

ulations, concrete and reinforcements are often
discretized separately. Kinematic relations are
then written between DOFs associated to each
material and the interfacial behaviour is com-
puted in an averaged sense. In order to model
bond-slip behaviours, interface finite elements
can be added to such macroscopic representa-
tion [7,8]. A different strategy is to enrich the fi-
nite element approximation without resorting to
remeshing techniques, as is done in the frame-
work of the Extended Finite Element Method
(X-FEM) [9–11] and in the Embedded Finite
Element Method (E-FEM) [12–14]. In this pa-
per, a finite element model with enhanced kine-
matics for the simulation of structures with em-
bedded anchors is presented. An elemental en-
richment is added to the macroscopic model in
order to catch the interfacial behaviour associ-
ated with local shear stresses. The proposed
formulation is validated at the element level for
different configurations and compared to stan-
dard finite element simulations.

2 NUMERICAL MODEL
2.1 Spatial discretization

Let us consider a 2D body Ω and its bound-
ary ∂Ω, crossed by a reinforcement r whose
axis is denoted by Γr (see Figure 1a). Dirich-
let and Neumann boundary conditions are im-
posed on portions ∂uΩ ⊂ ∂Ω and ∂tΩ ⊂ ∂Ω,
respectively, such that ∂Ω = ∂uΩ ∪ ∂tΩ and

∂uΩ ∩ ∂tΩ = ∅. We also assume that there ex-
ists a part of the boundary ∂rΩ ⊂ ∂tΩ where the
resultant Fr acts. We indicate then with Ωh the
spatial discretization of Ω and Ωr

h =
⋃Nr

e
e=1 Ωe

the set of elements crossed by Γr.

2.2 Finite element approximation
Each elementary domain Ωe ∈ Ωr

h, charac-
terized by N nodes, is then decomposed into
two subdomains Ω+

e and Ω−e as shown in Figure
1b. Its kinematics is approximated as follows:

u ≈ uh = Nd + Nrdr (1)

where d are the nodal displacements, dr the en-
riching variables defined at the center of gravity
of segment Γe, N is the standard shape function
matrix and Nr is defined as:

Nr =

[
Nr 0
0 Nr

]
(2)

Function Nr is chosen such that the kinematic
boundary conditions can still be expressed in
terms of the sole nodal displacements, i.e. by
imposing:

Nr (xj) = 0 , ∀xj ∈ Ωr
h (3)

where xj denotes the coordinates of node j. In
addition, the compatible strain field reads:

ε ≈ εh = Bd + Grdr (4)
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Figure 2: Function Nr in case of CST triangles for different anchor inclinations: (a) αr = −20◦, (b)
αr = 0◦, (c) αr = 20◦.

where B = LN and Gr = LNr compute the
strain field associated to the nodal and enhanced
displacements, respectively.

2.3 Governing equations
Let us consider the case of a single finite el-

ement. In absence of body forces, by applying
the Principle of Virtual Works (PVW) and fol-
lowing a similar reasoning as for the SKON for-
mulation proposed in the framework of the Em-
bedded Finite Element Method (E-FEM) [13],
the governing equations reads:

∫
Ωe

BTσ dA = Fe
ext (5a)∫

Ωe

G∗rσ dA = Fe
r (5b)

with
Fe

ext =

∫
∂tΩe

NTh dΓ (6)

where σ = σ (Bd + Grdr) denotes the stress
field and G∗r is a matrix satisfying the condition
of zero mean, defined as:

G∗r =
1

k+k−lΓe

(
|Ω+

e |χ− − |Ω−e |χ+

)
pT (7)

In expression (7) the following terms appear:
χ+ and χ−, denoting the characteristic func-
tions of Ω+

e and Ω−e , resepctively; lΓe , the length
of segment Γe; p, the matrix containing the
components of the normal n; k+ and k−, de-
fined as:

k+ =
|Ω+

e |
lΓe

, k− =
|Ω−e |
lΓe

(8)

Eq. (14a) states the global equilibrium between
internal and external forces, whereas Eq. (14b)
translates a local equilibrium condition along
Γe.

2.4 Kinematic enrichment
After introducing the Heaviside function

centered on Γe defined as:

HΓe(x) =

{
1, x ∈ Ω+

e

0, x ∈ Ω−e
(9)

in the framework of a pull-out analysis, a possi-
ble choice for function Nr is:

Nr(x) = χ+

N∑
i=1

ai(1−HΓe(xi))Ni(x)

+ χ−

N∑
i=1

aiHΓe(xi)Ni(x)

(10)

where Ni is the shape function associated to
node i and ai are constants ensuring a C0-
continuity across Γe (see Figure 2). By tak-
ing into account expression (10), interpolant Nr

can therefore be written in a compact form as:

Nr = χ+N(I−H)A + χ−NHA (11)

where I and H are (2Nx2N) matrices and A is
of dimension (2Nx2). Matrix Gr assumes then
the following expression:

Gr = χ+B(I−H)A + χ−BHA (12)

3



F. Riccardi, C. Giry and F. Gatuingt

αr

Fr

ks

1m

45◦

x

y

n

(a)

αr

Fr

ks

3

1
2

x

y

n

(b)

Figure 3: 2D case study: (1) macroscopic model, (2) mesoscopic model.

