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Low lying eigenvalues and convergence to the equilibrium of some
Piecewise Deterministic Markov Processes generators in the small

temperature regime

Arnaud Guillin* and Boris Nectoux *

Abstract

In this work we study the number of small eigenvalues and the convergence to the equi-
librium of the Bouncy Particle Sampler process and the Zig-Zag process generators in the
small temperature regime. Such processes, which fall in the class of Piecewise Deterministic
Markov Processes, are non diffusive and non reversible.

Keywords. Piecewise Deterministic Markov Processes, metastability, spectral theory, small
temperature regime, semiclassical analysis.
AMS classification. 35P15, 35P20, 47F05, 35Q82, 35Q92.

1 Introduction and main results

1.1 Purpose and setting of this work
1.1.1 Purpose

The quite recent growing interest for Piecewise Deterministic Markov Processes [11] (say
PDMP herefater) stems from their use within the Markov Chain Monte Carlo methodology. It
aims as simulating a target probability distribution 7 by choosing a good Markov chain in the
sense that it is ergodic and has stationnary probability measure 7. Let us be a little more precise
concerning this probability measure 7. Let M be the position space and 7w be the Gibbs measure

2
e~ nV

m(dz) = dz, (1)

M e"iV
associated with the potential function U : M — R and the parameter h > 0, dz being the
Lebesgue measure on M. The parameter h is proportional to the Boltzmann constant kg through
the relation h = kg7, T being the temperature of the underlying system. The Hastings-
Metropolis algorithm [30] is surely the most well known method to create such a Markov chain
by ensuring reversibility with respect to w. However, its performance may be questioned in
terms of speed of convergence, computational cost and behavior with respect to the dimension
of the problem.

PDMP may be shortly described as follows: between two jumps (eventually of only part of
the coordinates) whose rates may of course depend of the position of the process, they have a
deterministic behavior. PDMP may show remarkable feature [4,|17], as they are by essence non
reversible and may thus exhibit faster rates of convergence towards equilibrium (see [3]). Of

course there is still a lot of work to do to correctly assess the rate of convergence of such PDMP,

*LMBP - Laboratoire de Mathématiques Blaise Pascal, UCA. E-mail: {arnaud.guillin,boris.nectoux}@Quca.fr



see for example [1,8,12,|15], and the behavior with respect to dimension has still to be precisely
understood (see however [6]). In practice, the second main advantage of these processes is that
they can be used to sample the Gibbs measure without sampling Brownian motions, as
for example in Langevin type method such as MALA but only a countable collection of expo-
nentially distributed random variables (using for example thinning procedure). Sampling from
such distributions is a major aim of statistical simulations to compute macroscopic quantities
or thermodynamic properties, see for instance [29].

However being non reversible, the Hasting-Metropolis trick is no more useful to guarantee
that the PDMP has the correct invariant measure. The Bouncy Particle Sampler (BPS) process
and the Zig-Zag (ZZ) process fall in the class of Piecewise Deterministic Markov Processes [11]
designed to admit 7 ® v as invariant measure on the space E = M xV, where v is an instrumental
measure on a space V representing the speed of the process. It is then crucial to study their
limiting properties as well as their speed of convergence to equilibrium, which has been the
subject of quite a lot of recent and impressive works [2,|5,18,|14,:32]. Let us also mention other
contributions: [31] for a spectral analysis in dimension one with a constant jump rate on Tx {£1},
or [7] for an attempt of a spectral analysis in dimension 1 of the BPS and ZZ processes on the
whole line, and [1},/13] for hypocoercive inequalities leading to the convergence of the semigroup
to the equilibrium 1g in the weighted L? space L?(E, C;dndv). In this work, we provide, to the
best of our knowledge, the first study of the spectral properties near the origin of the generators
of the BPS process and the ZZ process (see Theorem [1)) and its consequences on the rate of
convergence to the equilibrium in the small temperature regime h — 0 (see Theorem .T he

PBPS and P#Z in the next section)

main difficulty arising when studying these generators (see
is that they are not symmetric and not diffusive. The main results, namely Theorems [1] and
exhibit a metastable behavior of the processes associated with the operators P}EL‘PS and P%Z: the

convergence in L?(E) to the equilibrium e~ iU x 1y is very slow in the small temperature regime.

1.1.2 Some notations

In all this work, M = T where T = R\ Z and d > 1. Let also V be either equal to {£1}¢ or to
the d — 1-dimensional sphere S¢ in R?. Denote by v the uniform probability measure on V. In
all this work, U : M — R is a C*° function on M and h > 0 is a parameter which will be referred
respectively as the potential function and the temperature of the underlying system. We denote
by E the space E = M ® V. We define on L?(E, C;dxdv), dr being the Lebesgue measure on M,
the operator m, by:

mof(@) = [ Faoyin

Notice that , is a bounded symmetric operator on L?(E,dzdv) and that 72 = ,. Thus 7, is
an orthogonal projection on L?(E,C; dxdv).
Let A, : M — R, be a non negative bounded function such that:

= inf \, . 2
ro lI'\}l)\ >0 (2)

In the following, for ease of notation, we denote by L?(E) (resp. L?(M)) the space L*(E, C; dzdv)
(resp. L?(M,C;dz)). The Sobolev spaces of higher regularity will be denoted similarly.
For instance, H'(M) denotes the set of u € L?(M) such that d,u € L?>(M) (where O,u :=
(Ozyty - . ., Dy u)t). Finally, we define the set C,(E) as the set of functions f € L?(E) such that
the distribution v - 9,.f € L?(E) and for almost every v € V, z € M+ f(z,v) is C*.



1.1.3 The Bouncy Particle Sampler process generator

In this section V = S%!. For f € L?(E), the the jump operator B is defined by:
V(z,v) e M xV, Bf(z,v) = f(z,v — 2v - n(x)n(z)),

where for all z € M,
= ——— if |0,U(x)| #0, elsen(z):=0.

For h > 0, let

2
/\h7_j = E(UamU)+

be the jump rate, where the subscript J stands for jump. Here and in the following, for a € R,
(a)+ is defined by (a)4 := max(a,0). Notice that for all (z,v) € M x V| it holds:

2
Any(z,0) = Apy(x, —v) = 7Y 0,U and B\ j(z,v) = Ay jy(x, —0). (3)
Let us consider the operator
PBPS — —v.dpp + Mgl — B) + M\ (I = ),
where | is the identity operator,
_1g 1y
dup =h0y +0,U=he v 0zer” and Ay =2(v-0,U)4.

The formal adjoint of v - dyy, in L?(E) is the operator (v-dyp)* = v (=hdy + 0,U) = —v -
hewUd,e#U. The operator PBPS is linked to the the Bouncy Particle Sampler (BPS for short)
generator —LBPS where LBPS = —v- 9, +X; (1= B) + 3+ A\ (I — ) introduced in [34] (see also [9])
through the relation

PBPS — he U LBPS ci U

Using (), the formal adjoint operator of PEPS in L?(E) is the differential operator

(PR = v-dun + As(, —)(1 = B) + A (1 — my).

1.1.4 The Zig Zag process generator

Let (eq,...,eq) be the canonical basis of R%. When V = S, for f € L?(E), one defines for
k€ {1,...,d}, the jump operator B%*) as:

V(z,v) e Mx V, B® f(z,0) = flz,v —20-n®) (2)n®)(2)),

where n(®) is defined by: for all z € M,

n®)(z) = m ex(z) if |0, U(x)] #0, else n®)(z) = 0.

When V = {£1}¢, for all k € {1,...,d}, the jump operator B(*) is defined for f € L?(E), by:
V(z,v) € M x V, B(k)f(a:,v) = f(x,v —2v - egeg).

In this case, B%*) consists in negating the k-th component of v € {il}d. For h > 0, and

ke{l,...,d} let

B2
A = 2005, Uer)y



be the k-th jump rate. Notice that for all V(z,v) € M x V, it holds for the two previous cases:

A @, 0) = AP (2, —v) = %u 0y Uei and BOAF)(z,0) = A)(, —v). (4)

Let us consider the operator

d
PZZ = —v-dyy + > AN (1= B®) 4200 - ),
k=1

where )\ng) = 2(v - 03, U e;)+. The operator PZ% is linked to the Zig-Zag (ZZ for short) process

generator —LZ% where LZ2 = —v - 9, + Zi:l /\%(I —B®) + #Ar(I = m,) through the relation
P2 = he U LEZenV,

We refer to [5] and references therein for more details on the ZZ process (see also [16]). Using (4)),
the formal adjoint operator of P}ZLZ in L?(E) is the differential operator

d
(PFE)* = v du + 3 ALY (5 =) (1 = B) + Anll = ).
k=1

Remark 1. Notice that (PEPS)*(e_%Ulv) = (P%Z)*(e_%Ulv) = 0 and thus, the measure m @ v
is tnvariant for both the BPS process and the ZZ process, where m is the Gibbs measure (|1f).

