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Abstract

Users of full-field measurement methods like Digital Image Correlation (DIC) of-
ten aim to perform measurements with the best trade-off between spatial resolution,
bias and measurement resolution. Whenever two full-field methods are compared, it
is essential that these criteria are taken into consideration. Recently a metrological
efficiency indicator for full-field measurements has been proposed and discussed. This
indicator combines measurement resolution and spatial resolution. It has been shown
to be invariant to the subset size in the case of Local DIC. The goal of this article is to
discuss a method, which determines both the spatial and the measurement resolutions
for a given bias for two different DIC methods, in order to obtain the metrological
efficiency indicator for each of these methods. The benefit of this indicator is that it

*Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand,
France benoit.blaysat@uca.fr

�LMT (ENS Paris-Saclay/CNRS/Université Paris-Saclay), 94235 Cachan, France
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§LORIA, UMR CNRS 7503 Université de Lorraine, CNRS, INRIA, Campus Scientifique, BP 239, 54506

Vandoeuvre-lès-Nancy Cedex, France

1



does not depend on setting parameters such as the subset size, which are chosen by
the user. As such, it can be considered as intrinsic to each technique, thus enabling
fair comparison. Local DIC and triangular finite element based Global DIC will be
the subject of this investigation. With this setting, their respective subset and tri-
angular element sizes will be related to the spatial resolution of both methods for a
given acceptable bias. By using the metrological efficiency indicator, the performance
of the two methods will be compared and discussed to a new level of detail. Generally
speaking, the indicator shows that the metrological performance of both methods is
similar, confirming their popularity. However, it will be shown that, depending on the
choice of what an acceptable bias is, one of the method may be preferred to another.
The results show that for the specific DIC versions used in the study, for cases for
which a significant bias is acceptable, Local DIC outperforms Global DIC, while the
opposite is true in the case for which the bias requirements are more stringent. Finally,
the quadratic versions of both DIC versions are shown to significantly outperform their
respective linear versions.

Keywords: Digital Image Correlation, Local DIC, Global DIC, Metrological Performance, Metro-

logical Efficiency Indicator

1 Introduction

Digital Image Correlation (DIC), originally developed by and for the computer vision com-
munity in the eighties [1], is now commonly used in the experimental mechanics community
thanks to the seminal work of Sutton [2, 3]. The wealth of data this technique provides
is appreciated by experimentalists in order to observe mechanisms, and to calibrate their
associated modelisation. However, as for any measurement tool, measurements shall come
along with the metrological properties of the tools used to obtain them. This is not obvious
due to the full-field measurement nature of DIC, and the scarcity of available standards.
This explains why studying the metrological performance of DIC is a topical subject,
e.g. [4–15].

Recently, different criteria were proposed in [16] to consistently study the metrologi-
cal performance of full-field measurement techniques. Moreover, a metrological efficiency
indicator was introduced. It grades the overall performance of a full-field measurement
technique. Firstly devoted to the Localized Spectral Analysis (LSA) approach, the intro-
duced criterion and the associated indicator are not related to the method itself, and thus
allows the comparison of the performance of several approaches although their mathemat-
ical formalisms are different. For instance, they have been used for comparison purposes
between LSA and the Local version of DIC [17].

Technological developments provided the DIC community with new cameras or acqui-
sition systems, but the DIC technique itself also evolved. For instance, from the original
subset based DIC, referred to here as Local DIC, a new version that relies on the whole
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Region of Interest (RoI) has been introduced ten years ago [18–20]. This technique is re-
ferred to here as Global DIC. Global versions of DIC rely on advanced kinematics defined
over the RoI of the specimen surface, contrary to conventional Local DIC, for which sim-
pler kinematics are defined on sub-RoI called subsets. Because embedded kinematics can
be chosen on purpose, Global versions of DIC perfectly correspond to the expectations of
model calibration approaches. Conversely, versatility is also recommended for observation
purposes, when no information about the observed material is available. In these cases,
Global DIC is associated with Finite Element kinematics. Moreover, such a formalism is
also well designed for calibration purposes, since the dialogue with numerical models is
facilitated when the same displacement description is used for both the measurement and
the simulation [21, 22].