2.5 Resolution
In case of a linear elastic behaviour, the

stress is expressed as:

σ = Dε = D (Bd + Grdr) (13)

where D is the stiffness of the material. Substi-
tuing relation (13) into system (5), we obtain:{

Ke
bbd + Ke

bgdr = Fe
ext (14a)

Kgbd + Ke
ggdr = Fe

r (14b)

where we have defined the matrices:

Ke
bb =

∫
Ωe

BTDB dA

Ke
bg =

∫
Ωe

BTDGr dA

Ke
gb =

∫
Ωe

G∗DB dA

Ke
gg =

∫
Ωe

G∗DGr dA

(15)

If we collect dr from the second equation, we
have:

dr =
(
Ke

gg

)−1 (
Fe

r −Ke
gbd
)

(16)

The nodal displacements can therefore be com-
puted by replacing expression (16) into equa-
tion (14a) as:

d = K̃−1
e

(
Fe

ext −Ke
bg

(
Ke

gg

)−1
Fe

r

)
(17)

where

K̃e = Ke
bb −Ke

bg

(
Ke

gg

)−1
Ke

gb (18)

is the condensed stiffness matrix.

3 NUMERICAL VALIDATION

3.1 Problem description

Let us consider the case study depicted in
Figure 3, where CST elements have been used.
The effect of an embedded anchor is here rep-
resented by the force Fr = Fr cosαrix +
Fr sinαriy, with Fr = 105 N, applied in the
middle of the right side of the structure. Lin-
ear springs with stiffness ks = 2.36 × 109 N

m

are introduced. The material parameters are
E = 30 GPa and ν = 0.2. Plane stress condi-
tions are assumed for the computations (thick-
ness t = 0.1 m). The effect of the inclina-
tion αr on the numerical response is studied
while keeping the load application point fixed.
The enhanced model presented in Section 2 is
compared to the reference mesoscopic model
counting three finite elements, decomposed into
Ω+ = Ω1 ∪ Ω2 and Ω− ≡ Ω3 (see Figure 3b),
and to the single finite element model with stan-
dard kinematics and no interface representation.

4



F. Riccardi, C. Giry and F. Gatuingt

−40 −20 0 20 40
0

2

4

6

8

αr (deg)

u
(×

10
−
5
m
)

uF

uF,ref

uF,std

(a)

−40 −20 0 20 40
−2

−1

0

1

2

αr (deg)

τ
(M

P
a)

τ+

τ−

τ̄

τ̄+
ref

τ̄−
ref

τ̄ref
τstd

(b)

−40 −20 0 20 40
0

0.5

1

1.5

2

αr (deg)

σ
I
(M

P
a
)

σ+
I

σ−
I

σ̄I

σ̄+
I,ref

σ̄−
I,ref

σ̄I,ref

σI,std

(c)

−40 −20 0 20 40
−2

−1

0

1

αr (deg)

σ
I
I
(M

P
a)

σ+
II

σ−
II

σ̄II

σ̄+
II,ref

σ̄−
II,ref

σ̄II,ref

σII,std

(d)

Figure 4: Comparative curves: displacement at load application point (a), local shear stresses (b),
maximum principal stresses (c), minimum principal stresses (d).

3.2 Results
The displacement uF at the load application

point, the local shear stress τ , computed as:

τ = (σy − σx) sinαr cosαr

+ τxy
(
cos2 αr − sin2 αr

) (19)

the principal stresses σI and σII and their direc-
tions αI and αII are compared. The total aver-
age (̄·) of quantity (·) is computed as:

(̄·) =
1

|Ω|

∫
Ω

(·) dA (20)

whereas local averages are defined as:

(̄·)+
=

1

|Ω+|

∫
Ω+

(·) dA

(̄·)− =
1

|Ω−|

∫
Ω−

(·) dA

(21)

As can be seen in Figure 4, the enhanced model
performs pretty well with respect to the refer-
ence simulation, especially in computing local
shear stresses (Figure 4b). The evaluation of
normal stresses is slightly less precise, but still
satisfying (Figures 4c and 4d). On the contrary,
it appears that in absence of internal degrees of
freedom, standard finite elements are not suit-
able for evaluating the interfacial stress field in-
duced by pull-out mechanisms. Such behaviour
is associated with local shear stresses of oppo-
site sign, whose average value goes to zero as
|Ω+| = |Ω−| (when αr → −45◦). This observa-
tion is corroborated by comparing the principal
stress directions (Figure 5), for which we have
ᾱi ≈ ᾱi,ref ≈ αi,std, ∀αr, with i = I, II .
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ᾱ−
II,ref

ᾱII,ref

αII,std

(b)

Figure 5: Comparative curves: maximum principal stress direction (a), minimum principal stress
direction (b).

4 CONCLUSIONS
A finite element with enhanced kinematics

for the simulation of structures with embedded
anchors of arbitrary orientation has been pro-
posed. An enrichment is added to the kinematic
approximation for reproducing local mecha-
nism arising along the interface at the additional
cost of solving a local equilibrium equation.
The proposed model performs well with respect
to a full model where the interface is explicity
represented, especially in evaluating the shear
stresses which are considered to be responsi-
ble for the experimentally observed debonding
failure modes. Complete structural simulations,
including nonlinear material responses, have to
be performed in order to fully validate the pro-
posed numerical model.
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