Remark 2. Let us explain the choice of scaling in h in the refreshment operator R, := %)\T(I —
my). This scaling is explained by the fact that in practice, a refreshment is added to balance
the jump rate Ay (or the )\Elki ’s when considering the ZZ process) in order to sample efficiently
the measure m ® v. On the other hand, if the refreshment is too large compared to Xy, the
convergence rate towards ™ Q v becomes very poor. There is a trade-off between the added
refreshment and Ay y (see for example [12,|15] for some very partial explanation). The relevant
scaling when h < 1 of R, is thus of the same order of Ay which scales in h=L. Other scalings
for the refreshment operator are considered in Section below.

1.2 Assumptions and main results

The following result will be needed.

Lemma 3. For all w € C,(E), it holds:

1
Re (PBPSu, u) = /ALJ\BU—U}? +/ )\T/ (1 = 7y )ul?, (5)
2 Je M Vv
and

d
1
Ro (PZu,u = 53 [ N8Ol + [ 0wl
1 E M \Y

Proof. Let us prove (5)). The other equality is proved similarly. Let us consider w € C,(E).
Then, it holds:

(Prw,w) = /E(—v ~dypw)w + /EAl(I —B)ww +/M>\T/V(I — ) wwdy dr.

— fy [0=m0)w]? dv



Since for almost every v € V, € M — w(x,v) is smooth, it holds: dy ,w = hd,w + 0,U W and

2y = v w)w w)w| .
/Ev-ax<rw| ) —/E (Bam)w + (Byw)T] (6)

By the Stockes Theorem v - [y, 0z(|w|?) dz = 0, and therefore, one has:

/Ev- Re ((0,m)w) =0,

and then, Re [c(—v-dypw)w = [ —v-9;Ulw|*. Let us recall that B is symmetric on L*(E).
Besides, one has:

1
Re/ )\17J(I—B)@’U) :2/ [)\LJ(E—B@)w—}—)\l’J(w—Bw)w]
E E
1
:2/ [Aiw — Bwl? + Ay(@ — B@)BS + Avy(., —.)(Bw — w) Bw]
E
1

1
=3 / Alw — Bwl® + 2/()%(., —.) — A1)|Bwl?
E E

+/ (MWBf — Ai(., —)wBw).
E
Since [z (MwBf — Ai(., —.)wBw) = 0, one has:
1 , 1 ,
Re )\17J(| — B)ww = — /\1’_1‘?1] — Bw\ + = ()\17_1 — /\LJ(., —))|w\ .
E 2 Je 2 Je

Using and the definition of Ay, it holds:

1
2/()\“ ~ A= )w)? = /v -9, Uw|?> = —Re /(—v ~dypw)w .
E E E
This concludes the proof of Lemma |

In all this work, we denote by P, (resp. L) for either PEPS and P%Z,

Pre {PR™, PR} (resp. Ly € {LEFS, LF%)).

Let us define
D(Py) = {f € L*(E), v-0.f € L*(E)}.

The choice of the domain D(P},) follows from the fact that Pj, is the sum of the unbounded
operator —v - 9, f and a bounded operator on L?(E) (because the jump rates are bounded on E
as well as A\, on M). The following lemma is the starting point of our analysis.

Proposition 4. Let h > 0 be fized. The space C,(E) is dense in D(Py,). Moreover, the operator
(Ph, D(Py,)) is m-accretive and its adjoint is the operator (P}, D(P})) with D(P}) = D(Py). In
addition, C*(E) is a core for both Pj, and P}

The proof of this result is postponed to Section [2}

Proposition {4 is required for two reasons. The first one is that we need some regularity on
test functions to perform computations for P; (see Lemma [3| for instance and the proof of
Proposition and then pass to the limit, to extend these estimates on D(Pp) in order to
obtain resolvent estimates. The second one is that we need to be able to identify the adjoint of



(Pr, D(Py)) and to do the same computations for the adjoint as those we did for Pp. This is
indeed needed to justify that the resolvent of the operator defined by below existsﬂ in Step
1 in the proof of Proposition

Let us now state the main assumption of this work:

Assumption (Morse). The function U : M — R is a C* Morse function with mg local minima
in M.

The first main results of this work is the following.

Theorem 1. Let us assume that holds. Then, there exists ag > 0 such that for all
a € (0,aq), there exists hy > 0 such that for all h € (0,hg), P has exactly my eigenvalues
{M, -, Amo} (counted with algebraic multiplicity), with A\1 = 0, in the set {Rez < ah?}.
Moreover, for all h small enough and for alli € {1,...,mp}, A; € R, the algebraic multiplicity of
Ai equals its geometric multiplicity, and there exists ¢ > 0 such that for h small enough, A; < e .
Finally, the eigenvalue 0 has algebraic multiplicity 1 for Py and Ker Py, = Span(e_%Ulv). The
same holds for P} .

The fact that the eigenvalue 0 is simple and isolated for both Pj and P} actually holds for
all o > 0, see indeed Proposition in the appendix. The proof mixes different techniques
of semiclassical analysis from [24}28,135]. Our analysis is also inspired from non semiclassical
hypocoercive techniques from the original papers [23|25] which were later generalized in [13]
(see also [1]).

From Proposition[d] the Hille-Yosida Theorem implies that —Pj, generates a strongly continuous
contraction semigroup (e~*"»)y>0 on L2(E). The second main results of this work is the following
which characterizes the convergence of the semigroup (e‘tPh)tzo in the small temperature regime.

Theorem 2. Assume that|(Morse)| hold. Denote by A1, ..., Am, the mg smallest eigenvalues
of Pn, which are real and exponentially small when h — 0 (see Theorem . Let HAj(Ph),

Jj = 1,...,mq, be the spectral projection associated with \; for Py. Then there exist v > 0,
C >0, and hg > 0 such that for all h € (0, hg), it holds for all t > 0:
mo
Heftph - Z eit)\jHAj(Ph)H < Ce ™
j=1

and for all j =1,...,mq, |[II),(Ps)|| < C.

Here and in the following ||K|| denotes the norm of K € £(L?(E)) when L?(E) is endowed with

its natural Hermitian inner product.

2 Proof of Proposition@

Let us first prove the following result.

Lemma 5. Let f € L?>(R% x V). such that v-0,f € L*(R% x V). Then, there exists a sequence
(fr)n>0 € Co(RE x V)N such that f,, — f and v - Opfn — v - Ouf asn — +oo in L2(RY x V).
Finally, if f is moreover compactly supported in B(0,r) x V where B(0,r) is the open ball B(0, )
of radius r > 0 in R% centred in 0, the function f,, for all n > 0, can be chosen compactly
supported in B(0,7) x V.

1Using the identity Ran(K — z) = Ker (K* — 2)* valid for an accretive, closed, and densely defined operator
K on a Hilbert space.



Proof. Let f € L2(RZ x V). Let us consider a sequence of mollifier (p,)nen+ € CC(RHN" ie.
for all n > 1, p,, is non negative, fRd pn = 1, and p, is supported in B(0,2n~!). Define, for all
v € V, the function

ajeRﬁan(:E,v):/

pn(y) f(z — y,v)dy.
]Rd

T

For almost every v € V, [pa|fn(z,v)[*dz < +o00 because f € L*(RY x V). Thus, from [10,
Proposition 4.20], for almost every v € V, x € R s f,,(z,v) is C*. Using the Young inequality,
one has for all n > 1 and for a.e v € V:

||fn(-aU)HL2(Rg) < ||Pn||L1(Rg)||f(-aU)HL?(Rg) = ||f(-7v)||L2(Rg) € L2(V)-
and thus, f,, € L2(RZ x V). Since for almost every v € V, f(.,v) € L*(R%), it holds from [10),
Theorem 4.22],

for almost every v € V, F,(v) := ||fu(.,v) — f(.,v)||%2(Rd) — 0 as n — 4o00.