In the literature, comparisons between Local and Global versions of DIC have been
already carried in [23–25]. Interestingly, their conclusions are contradictory. Arguably, the
reason for this difference is that the methods were not compared using consistent metrolog-
ical parameters, either in terms of spatial resolution, measurement resolution or bias. The
present paper relies on the recent studies dealing with the metrological performance of full-
field measurement techniques, namely LSA [26] and its comparison with Local DIC [17].
The main point of the present paper is to detail how to obtain the three quantities that
contribute to the metrological performance of both the Local and the Global DIC versions,
namely spatial resolution, measurement resolution and bias. The paper is organized as fol-
lows. The first section presents the criterion defining the metrological performance of any
full-field measurement technique. More specifically, the metrological efficiency indicator is
introduced. It scores the metrological performance of a measurement method, whatever
its mathematical formalism. The second section recalls the basics of DIC. Both Local and
Global versions are discussed, and tuned to enhance their metrological performance. The
third section aims at comparing these two versions of DIC.

2 Metrological performance of full-field measurement tech-
niques

2.1 General remarks

As for any measurement system, it is of prime importance to choose relevant parameters
to describe the metrological performance of full-field measurement techniques, as well as a
methodology to compare them. The main problem here is that despite recent efforts [27–
33], only two standards on the metrological performance of full-field measurement systems
are available [34, 35]. To the best of the authors’ knowledge, although being good starting
points, these standards are far from being sufficient because they do not correctly com-
pletely characterize the metrological performance of any full-field measurement techniques.

Concerning the metrological parameters, we propose to consider first the random and
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systematic errors due to image processing only. Both are thoroughly defined in Appendix A.
The first one, called measurement resolution and denoted by σu, reflects the noise level in
displacement maps provided by the measurement technique. This noise is due to sensor
noise, which propagates up to the displacement maps. The systematic error, also called
bias and denoted by λ in the following, reflects the error with which a given full-field
measurement technique systematically returns localized details in displacement maps, even
in the absence of noise in the images. λ represents a percentage decrease from the true
value (that is, a DIC result of 0.45 [pixel] is 10% lower than the true value of 0.5 [pixel], so
λ = 10%). It is clear that both σu and λ should ideally be as small as possible. In practice,
any DIC measurement at a given pixel relies on the surrounding pixels. In what follows,
let ω be the Zone of Interest (ZoI) of a measurement. It corresponds to the support over
which the calculation is performed to provide the displacement at a given pixel. Let h be
a length parameter characterizing it. ω and h are method-dependent. h corresponds, for
instance, to the subset size in Local DIC. ω and h are defined for Local and Global DIC in
Section 3.1. Nevertheless, σu can be adjusted with any method by enlarging more or less
ω, i.e. the length h. A consequence that every DIC user knows is that h directly impacts
at the same time the blur in any displacement field, in such a way that systematic error
and σu change in an opposite way as h changes. In addition, for a given value of these
parameters, the blur is all the higher as the details are sharp. λ is thus related to a third
quantity named spatial resolution and denoted here by `λ. This quantity is also defined
in Appendix A. It characterizes the ability of a technique to distinguish close features in
a map, and this ability is all the higher as `λ is small. In conclusion, as summarized in
Table 1, we have at this stage three metrological parameters, namely σu, λ and `λ, which
are linked for a given technique. These three parameters are influenced, for any full-field
measurement technique, by a quantity set by the user which defines the calculation support,
denoted here by h. Specifically, in this paper, h will be the edge length of a subset for
Local DIC, or of an equilateral triangle for Global DIC. For a given value of h the spatial
resolution will be different for each DIC method. The relation between h and `λ for a
given method depends on the chosen bias, the shape of the domain, the choice of matching
functions and the mesh connectivity in the case of Global DIC. Determining `λ for a given
value of h and a given method is non-trivial. To ensure that all contributions are taken
into account, `λ will be determined using a synthetic experiment, discussed in Section 2.3.

2.2 Procedure

In the context defined above, the first question is to know how the length h of the DIC
calculation is related to user-defined choices such as the subset and element sizes. The
second question is how to assess the three resulting parameters σu, λ and `λ since they can
potentially all change at the same time.