Since Fn(’l)) S 4Hf(7 U)H%2(Rg
in LY(V), i.e. fn — fin L3(R% x V). In the sense of distribution in RZ, it holds, for all n € N
and i € {1,...,d},

) € LY(V), the dominated convergence theorem implies that F,, — 0

Oty = [ pul)0r (o= )y,

T

and therefore for almost every v € V,
v-0ufu= [ pulwlo-0uf o~y

which actually belongs in L?(R%) for almost every v € V (because v-0, f € L*(R%x V) implies that
for almost every v € V, v-0,.f € L?(R%)). Repeating the previous argument for v-9,.f,, instead of
frn and v-0, f instead of f, we obtain that v- f,, € L2(R%xV) and v- f, — v-f in L>(RZ x V) when
n — 4o0. This proves the first claim in Lemmal[5} The second one follows from the fact that, for
almost every v € V, the support of f,,(.,v) is equal to supp f(.,v)+supp p, = supp f(.,v)+2n""
which is included in B(0,r) for all n small enough. This concludes the proof of the lemma. 1

Corollary 6. The set C,(E) is dense in D(Pp,).

Proof. By considering a finite number of open charts covering the compact manifold M and a
partition of unity on M subordinate to this open cover (with compact supports and indexed by
the open cover, which is possible because M is compact), Lemma |5 implies that C,(E) is dense
in D(Ph) [ |

Let us now end the proof of Proposition

Proof of Proposition[f} The operator (P, D(Py)) is accretive on C,(E) (see Lemma [3) and
from Corollary [6] it is accretive on D(Py). It is clear that the operator (P, D(P)) is closed.
The same clearly holds for (P}, D(Py)): it is accretive and closed.

Let us denote by (PIL, D(PL)) the adjoint of (Py, D(Py)) which is defined by:

D(P}) = {f € L*(E),3g € L*(E) s.t V¢ € D(Py), (Pré, f)r2() = (6, 9)12(E) }+



and P} f := g. Let f € D(P}). Let ¢ € C*°(E). Then, it holds (P, f)12g) = (¢, ) 12(), Which
implies that the distribution v - 0, f belongs to L?(E) and thus:

(Pro, fr2) = (0, Prf) r2(E)-
In particular, for all ¢ € C*°(E), (¢, 9)r2E) = (9, P}, f)r2(E), Which leads to g = Py f. We thus

have

(P D(PL)) C (P, D(Py)). (7)
Therefore, since (Py, D(Py,)) is accretive, so is (P}Ll, D(PL)) Because a closed accretive operator
with accretive adjoint is m-accretive, one deduces that Pj with domain D(P},) is m-accretive.

For the same reasons, ( P};, D(PL)) is also m-accretive. The same arguments shows that P} with
domain D(Py) is also m-accretive. Then, Equation @ implies that,

(P, D(P})) = (P}, D(P)).

It remains to show that C*°(E) is a core for both P, and P;. Let us denote by (Pj,C*(E))T
the adjoint of the closable operator (Pj,,C>(E)). On the one hand, by definition of (Pj,,C>(E))f
and reasoning as we proved Equation (7)), one has: (Pj,,C>(E))" C (P;,D(P})) = (PT D(P ).
Taking the adjoint, leads to

(Pr, D(Pr)) € (Pn,C>(E)).

Since the reverse inclusion clearly holds, one gets that (Py, D(Pp)) = (Pp,C>®(E)), i.e. C*°(E)
is a core for (Pp, D(Pp)). The same holds of course for (P;, D(Pj)). This concludes the proof
of Proposition |

Remark 7. In [1/,/26], it is shown that when considering the semigroup on L®(R% x V), the
space of smooth compactly supported functions on R4 x V is a core for L. Proposition |Z| 18
concerned with the L?(E)-setting and also provides a full characterisation of the adjoint of Ly,
which is required in our analysis.

3 Witten Laplacian associated with U on M

Our analysis is based on the spectral properties of the Witten Laplacian associated with U on
M in the limit h — 0. Let us recall that the Witten Laplacian associated with U on M is the
operator

Ayp = —eiUh divge wV odyy = —h2A, + [0,U2 — h ALV,
where —exUh div, e U is the adjoint of dyp, in L?(M). The operator (Ayp, H*(M)) is self-
adjoint with compact resolvent on L?(M). Moreover, it is the closure of the Friedrichs extension

of the quadratic form
Qup: we H(M) — HdU,hw”%P(M)‘

When |(Morse)| holds, from [19}21], there exist hg > 0 and -y > 0 such that for all h € (0, hy),
Ay, has exactly mg eigenvalues smaller that yph. (8)

Moreover, these mg smallest eigenvalues are exponentially small for h small enough, i.e. if ®; is
a L?(M)-normalized eigenfunction associated with the j-th eigenvalue of Ay, (j € {1,...,mo}),
it holds:

dun®jnllL

2wy < €7, (9)



where ¢ > 0 is a constant independent of h. The ®;’s are two by two orthogonal and from the
standard elliptic regularity, for all j € {1,...,mo}, ®;5 € C>°(M). We have the following lemma
which is a direct consequence of the spectral theorem and .

Lemma 8. Assume that|(Morse)| holds. Then, there exists 69 > 0 such that for h small enough
and for all w € H*(M) such that w € {®y14, ..., @mo’h}lLQ(M),

(w, [1+ Ap )™ Avpw) 2y = doh]|w]| 72wy

Here and in the following, the space {®1 4, ..., @mo’h}J‘LQ(W denotes the orthogonal of the span
of {®1p,...,Pmyn} in L2(M). Let us define the vector space

G:= Span(@thV, ooy (I)mo,h]-V);

and the orthogonal projection g on G in L?(E), i.e. for all u € L?(E),

mo

TGU = Z(ij,h]-Vau)LQ(E)(I)j,hlV' (10)
j=1

Let us now give estimates of the terms Pp(®;,1yv) and Pj(®;,1y) when h — 0. Since
Ph(q)j,hlv) = —U- dU,h((I)j,h]-V) = —U- (dU,h(I)j,h)]-V and PZ((I)j,h]-V) =7v- dU,h((I)j,h)]-Va from @,
for all j € {1,...,mp} and h small enough, it holds:

[Pa(®5n1v) |l L2E) < e i and ||Ph(®n1v) | r2E) < € h, (11)

for some ¢ > 0 independent of h. Equation implies that for all v € L?(E), and h small
enough,
IPamsullzae) < ¢ % mcull ) and [Pimcullzz) < e lmoul zaqe) (12)
We end this section with an important identity which will be used in the next section. For all
u € C*(E), it holds:
ToAupmou = my 'y (v-dyp)* o (v- dyg)mou, (13)

mo ::/v%dy,
\%

and where we have used that fv vivjdv =0 for all 4,5 € {1,...,d}, i # j (when V = S9=1 this
can be proved using the standard polar decomposition, see for instance the proof of |1, Lemma
36]).

where

4 Resolvent estimates on P,

PEPS and P%Z, we set, for ease of notation,

Since the computations are exactly the same for
P, = PEFS.

It will be clear from our analysis that the results stated in the remainder of this work also holds
for P%Z.



4.1 The operator Ay,

In this section we introduce an operator A, which play a crucial role in our analysis. Let
1 . 1
T, = i(Ph — Ph) = —0- dU,h + 5(11 . 8ZV)(I — B)
be the antisymmetric part of Py, and

S = %(Ph +Py) = %(M,J + A0 =)= B) + An(l = my),

be the symmetric part of Pj,, both with domain C*°(E) on L?(E). Notice that S is independent h.
We have the following direct properties:

e The operator S with domain C°°(E) is closable on L?(E) and its closure is a self-adjoint
bounded operator on L?(E). Moreover,

Sm, = 0. (14)

Furthermore, since A\; j € L>°(E) and A, € L>(M), there exists C' > 0 such that for all h,

ISl <C. (15)

e For all u € C*(E), Tpmyu = —v - dypmyu and consequently, (Tpm,)*u = —my(v - dyp)*u,

where we recall that (v -dyy)* = v (—hd, + 0,U). Therefore, from (L3), it holds on
C>(E):

(Trmo) " (Thmy) = Moy Ay pmy = MaAy . (16)

e For all u € C*(E), m, Tmyu = 0, which follows from [, v;dv =0 for all i € {1,...,d}.
Moroever, we have the following result.
Proposition 9. Let h > 0. It holds as an equality between bounded operators on L*(E),
(14 (Thm)* (Tame)] "ty = [1+ maApp] ™ . (17)
Let us introduce the operator
Ay =1+ (Tpm) (Tyam)] N (Thm)* = —[1 + mgAUﬁ]_lwv(v ~dyp)*

with domain C*°(E) on L*(E). The operator Ay, with domain C*°(E) is closable on L*(E) and its
closure is a bounded operator on L?(E) with norm smaller than 1. Moreover, for all u € C*°(E),
ToApu = Apu and

IThmoAnull L2y < (= m0)ullL2(E)- (18)

Finally, one has for all uw € C*(E), Aju = —v-dy [1 + mgAU,h]_lm,u, and
Al 2y < mz 2 lmoul o), (19)

which extends to all u € L*(E).
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Proof. The proof of Proposition |§| is very similar to those made in [1,13]. We recall it in our
setting for the sake of completeness.