A first part of the response consists in examining the product between σu and `λ.
Indeed, λ being assumed to be fixed by the user, σu and `λ evolve in an opposite way but
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Table 1: Notation of criteria used for the assessment of the metrological performance

Metric Notation Units

Displacement resolution σu [px]
Bias λ %
Spatial resolution `λ [px]
Metrological efficiency indicator αλ [px2]

their product is constant for 2D measurements,

αλ = σu × `λ. (1)

This result, rigorously demonstrated for the LSA [26] method, has also been observed
in [17] to be nearly constant for Local DIC when the length h changes. We will see here
that the same result is obtained for Global DIC. This product αλ, named metrological
efficiency indicator [17], is therefore intrinsic to a technique for a certain value of λ, while
h is extrinsic since it depends on the user.

It is proposed here to consider the following procedure in order to assess the metro-
logical performance of Local and Global versions of DIC. The first step is to set the value
of λ a priori. For a given value of h, the spatial resolution is deduced by using a suitable
procedure relying on synthetic data described in Section 2.3. The second step consists in
determining the measurement resolution σu. Various formulas, which predict the measure-
ment resolution when only sensor noise is considered, exist in the literature, e.g. [4, 5, 7–9,
20, 23, 36–41]. At this stage, `λ and σu are known, and αλ can therefore be estimated for
a given value of h. Changing this value enables us to check that αλ remains unchanged.
Consequently, a calculation of αλ for one value of h is sufficient.

In conclusion of this section, we have here two quantities, namely λ, which is set a
priori by the user, and αλ, which is obtained through relevant calculations on synthetic
images. Comparing αλ obtained by each technique enables us to compare their metrological
properties since the lower the value of αλ, the better the performance of this technique.
Let us now examine in detail the synthetic images processed here to determine `λ and σu
for the two versions of DIC studied in this paper.

2.3 Test case

One pair of speckle images is obtained by considering the artificial displacement represented
in Figure 1. This type of displacement field, proposed first in [42], is a sinusoidal wave
of constant amplitude, but whose frequency linearly and gradually decreases from the
left to the right. This enables us to analyze the spatial resolution with a single test by
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observing at which frequency the systematic errors become greater than the chosen bias.
The amplitude of this wave is 0.5 pixel, so that the DIC interpolation bias is null at
the points corresponding to the top and bottom of the wave. Finally, this displacement
is constant along the mid-height (and axis of symmetry) of the artificial image, but the
frequency of the sine wave orthogonal to this axis regularly decreases along this line. It
means that plotting the cross-section of the displacement returned by DIC along this axis of
symmetry is expected to show the progressive increase of amplitude of the signal returned
by DIC from the left to the right. This enables us to find `λ for a given value of λ. The
proposed methodology is first dedicated to sinusoidal displacement fields. Nevertheless,
it is worth mentioning that any displacement field can be seen as the summation of sine
functions, thanks to the Fourier series. With a spatial resolution `λ, the coefficients of the
term of frequencies above 1/`λ of the Fourrier series are impaired with, at least, a bias
denoted by λ. For real applications, this definition of the spatial resolution gives thus a
good estimation of the smallest detail the measurement method may confidently retrieve.

An artificial speckle was generated in both the reference and the deformed stated using
the speckle generator described in [43] (see Figure 1). This pair of images, and the dis-
placement, corresponds to the one used in the new version of the DIC Challenge [44, 45].
The main feature of this speckle generator is that it does not rely on any interpolation,
which could potentially corrupt the deformed image in an uncontrolled manner.

Noise is independently added to both images. This noise is heteroscedastic to mimic
at best the actual behavior of camera sensors. Its standard deviation σf increases as the
gray level f increases, as modeled in [46],

∀xp, σf (xp) =
√
a× f(xp) + b (2)

where f is the gray level distribution in the image, a and b are parameters describing the
noise of a typical CCD camera. Here, a = 0.0342, b = 0.2679 have been chosen to mimic a
8−bit camera [45].

3 DIC

This section briefly recalls DIC basics and formulas predicting parameters characterizing
the metrological performance, when available. The practical specificities of Local and
Global implementations are also discussed. The main goal of this section is to describe
both implementations within the same framework.