On the one hand, the operator Tjm, = —v - dy 7, with domain C*°(E) is closable and densely
defined on L?(E). Thus, from [33, Theorem 5.1.9] (see also [1, Proposition 26]), 1+ (T, )*(Trmy)
is a positive self-adjoint operator from D((Tpm,)*(Tpm,)) to L2(E) and [1 + (Tpmy)*(Thmy)] ™t
is a bounded operator on L?*(E). On the other hand, it is standard that [1 + moApy ]! is
a bounded operator on L?(M).Consider u € L*(E). Let fi € L%*(E) be such that f; = [1 +
(Thmo)* (Thmy)] Lo, ie. [1+ maAypmy|fi = mpu (see (16)). Then, it holds,

Ty f1 = ﬂgu — Mo, Ay Ty f1 = Mot — M Ay, f1 = f1.

Therefore f; is independent of v € V and thus, [1 + meAy)fi = myu. This implies that
fi=[1+ mgmAU’h]*lm,u. This proves .

Let us now prove the statements concerning Ay. To this end, let u € C*°(E). Set
f = Apu = [1 =+ (Thﬂ‘v)*(ThTrv)}_l(ThTrv)*u = —[1 + mgAU,h]_lm,(v . dU,h)*'

Then, it holds: f = m,f € C*(M) (by elliptic regularity). The fact that [1+ (Tpm,)*(Trmy)|f =
(Thmy)*u leads to,

1F 7o) + v dupfl 2@y = —(mu(v - dup) ), f)r2e) = —(u0 - dunf) 2(e)-
Recall that m,(v - dynf) = mTamf = 0. Consequently (u,v - dynf)r2@E = (I — m)u,v -
dunf)r2)- Using in addition the Cauchy-Schwarz inequality, one deduces that
max (|| f|l 22y, 1o - dupfllrzey) < 10— mo)ullr2E)-
Thus, the closure of (A, C*(E)) exists and is a bounded operator on L?(E) with norm smaller

than 1. Moroever, ||v - dynf|l 2@y = |(Trmo) flln2e) < (1= m0)ull 2(g), which proves (18).

Let us now prove the statements concerning Ay. It is clear, using an integration by parts, that
for all u € C®(E), Aju = —v - dpp [l + moAys) tmpu. Set f:= [1 + maAy]~ tryu which is
a function independent of v € V and belongs to C*°(E). It thus holds Aju = —v - dyf and
AL ullz2@E) = lv - dunfllzz@) < Idunfllzzuy- The function f is solution to

f+maAyyf = mu on M. (20)

This implies that
L1220y + mlldon F122 ) < [t £) o)

and therefore, HfHL2(M) < HrrquLz(M) and HdU,thL‘Z(M) < mz_l/szuHLg(M). This proves
and concludes the proof of Proposition [9] ]

The operator Ay, is the corner stone of our analysis. This operator was used in [1,/13] to prove the
convergence to the equilibrium measure when h > 0 is fixed. A similar operator was introduced
in [20,123}35] to study the Boltzmann equation and the Kramers-Fokker-Planck equation. We
also refer to [25] in this connexion.
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4.2 Semi-classical hypocoercive estimate for P,

The aim of this section is to prove Proposition which gives a semiclassical hypocoercive
estimate on Pj. Such estimates were first derived in [23] (see also [35]) for the Boltzmann
operator.

Proposition 10. Let us assume that|(Morse)| holds. There exist co > 0 and hg > 0 such that
for all h € (0, ho) and all for all uw € C*°(E) N G12® , it holds:

e (Pu, [1+ oh(An + Aj)]w) 28y > coh?|lull72g)- (21)

This implies that for all ¢; € (0,c¢ ) if Rez < %h2, there exists hg > 0 such that for all
h € (0, ho) and for all u € C*(E) N GTL2® :

C1
I(Pr — 2)ullr2) > EhQHUHB(E)' (22)
This equality extends to all u € D(Pp) N GTr2e, Finally, Equation holds for P} (with
different constants).

Here and in the following, the space GTE%® denotes the orthogonal of G in L?(E).
Let us prove Proposition

Proof of Proposition[I0 Let ¢ > 0. For u € C*°(E), one has from Lemma [3| and :
Re (Ppu, [1+ (A + Ap)lu) 2 = Re (Pru,u) 2(gy + € Re (Pru, (An + Ap)u) r2(E)
> rol|(1 = 70) [l 72 () + e Re (Phu, (A + Afu) 2y (23)
In addition,
Re (Pru, (Ap + AZ)U>L2(E) = Re (Su, (A + AZ)U>L2(E) + Re (Thu, (Ap + AZ)U>L2(E)
= Re <AhSU,U>L2(E) + Re <AhTh(| — WU)U7U>L2(E)

+ Re (Su, /-\hu>L2(E) + Re (Thu, Ahu>L2(E)
+ Re (AhThﬂvu, U)LQ(E).

We will now estimate each of the above terms. In the following C' > 0 is a constant independent
of h and u which can change from one occurrence to another.

Step 1. Lower bound on ¢ Re <AhTh7rvu,u>Lz(E). Because m,A;, = Ap (see Proposition @ it
holds
Re (ApTrmou, u) o) = Re (ApTrmou, Tou) r2(g)-

From and , we recall that it holds:
ATy, = [1 + mgAUﬁ]*lmgAU’hﬂU on COO(E),

Assume that |[(Morse)| holds. From Lemma [8] there exists dy > 0 such that for h small enough
and for all w € C®(M) N {®yp, ..., By p}t 1200,

(ma[1 + moAp ]~ Ay pw, w) 2y > dohlwl|72wy

Let u € C*°(E). Assume that u € GJ‘L2<5>, ie. that myu € {®yy,.. .,@mo,h}J‘LQ(W. Using the
previous inequality, one deduces that for all u € C*°(E) N GTr2®;

eRe (ApTrmyu, u)r2g) = € Re (AR Trpmou, Tyu) 2y > € doh HmuH%g(E).
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Step 2. Upper bound on the term Re (AySu,u)r2E) + Re (ApTh(l — m)u, u) r2(E)-

Let u € C*°(E). Using (14), it holds (ApSu,u) 2g) = (I — m)u, SAju) r2(g). Thus from ([L5)),
one has for all u € C*(E),

(AnSu,u) 2y < Cll(1 = mo)ull L2 ISIIALull 2y < ClI(T = mo)ull L2 |ALull L2 (E)- (24)
Using , it then holds for all u € C*°(E),
(AnSu, u) 2y < O(1 = m)ull L2yl moull L2 (E)-
Let us now deal with the term (A, Ty (I — 7y )u, u)r2(g). One has for all u € C*°(E),
(ARTR(I = mo)u, u) r2ey = —((1 = m)u, TRARu) p2(g) < (1= mo)ull L2(g) [ ThAR Y L2(E),

where we used that T; = —Tj on C*(E) and Aju € C>(E) by elliptic regularity. Let f :=
1+ mzAU’h]_lﬂvu. Then, it holds:

ThALu = [U dyn — %(v 9,V — B)]v - dunf
- [v ROy + v - BT — %(v R B)]v -dunf
= 0 h0u(v - hduf + o B,U) + [v- 0 %(v -0,V)(1 = B)|v-dun.
Therefore, for h small enough, it holds:
ClITuALull 2y < P21 zamy + RO Fll L2omy + 11| 22qwy -
From and the lines after, one has,
£l 2y + ldupfll 2wy < Cllmoullzzou)-
Moroever, Equation writes
—moh?ALf = my (RALV — |0, V2 f — f + mou.
Thus, multiplying by f and using an integration by parts, for all h such that |h| < 1, it holds:
B0, 12y < Cllmatl 22
Let us recall that from the standard elliptic regularity on M, one has,
12y < C (1Al 2wy + 1 F 1|22 uy)-
Thus for |h| <1 small enough, it holds
£l 2oy < C [h_2(||f||L2(|v|) + [lmoull zomy) + 1 22my)] < Ch_2||7TvUHL2(M)-
In conclusion, for all u € C*°(E),
(AnThu,u)r2e) < Cl(1 = mo)ull L2 | moul| 2 (e)-

Step 3. Upper bound on the term Re (Su, Apu)r2E) + Re (Tru, Apu) r2(E)-

13



On the one hand, from Proposition |§|, it holds m,A, = Aj, and since from , TS = 0, one
has, for all u € C*(E),
<Su, Ahu>L2(E) = <7rv5u, Ahu>L2(E) =0.

On the other hand, since m, Tpm, = 0, one has, for all u € C*°(E),
(Thu, Apu) 2y = (Thu, ToApu) L2 (E)
= <7T1,Th(| — ﬂv)u, WvAhu>L2(E)
—(( = m)u, TpmoApu) 2y < [[(1 = mo)ull L2) | TamoAnl L2 (E)-
Since || TamArllr2E) < I(I = m)ullr2(g) (see (L8))), one deduces that for all u € C*°(E),

(Thu, Apu) 28y < Cl(1 = m0)ul|72 g

Step 4. We have proved that there exist C' > 0 and dy > 0 such that for all u € C*(E)N G2e
and h small enough, it holds:

Re (Ppu, [1+¢€ (A + Ap)]u) 2y = roll(1 - Wv)UHm + EdohHm,uHLz
el — ol
= Ce||(1 = m)ul 72 e).
Let Ag := d9/C. Define \, :=1r9/C and A;z(h) := Aph. Then for h small enough, one has
C™' Re (Phu, [1+ & (A, + ADJu) 2(g) 2 (Ao — )| (1 = mo)ulf2 gy + € Aa(h) [ moull o)
—e|(t=mo)ull L2(g) I ol 2(E)
= Xp(u)* My, Xp(u),

where the vector field X, (u) equals to

Xn(u) == (|lmoul| 2y, (1 = mo)ull 2(g))',

and the symmetric 2 x 2 real matrix M}, equals to:

eXg(h) -5
My, = 2 .

According to |1, Section 3.1 and Lemma 23] (here A, (h) < 1 for h small enough), for all i small
enough, the smallest eigenvalue Ag(e) of M}, is non negative providing that:

AXpAz(h)
e < —wlnl)
= A (h) + 1

and equals

200(2) = Ay — £(1 = A (1)) = y/ [ — 21 = A1) = 4eAa(B) (Ao — &) + 2.

When h > 0 fixed, from [1, item (b) Lemma 24], ¢ € [0,4X;(h)Ay/(4Xa(R) + 1)] — Ao(e)
(see |1, item (b) Lemma 24]) atteins its maximum at a unique point €,,4; whose expression is
given by |1, Lemma QSH

N

L Do) = (1= A () [1/ (1 + 42 () |
(14+Xz(h))2+1

2This follows from the fact that, with the notation of [1], Ao(g) = AA(g/Ao).

Emaz = v X (25)
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An asymptotic expansion when h — 0 of enay then leads to epax = €0h—|—0(h2) where eg = Ay Ag.
Then, one has in the limit A — 0:

200 (e0h) = 250)\0(1 - )h2 +O(R%) = f)\ WA2h2 1 O(BY). (26)

4)\ )\0

Indeed, one has:

2A0(g0h) = Ay — £0h + c0Moh? — /A2 — 2e0Ah + ph2 + O(h3),

with p = 20X\ + €3 — deg Aoy + €3 = —250A0 Ay + 263. Then, when h — 0,

1 2e0 1 4¢?
_ 3) — - _ h2 Oh2 h3
Av\/l . )\2 +O(h3) )\U[1+2( ot ) sl +ouY)

P €
= =Xy +e0h + <— 2 + 27)(\)12)>h2 +O(h3)

This implies that

p
2y 2)\

200 (c0h) = [60)\0 ]h2 +O(R%) = (250)\ )h2 + oY),

22Xy

which is (26)). Thus, there exists ¢y > 0 such that for i small enough and for all u € C*(E) N
GTL2®, one has:
Re <Phu, [1 + eoh (Ah + AZ)]U>L2(E) > COhQHUH%Q(E)

This concludes the proof of the first statement in Proposition namely . Let us now
prove (22). Let z € C and u € C*(E) N GT2%® . Then, it holds:

[(Pr—2)ullr2E) || (1+e0h(An+A}) uHL2 > coh? HuHL2 — Re (2(u, [14+eoh (An+A})]u) 12(8)) -

Since 1+eoh(Ap+A}) is a (bounded) self-adjoint operator, it holds (u, [1+eoh (Ap+Aj)]u) 12(g) €
R. Moreover, for all w € C*(E):

(w, [1+ eoh (A + A})]w) 28y = [[w|72(g) + g0l (w, (An + Ap)w) 2 ()
> [[wl]|72ey — obllwl|72 e (14nl + [IAL])
>(1- 2€0h)|]wHL2 >0,

for h > 0 such that 2eoh < 1 and where we have used that [|Aj || = [|Ap|| < 1, see Proposition [9}
Thus, it holds:

0 < (w, [1 4+ eoh (An + AL w) r2g) < llwll 2 [T+ coh (An + A% wl| L2 ()
Thus, it holds, for all u € C>(E) N G £2®),

1(Ph = 2)ullz2qe) |1+ 2o (A + ARl ey = coh®ullfaqey

— (Re 2)4[|ull L2 I[1 + coh (An + AL)]ull 2(E),
where we recall that (Re z); = max(Re z,0). Consequently,

I (Ph=2)ull (e (1420 (L An IR ID] ] gy > [coh®=(Re )+ [Leoh(lAnll+ 1AL | luliEaqey
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and therefore,

Coh2
1+ 2€0h
Let ¢1 € (0,¢g). Then, for h small enough and v € C*°(E) N G2, [(Pn — 2)ull2(g) > [e1h? —
(Re z)+]HuH%Qi) Let us assume that Re z < $h?. Then, ||(Py — 2)ull2E) > %h2HuH%2(E).

22)

(P = 2)ull2e) > — (Re 2) | Jull2qe)-

This proves (|
Let us show that this equality extends to all u € D(P,) NG 22® . Let u € D(P,) NG L*® . Let
(tn)nen € C¥(E)N such that u, — u and Pyu, — Ppu in L?(E) when n — +o0. Notice that
mew € C*°(E) for all w € L%(E), because 7g is the orthogonal projection on a finite number of
smooth functions, namely (®;,1v)j=1,...,m,- Therefore, (1 — mg)u, € C>*(E)N GT22® and thus,
for all n, it holds:

C
1(Ph = 2)(1 = 76 )unl2e) = T2 (1 = 76 unll3ae). (27)

Moreover, mgu, — mgu in L?(E) when n — 400 and Pmgu, — Ppmgu in L?(E) when n — 400,
because Pj,7¢ is a finite rank operator. Thus passing to the limit in , and since (1—7g)u = u,
it holds:

I(Ph = 2)ullzze) = Sh2(1 = me)ulliae):

The same analysis leads to the same estimate for P} . This concludes the proof of Proposition
|

We now proceed to the proof of Theorems [1| and

5 Proofs of Theorems (1| and

Let us recall that
P € {PEFS, P},

5.1 Proof of Theorem
In this section we prove Theorem (1] To this end, we prove the following result.

Proposition 11. Assume that|(Morse)| holds. Let ¢; > 0 be as in and ¢y < ¢1/2. Then,

1. There exists K > 0 and hy > 0 such that for all z € C such that |z| > coh? and Re z <
%h2, and for all h € (0, hy), it holds,
_ K
P2 < 1
Moreover, there exists § > 0, such that for h small enough o(Py)N{Rez < $h?} C {|z| <
67%}. The same holds for P} (with different constants). For n € (ca2,c1/2), the spectral

Riesz projection
1
Tonz(Pp) = —=— (Py — 2) dz, (28)

um |z|:77h2
is thus well defined for h small enough.
2. There exists n1 > 0 such that for all n € (0,11) it holds for all h small enough,
dim Ranﬂ'nhz(Ph) = my.

The same holds for myp2(Py) = myp2 (Pr)*.
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Proof. Assume that holds. The proof is inspired by |28 Section 2.2]. The main idea
is to build a Grushin problem. We refer to [36] for a review on this topic. Let us define the
operator

Pr=(1—mg)Pu(l—mg): D(Pp) NG 22® C Gre2® — GHr2®), (29)

which is well defined because mgL?(E) C C*°(E) C D(P},). We equip G122® with the Hermitian
inner product of L2(E). This is a Hilbert space. Notice that Py is a closed (it is the sum
of Py and the finite rank operator —mgP — Prmg + m6Pp7mg) and densely defined on G2
(indeed, for u € GL2® | there exists (un)n>0 € C®(E) such that u, — u in L*(E) and thus
Gh2® NC®(E) 3 (1 — 76)un — (1 — mg)u = u in L2(E)).

Step 1. Let us prove that the operator Py, — z is invertible for Re z < %hQ and h small enough
(up to choosing c; smaller, where ¢; is as in (22))).