3.1 Mathematical formulation

DIC aims at comparing two images of the specimen surface, i.e. the reference one (f)
and the current one (g), in order to determine the displacement u that occurs on this
specimen surface. We consider here the Region of Interest (RoI) as the part of the imaged
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Figure 1: Synthetic test case, after [44, 45]: (a) reference image, generated with the tool
described in [43]; (b) second component of the displacement u2 used for computing the
current image. This completely defines the artificial displacement u = u2 × e2. This
displacement allows the assessment of the spatial resolution `λ. The measured displacement
along the middle line directly highlights the filtering effect of the measurement method with
respect to the displacement spatial frequency.
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specimen surface over which the displacement is searched. The RoI is of course imaged in
both images (f) and (g). For the sake of simplicity, the surface specimen is assumed to be
planar, perfectly parallel to the camera sensor, and to deform itself with the displacement
u within this plane. Moreover, the light path and camera sensor are considered as perfect.
Consequently, the coordinate system defined by the camera sensor is used here. The
brightness conservation for all pixel positions xp of the RoI can be written as follows:

f(xp) ≈ g(xp + u(xp)). (3)

Since u uniquely relies on Equation (3), estimating it is an ill-posed problem. A commonly
accepted regularization consists in:

� introducing an approximated kinematics space Uω over the ZoI ω, which is constituted
of Nω pixels. Moreover, the kinematics are assumed to be linear in both cases and
Uω is defined with a set of N matching functions (ϕi)1≤i≤N . Consequently, the
approximated displacement field is completely determined over ω with N Degrees of
Freedom (DoFs) denoted by (di)1≤i≤N :

∀xp ∈ ω, uω(xp) =
N∑
i=1

diϕi(xp). (4)

� Equation (3) is reformulated as a residual whose norm is finally minimized over ω
with respect to the sought displacement. This defines the optimized DoFs:

d = ArgMin
d∗∈<N

∑
xp∈ω

(
f(xp)− g

(
xp +

N∑
i=1

d∗iϕi(xp)

))2
 . (5)

A matrix notation is used here, d being a N × 1 vector gathering the DoF values.
The usual Sum of Squared Difference (SSD) formalism is chosen here for the defini-

tion of the residual. The interested reader can refer to [47] for a detailed study about the
definitions of the residual. Its main conclusion is that the residual elaboration might help
DIC convergence but has no practical impact on its solution. The optical flow integration
scheme chosen here, i.e. the backward one, is also discussed in the literature. The review
proposed in [48] recalls the different numerical schemes and their consequences for DIC.
Interestingly, despite showing that Inverse Compositional Gauss-Newton formulation im-
proves the metrological performance, see [37, 49], its diffusion is nowadays limited and thus
not implemented here. Moreover, such implementation will impact both Local and Global
versions of DIC in the same manner.

The numerical scheme employed to solve Equation (5) is a modified Gauss-Newton
scheme. More details about the modification of the scheme are given in [50, 51]. The
solution is incrementally improved from an initial guess d0 by updating d as follows

dit+1 = dit +M−1 ×L× r(dit), (6)
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where,

� matrix L is the projection of the matching functions on the reference image gradient,

∀(i, j) ∈ {1, ..., N} × {1, ..., Nω}, [L]ij = ∇f(xj) · ϕi(xj); (7)

� matrix M is the DIC tangent operator,

M = L×LT ; (8)

� and vector r(dit) gathers the Nω values of the residual,

∀xi ∈ ω,
[
r(dit)

]
i

= f(xi)− g

xi +
N∑
j=1

diti ϕj(xi)

 . (9)

The measurement resolution of DIC outputs has been widely studied in the literature,
e.g. [7–9, 36–38] for Local DIC versions and [20, 23, 39–41] for Global ones. More re-
cently, [4, 5] revisited the usual measurement resolution formula of [20] in order to define it
in a uniform framework suitable to both Local and Global versions of DIC. It also takes into
account subpixel displacement and noise heteroscedasticity. Noise heteroscedasticity can
be taken into account by using two approaches: (i) a updated formula is proposed, in which
pixelwise properties of the noise are considered and (ii) image noise is normalized by using
the generalized Anscombe transform. Moreover, the validation of the proposed prediction
formula is performed with experimental data. We consider here that noise heteroscedas-
ticity impacts both versions of DIC in the same manner. This impact is overestimated
using the upper bound of noise standard deviation σmaxf and considering that we have the
same standard deviation of the noise at any pixel. With this assumption, the upper bound
of the measurement resolution associated with the DIC DoFs corresponds to the original
formula of [20]. It is equal to

σdi = σmaxf ×
√

2×
[
M−1

]
ii
. (10)

It should be emphasized that the above developments are sufficiently general to include
many of the most popular Local and Global frameworks. Then, the differences between
these two versions of DIC are detailed. More specifically, their tuning for optimizing their
metrological performance is discussed.