From and the Pythagorean Theorem, if Re z < %h2, there exists hg > 0 such that for all
h € (0, ho) and for all u € D(P,) N GTE2®:

~ Cl
[(Pr — 2)ullL2&) > §h2\|u||L2(E)~

This proves that (Ish — z) is injective with closed range. Let us now prove that its range is dense.
To this end, we need to identify the adjoint PL of Py, to make use of the relation

Ran(Pj, — z) = Ker (ﬁ;rl —2)t,

which holds because Ish is a closed accretive operator. Recall that If’h is the sum of P, and the
bounded operator —wgPy — Ppmg + mgPpmg. Therefore, the adjoint of (Ish, D(P;)N GLLQ(E)) on
G112(® is the operator

Pr = (1 —mg)P;(1 — m¢)

with domain D(Py) N GLLQ(AD (recall that D(P}) = D(P},), see Proposition .

To prove that the range of P;, — z is dense, it is thus sufficient to prove that P} is injective. But
this follows from the fact that since Pj (1 — mg) = IS;; also satisfies a resolvent estimate (22|) on
D(PZ)QGLLQ(E) for all z such that Re z < $h? up to choosing ¢; > 0 smaller (see Proposit,
(1 = mg)P; (1 — mg) — z is injective. In conclusion, Pj, — z is invertible for all z € C such that

Rez < %hQ and it holds:
2

C1 h2

Here ||(P), — 2)~!|| denotes the norm of (P, — z)~! € L(GJ‘L2(E)),

I(Pr— =) < (30)

Step 2. Grushin problem.
We define the operators (see (L0)):

mo
R_:C™ — L*(E), (tr)j=1,...mp — Zuj ;5 nly,
=1
and

R+ : L2(E) — Cmo, U +— (<q)j,h]-V7U>L2(E))j:1,...,m0'

We equip C™° with the ¢ norm. Notice that

R.R_ =lgm and R_R = 7. (31)
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In addition, it holds:

(& c

IRl < v/mo, [IR-][ < v/mo, [IR4Pxl| <e™® and [[PrR_|| <e7x, (32)

where the two previous inequalities follows from and hold for h small enough (¢ > 0 is
independent of h). For z € C, let us denote by Pj(z) the linear operator defined by

Pr(z): (u,u_) € D(Py) x CM ((Ph — 2)u+ R_u_> .

R+u

Step 2a. The Grushin problem is well posed.

Let us prove that the previous Grushin problem is well posed, i.e. let us prove that Pj(z) :
D(Py) x C™0 — L%(E) x C™ is invertible for Re z < $-h? and h small enough. Let z € C such
that Re z < $h? and (f,y) € L*(E, u) x C™. Assume that (u,u_) € D(Pj,) x C™ satisfies

Pr(z)(u,u-) = (f,9)-
By definition, the previous equality means that
(Pr—2)u+R_u_ = f and Ryu=y.

Applying R4 to the first equation and R_ to the second leads to Ry (Py — z)u +u_ = R4 f and
meu = R_y (see (B1)). Write u = mgu + (1 — mg)u = R_y + (1 — mg)u. It thus remains to find
(1 — mg)u. One has (P, — 2)(1 — mg)u+ (Pr — 2)R_y + R_u_ = f, and applying (1 — 7¢) leads
to

Ph(l—me)u=(1—mc)f — (1 —mc)PyR_y,

where we have used that (1 — 7g)R_- = 0. Thus, it holds:
u=R_y+wvand u_ =Ryf—Ry(Pr—2)[Roy + ],

where
v=Pp—2)" 1 —m)f — (P —2)"'(1 — mg)PrR_y.

Let us now assume choose z such that Re z < ¢ h? and h small enough. Take (f,y) € L*(E, p) x
C™o and choose (u,u_) as above. Then v € D(Py) N Gr2® (according to the previous step,
(P, — 2)~! is well defined on G 22® and its range is D(P,) N G £2®). Therefore u € D(Py).
Since Ryv = 0, it holds Ryu = y. Moreover, using , it is straightforward to check that
(Pp, — 2)u+R_u_ = f. This proves that the previous Grushin problem is well posed. Write the
inverse of Py(z) as, for Re z < 4-h? and h small enough,

2 mo E(z) &)\ (f
e imema (80 ) (1)
where the operators £(z), £4+(2), £-(2), and £_1(z) equal:

1. £(z) = (P, — 2)"1(1 — mg) is holomorphic for Re z < S-h?. Using (30), it holds for
Re z < %h2,
2

€@ < s (33)

2. & 1 (2) = =R (Ph — 2)R_ + Ry (P, — 2)(Py — 2) "1 (1 — m)PhR_.
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3. &.(2) =R_ — (P —2)~'(1 — mg)PuR_.
4. £ (2) = Ry —RyPy(Py — 2)7'(1 — mg) (notice that we have used here that u_ = R, f —
R4 (Pn — 2)R_y — R4Ppv because Ryv = Ry (1 — 7g)v = 0).
Step 2b. End of the proof of Proposition [T1}

In the following Re z < %hQ and h is small enough. Let us recall that P;, — z is invertible if and
only if £_(z) is invertible (see [36]) and in this case,

(Ph—2)! = £() — £(:)_4 () 1€ (2). (34)

From and , there exists ¢ > 0 such that for h small enough:

|€-(2) = R4|| < e~ 7 and |€4(2) = R_|| < e h.
Let us now estimate £_ (z). First, one has using (32),

—R4(Py — 2)R_ = zlgme + O(e ™).

Secondly, Ry (P, — 2)(Pj, — 2)"1(1 — mg)PRR_ = RyPx (P}, — 2) "1 (1 — 7g)PLR_ because Ry =0
on G22®. Thus, using and (32),

|[R+(Pn — 2)(Ph — 2) 1 (1 — mg)PpR_|| < e h.

Thus, £, (z) = zlemo + O(e™#). Let ¢o € (0,¢1/2). Then, the operator £, (z) is invertible
for z € C such that |z| > czh? and Re z < $h?%, and for h small enough. In this case, it holds
£ 4(2)7' = 271+ O(e™#)). Hence, from (34), since RyR_ = 7g, ||7g|| = 1, |Ry| < /Mo,
and ||[R_|| < /mo, the previous estimates on £, (z), £_(2), and £_(z) imply that there exists
¢ > 0 such that:

(Pr—2)"" =&(2) =z (e + Oe 1)), (35)
for all h small enough. From , if |z| > coh? and Re z < %h2, one has for h small enough:

2 (1+0(e 1)) _ 57
01h2 ‘Z‘ — h?

where K > 0 is a constant independent of z and h. The same estimates also holds for P} with

I(Pr = 2)7HI <

different constants ¢; and ca. Notice also that there exists § > 0 (not too large) such that if
)

2| > e"% and Rez < $h? for h small enough, £ (z) is invertible and thus so is P, — 2

(see (34)). Therefore, for h small enough:

a(Pp) N { Rez < C—zlh2} c {|z| < e*%}.
This concludes the proof of item 1 in Proposition Moroever, from and , one has
myia(Ph) = 76 + O(e ).
This concludes the proof of Proposition [11] because 7g is a my dimensional projection.

Let us finally give an estimate which will be used in the proof of Theorem [2| below. Let z be
such that Re z < §-h?. For all (u,u_) € D(P;) x C™, consider (f,y) € L*(E) x C™ such that
Pr(z)(u,u—) = (f,y). Then, u = E(2)f + E4(z)y. The previous estimates (see (28))) imply that
for all z such that Re z < $-h?, for all h small enough and all u € D(P},),

2 _c
ull2E) < WHJC”L?(E) + (vmo + e ) [[ylle, (36)

for some ¢ > 0 independent of z, h and u. ]
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To conclude the proof of Theorem (I in view of Proposition it remains to show that in a disk
of radius smaller than nh?, the spectrum of Py, is made of real eigenvalues. To this end we will
use the fact that the operator P;, admits a PT-symmetry property. We refer to [24},35] for more
details and references on this topic.

Let us define the operator,
X: u € L*(E) — Xu(z,v) = u(z, —v) € L%(E).

The operator X is unitary, self-adjoint, and X~ = X in L?(E). Moreover, it holds (see Proposi-

tion ,
Py = X"'PyX. (37)

Let us finally define the bilinear form,
u,v € L2(E) = (u,v)x = (Xu, v)2(g).-
We have the following result.

Lemma 12. Assume that hold. Then u,v € L*(E) — (u,v)x restricted to the Range
of myn2(Pr) (see (28)) is an Hermitian inner product uniformly in h small enough.

Proof. We just have to check that u,v € Ran(m,,2(Pp)) — (u,v)x is positive-definite uniformly
in h small enough. From , there exists ¢ > 0 such that for h small enough, it holds for all

jE{l,...,mo}: ‘
(Ph — Z)@jﬁlv = —Z(I)jﬁlv + 0(6_3).

Let z € C such that |z| > ¢oh? and Re z < $-h?. Using item 1 in Proposition one deduces
that for h small enough:

(Pr—2) '@, 1y = —2 1 [®; 41y + O(eh)].
Thus implies that
T2 (Pr)(®5nlv) = @551y + O(e™#) (and the same holds for Ton2(Pr) = o2 (PR)*). (38)
Thus, for A small enough, one has:
(Tn2 (PR)® v T2 (PR)Ri1v) o gy = 01 + O(e™ 7). (39)
Since m,2(Pp) is of rank mq for h small enough, one deduces that for i small enough,
{wnhg(Ph)tIJLh, A 7T7,h2(Ph)(I)mo,h} is a basis of Ranm,;2(Pp). (40)
Let j € {1,...,mg}. Since X(®;,1y) = ®; 1y, from , one has:
(T2 (PR)®; Ly, T2 (Pr) iy )y = 0ij + O(eh).

Therefore, for h small enough and for all w € Ran(m,;2(Pp)), writing

mo
w = Z wj,h 7T77h2 (Ph)q)jﬁlv,
Jj=1
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where w;; € R, one deduces that for A small enough

(w,wix = (14 0(e™)) Y |w;nl?,

j=1

where ¢ > 0 is independent of h and w. Therefore, uniformly in A small enough, (-,)x is
an Hermitian inner product when restricted to Ran(m,;2(Pp)). This concludes the proof of
the lemma. Notice that the same holds true for (w,w) r2(e) and thus for i small enough, the
Hermitian inner products

w = (w,w)x and w — (w,w)2g) are equivalent on Ran(m,p2(Py)), (41)

where the equivalent constants are of order 1+ O(e™#). 1

Let us now end the proof of Theorem [I} According to item 2 in Proposition [11] and from the
Riesz decomposition theorem of the spectrum (see for instance [37, Theorem 3.14.10] or [27,
Theorem 6.17]), the spectrum of P, lying inside the disk of radius nh? is the spectrum of the
square matrix My, of size mg of

Py : Ran(m,,2 (Pr)) — Ran(m,,2(Pr)),

computed for instance in an orthonormal basis of Ran(m,2(Py)) for the the Hermitian inner
product (-,-)x (see Lemma . This implies that the spectrum of Py, lying inside the disk
of radius nh? is composed of a finite number of eigenvalues of finite algebraic multiplicities.
Furthermore, from , My, is symmetric. Thus, these eigenvalues are real and their algebraic
multiplicity equals their geometric multiplicity. From item 1 in Proposition these mg eigen-
values are actually exponentially small in the limit » — 0. The same arguments also apply to
P7. This concludes the proof of Theorem [l (as already mentioned, the statement concerning
the eigenvalue 0 in Theorem [1]is true for all h > 0, see Proposition [14] below).

5.2 Proof of Theorem

In this section we prove Theorem Let us assume that holds. Let us denote by
A1y ..., Amy the mg smallest eigenvalues of Py, which are real and exponentially small when A — 0
according to Theorem (I} Let Iy, (Py), j = 1,...,mo, be the spectral projection associated with
Aj for Py.

Remark 13. In [31], in a one-dimensional case, it is shown that the spectrum of Py, contains a
sequence (A )n>0 such that Re A, is bounded and |Im A,| — 0o as n — +oo. This suggests that
the contour deformation procedure made in [20,25] on the semigroup (e~*Pr)i>o might not be
successful for Py, Thus, we rather use a resolvent estimate on Py (1—m,p2(Py)) and a quantitative
version of the Gearhart-Priiss Theorem, see (18, Section 13] and [22].

Let us recall that from Proposition for all all ¢; € (0,¢p), if Re z < %hz, there exists hg > 0
such that for all h € (0, ho) and for all u € D(P,) N G L2®:

c1
|(Pr — 2)ullz2E) > EhQHUHB(E)'

Let us show that this implies a similar resolvent estimate for Py (1 — 7,,2(Ps)). Let w € (1 —
Tonz(Pr))D(P). Then, one has, using (38):

(w, @5 n1v) 28y = (1=mgn2(Pn))w, @0 1v) r2(E) = (W, (1=mp2(P) ) @5 n1v) 2y < € 0w L2
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This implies that ||[Rywlle, < 6_%||1UHL2(E)' Let z be such that Rez < $-h?. Then, setting
u_ =0and u=w in (36), it holds y = Ryw and f = (P, — z)w, and then:

2 _c _c
wllr2E) < CIWHfHL%E) + (vmo + e )e  lwl| r2(g),

for some ¢ > 0 independent of z, h and w. This implies that for all w € D(Py), for h small
enough,

1 2
310 =T (P)ulae) < 5 (Pa = 21 = mpa (P ey (42)

Let us denote by Py, the operator Pj, with domain (1 — Tpn2(Pr))D(Pp) on the closed subspace
F:= (1—m,u2(Py))L*(E) of L?(E). Let us recall that, for h > 0, Py, is the generator of the strongly
continuous contraction semigroup (e~*F*|g);>o (see for instance [37, Theorem 3.14.10]) and is
thus m-accretive from the Hille-Yosida Theorem. Let us show that Ish — z is invertible for all z
such that Re z < %hz and for all h small enough. Equation implies that Pj, — z is injective
with closed range for all h small enough and for all z such that Re z < %hz. In particular,
it is a semi-Fredholm operator. Since P, is m-accretive for h > 0, P, — z is invertible when
z € R* and thus its index is 0. This implies that, since the index is constant on the connected
set Re z < §-h? (see [27, Theorem 5.17]), that the index of P, —zis 0 when Re z < S-h?. Thus,
Ran (|5h — z) = F. Consequently, for all ~ small enough and for all z such that Re z < %hQ,
I5h — 7z is invertible and one has the resolvent estimate

4
Clh2 '

1(Pr—2)7" <

The previous resolvent estimate for Pj, implies, applying [22, Proposition 2.1] to e *Pr|g (see
also |18, Proposition 13.31]), that for all o > 0 small enough, one has for all u € L?(E) and all
t>0:

_ Clh2/2 _c132
e P (1= mya Pl < 14225505 e F (14 fmya(P e

Moreover, we have:
Tz (Ph) = ZH,\ (Pp) and for all j and for all t > 0, e "P*II, (Py,) = e ™M1y, (Py,).
7j=1
In addition, from (41)), for all j = 1,...,mg and h small enough, ||II;|| < C|[II,(Pp)|x where
[Ty, (Pr)l|x denotes the norm of IIy; (Ps) when Ran(m,;2(Pp)) is equipped with (-, -)x. Because
Py is self-adjoint on Ran(m,2(Py)) for the Hermitian inner product (-,-)x (see Lemma ,
[TLy; (Px)llx = 1. This concludes the proof of Theorem

5.3 Other scalings for the refreshment operator

In this section, we investigate the effect of a different scaling for the refreshment operator. More
precisely, let 5 € R be fixed and consider the the operators

PEPS(8) = —v - dup + A (1 — B) + BN (1 — ),

and

PZZ(8) = —v - dUh+Z)\ —B®) + KON (1 = ).
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In the following, let
Pu(8) € {PR"°(8), PR*(9)}.

With this notation, the operator PEPS(O) is the operator Pj, which has been studied in the
previous sections. The antisymmetric part of Py () is still equal to Ty, (i.e. antisymmetric part
of P}, see the beginning of Section {4.1)) whereas its symmetric part now depends on h and equals

Su(8) = 5 (Pu(B) + Ph(8)) = 5+ sl )~ B) + h2 (1 — )

Let us recall that Theorems [I] and [2] deal with the case § = 0. When 8 # 0, the statements of
these theorems are changed as follows.

The case when S8 > 0.

Roughly speaking, when 8 > 0 (resp. 8 = 0), the refreshment operator A%\, (I — 7,) is smaller
(resp. of the same order) than the operators A; j(1—B) or Zizl )\gk}(l —B®). Let 8 > 0. When
g >0, for h € (0,1], the symmetric part S(3) of Px(B) still satisfies ||Sy|| < ¢ for some ¢ > 0
independent of hA. Hence, in view of the three first steps of the proof of Proposition (where
only 79 in is changed into roh? ), there exists A, > 0, C'> 0, and A¢g > 0, such that for all
ue C®(E)N G 2® and h € (0,1],

O Re (Ph(B)u[L + £ (An + AD]u) 2(e) = o — )II(1 = m)ulae) + £ Aa (W) Il 22 g,

—e[|(I = m)ull L2g) lmoul L2 ()
= Xp(u) My (8) Xn(u),

where

ez (h -5 ,
Xn(u) := (lmoullp2gy, I(1 = 7I'U)UHL2(E))t, My(B) == ( _é ) A h52_ 8) , with Az (h) = Aoh.
2 v
Notice that Mj(0) is equal to the matrix M}, defined in the fourth step of the proof of Propo-
sition Let us recall that according to |1, Section 3.1 and Lemma 23|, the smallest smallest
eigenvalue A((]B) (¢) of My (B) is non negative if ¢ < 4\, hP\p(h)/(4A(h) +1). From and the
lines just before, where one just has to change A, there by A,h?, it holds in the limit A — 0:

Emax = Ah? x [)\oh +0(h?)] = eohPt! + O(h’8+2), where we recall g = Ay \o.

An asymptotic expansion when h — 0 then leads to

3
20§ (20h* 1) = 2920(1 - 74;0A VR 4 o(n12) = AN 4 o(h12).
v A0
Therefore, when 8 > 0, Proposition [L0| remains valid for Py (/) by changing in its statement all
the h? by h8*2. The same holds for Proposition In conclusion, when g > 0, Theorem
remains valid for Pj, () by changing in its statement ah? by ahB*2. Finally, Theorem [2| then

holds true for P, (f) if one changes there e~ 7" by eVt

The case when S < 0.

Roughly speaking, in this case, the refreshment operator A% \,.(I —y) is larger than the operators
A1y(l—B) or Zzzl )\gkj(l — B®). When 8 < 0, the symmetric part S;(3) of P, (/) is no more
uniformly bounded when in i — 0 but satisfies, for h small enough, ||S|| < ch? for some ¢ > 0
independent of h. Therefore, in view of the three first steps of the proof of Proposition {10 (where
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only rg in is changed into roh” and ||Sy|| is changed into Ch? in (24)), there exists A, > 0,
C >0, and A\g > 0, such that for all u € C*°(E) N G 22® and h small enough, it holds:

C™'Re (Pr(B)u, [1+& (Ap + AR)u) 2y > (A’ — &) (1 - Wu)“”%?(E) +e )‘x(h)HWvu”%Q(E)
— el || (1 = mo)ull 2(g) 1 moull 2 e
= Xp(u)" Mu(B) Xp(u),

where

edg(h)  —5hP

d Az(h) = Aoh.
—%hﬁ )\’L)hﬁ_€>, all (h) 0

Xn(u) := ([moull L2y, | (1 = mo)ull2g)'s Ma(B) = (
According to |1, Section 3.1 and Lemma 23] (with Ry = h® there), for all h small enough, the
smallest eigenvalue Ag(e) of My (f3) is non negative providing that & < 4\,hP\,(h)/(4\z(h)+ R3)
and equals

oA (e) = AP — e(1 = Ao()) — \/[Ayhﬂ —e(1 = Au(h))]” = 4o (h)(AohP — &) + €2 R2.
When h > 0 fixed, from [1, item (b) Lemma 24], the function e € [0,4A;(h)Ah?/(4Xz(R) +
R3)| — A(()B ) (€) (see [1, item (b) Lemma 24]) atteins its maximum at a unique point €,,q, where
1
L A (B) = (1= A (h)[R3/ (R + ()]
(14 Xz(h))? + R2

when h — 0. Set €1 = 2XgA,. Then, in the limit A — 0, it holds:

— 2>\0)\vh_36+1 + O(h—35+1)’

Emazr = Mh® x

AL (e1h30H) = 200e 32 4 o(h38H2) = 4NN BB 4 (302,

Therefore, when 8 < 0, Theorem 1| (resp. Theorem |2)) remains valid for P (3) by changing in
its statement ah? by ah™3%+2 (resp. by changing e~ th? by e‘”th736+2).

In conclusion, when adding too much or not enough refreshment (i.e |3] > 0), our analysis
provides a separation when h — 0 of the spectrum between the mg smallest eigenvalues of P, (3)
and the rest of its spectrum of order A%+2 if 5> 0 or h=3%+2 if 8 < 0. The better separation is

thus obtained when g = 0.

Appendix

In this appendix, we prove the following non semiclassical result (i.e. when h > 0 is fixed).

Proposition 14. Let h > 0 be fized. The eigenvalue 0 is isolated and has algebraic multiplicity 1
for both Py, and P} . Moroever, the spectral projection m(Py) associated with Py, and 0 equals

(e7#V1y, ) )

u € L*(E) — mo(Pp)u = e_%Ulv,

_1
e hUlV”%2(E)

and is thus orthogonal in L*(E).
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Proof. Since h > 0 is fixed in what follows, we set h = 1. Then the computations to prove
(which are basically those of [1,/13]) imply that for all g > 0 small enough, there exists c(g9) > 0
such that for all u € C*(E) N {e*Ulv}Lﬂ(E), it holds:

Re (Pru, [1+ eo(A1 + AD)]u) 25y > c(eo)|[ullZ2g)- (43)

Choosing g9 > 0 such that 1 + eo(||A1]| + [|A7]]) < 2, Equation implies that for all u €
C®(E)N{e U1y} 22® and z € C, it holds:

Py~ 2Yullzzqe) > [5e(eo) — (Re 2): ] ullzecey. 49

Set Z := He‘UlvH%Q(E). Then, since P1(e"Y1y) = Pi(e=Y1y) = 0, for all u € C>(E), one has:

L, v —uq )P 2 2%, —u 2
H(Pl —2) (u — 2(6 1y, u)2(E)pe 1V>‘ e =|(P1— z)u||L2(E) — 7‘<6 1V7U>L2(E)‘
Using (44)), it then holds for all u € C*°(E) and z € C:
1 1, v -U 2
Py = 2)ull ey > [5eleo) = (Re 2). ] Ju— Zle ™ 1v, )z Vv,
212 2
+|Z"<e ULv,u) o) s (45)

which extends to all uw € D(P1). The same estimate holds for P} choosing if necessary 9 > 0
smaller. Let z € C such that Re (z) < ¢(ep)/2 and z # 0. Then, P; — z is injective with closed
and dense range, i.e. Py — z is invertible. It is in particular is a Fredholm operator (with index
0). We claim that P is also a Fredholm operator. Let us prove it. We have

Ker P; = Ker P} = Span(e Y1y). (46)

It is clear that Span(e~Y1y) C Ker P; N Ker P}. If now Pyw = 0, then from Lemma and ,
mTyw = w is thus independent of v € V. Then, Pyw = 0 writes v-dy,w = 0 for all (z,v) € Mx V.
If dypw(z) # 0 then choose v = dypw(z)/|dypw(z)| which leads to dypw = 0 on M. The
same holds for P]. This proves . Furthermore, Equation (45) with z = 0 implies that
the range of P; is closed. Let us recall that (Ran PI)LLQ(H = Ker P} = Span(e Y1y). Thus,
Ran Py = Span(e~U1y) 22® | which leads to

dim coKer Py = 1.

Hence, P; is a Fredholm operator. In conclusion, for all z € C such that Re (z) < ¢(eg)/2, P1—2
is a Fredholm operator. Since it is invertible for z € R* (P; is m-accretive), by the analytic
Fredholm Theorem, the function

e {ZeC, Re(3) < c(e)/2} v Py — 2)~!

is meromorphic with poles of finite rank. The only pole of this function in this region is
z = 0 and has therefore finite algebraic multiplicity. Let us assume that for P; this alge-
braic multiplicity is strictly larger than 1. Since Ker (P;) = Span(e~Y1y), this implies that
there exists a generalized eigenfunction f € D(P;) such that P;f = e“Y1y. Consequently
0< He*UlvH%Q(E) = (P1f, e U1y) = (f,Pi(e"Y1y)) = 0 which leads to a contradiction. The
same reasoning also applies to P]. This concludes the proof of Proposition ]
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Let us end this work with a short remark on how one can easily deduce the convergence of
(e7*P1);50 to mo(P1) as t — oo from and with the Gearhart-Priiss Theorem. Using (44)), for
all u € C*(E) N {e*Ulv}LLQ(E) and z € C such that Re z < ¢(gg)/4, it holds:

0(50)||UHL2(E)-

AN

1(P1 = 2)ullL2) =

This implies that the resolvent of P1|(1_x,(p,))z2(E) 18 uniformly bounded on the set {2, Re z <
c(g0)/4}. Hence, applying the Gearhart-Priiss Theorem to e "1 (1—my(P1)) on Ran(1 —mo(P1)),
it holds for ¢t > 0,

c(eg)

e (1= mo(Pu)| < e,

for some C > 0 independent of ¢ > 0. In conclusion, this shows that starting from , we
recover the (non semiclassical) results of [1,/13] with the Gearhart-Priiss Theorem together with

uniform resolvent estimates.
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