3.2 Local version

The Local version of DIC [2, 3] relies on a local definition of the domain ω, called subset,
associated with a relatively low degree kinematic definition, called matching functions. Al-
though all DoFs of the matching functions are optimized, typically, only the zero degree
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DoF, i.e. the displacements at the centers of the subsets, are kept. In the literature, inves-
tigations for optimal subset definition, e.g. [52], or for the optimizations of the kinematics
in the case of fracture cases, e.g. [53], are available. Recently, a deconvolution procedure
has been introduced [54]. This post-processing considerably increases the overall metrolog-
ical performances of DIC outputs. However, the diffusion of such approaches is nowadays
limited, so the formalisms chosen here focus on the most popular ones.

DIC calculations are performed for a multiple of squared subsets (ωi) in order to cover
the whole RoI. The RoI is generally covered with partially overlapping subsets and the
displacements at the subset centers are then used to interpolate the displacement field for
all pixels in the RoI. For this article, interpolation is avoided by applying a dense subset
grid with one subset around every pixel in the RoI. Arguably, this is not common for
Local DIC codes. However, it is almost always possible to configure Local DIC software
to behave in this manner. It improves the accuracy of the results by removing any error
due to subset-to-subset interpolation at the cost of amplifying the required computational
effort.

For each pixel xp of the RoI, one has{
ωL
xp

=
{

integer square of size h centered at pixel xp
}

UL
ωxp

= <	p�[X,Y ]
, (11)

where h is the subset width and <	p�[X,Y ] corresponds to the space of the two-variable

polynomial functions of degree 	p�. Commercial codes often rely on matching functions of

the first-degree, i.e. 	p� = 1. However, second-degree matching functions (i.e. 	p� = 2)
are also included in the discussion of this paper since it is known in the literature that
they significantly enhance the metrological performance [10]. The dimensionless matching
functions are defined as follows,

First-degree Second-degree
	p� = 1 	p� = 2



ϕL
1
(x) = e1

ϕL
2
(x) = e2

ϕL
3
(x) = x1 × e1

ϕL
4
(x) = x2 × e1

ϕL
5
(x) = x1 × e2

ϕL
6
(x) = x2 × e2

(ϕL
i
)1≤i≤6 identical to the first-degree case,

ϕL
7
(x) = 1

2 × x
2
1 × e1

ϕL
8
(x) = x1 × x2 × e1

ϕL
9
(x) = 1

2 × x
2
2 × e1

ϕL
10

(x) = 1
2 × x

2
1 × e2

ϕL
11

(x) = x1 × x2 × e2

ϕL
12

(x) = 1
2 × x

2
2 × e2

(12)

They are therefore centered on each subset, i.e. for each pixel xp,

UL
ωxp

= span
{

(ϕL
i
◦mxp

)1≤i≤6×	p�

}
, with ∀(x, xp) ∈ <2,mxp

(x) =
1

h

(
x− xp

)
. (13)
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Local operators ML
xp

and LL
xp

of the DIC resolution scheme are directly derived from the

set of functions defined above, and from Equations (8) and (9).
The dimensionless definition of the matching functions facilitates the definition of the

displacement as well as the measurement resolution at each pixel. For any degree of the
matching functions, the displacement at the subset center xp is given by the first two
optimized DoF values. After Equation (10), the measurement resolution can be written as
follows

∀k ∈ {1, 2}, ∀xp ∈ RoI, σuLk
(xp) = σmaxf ×

√
2×

[
(ML

xp
)
−1
]
kk
. (14)

Finally, under the assumption that the minimization perfectly converges towards the
true displacement, DIC might be considered as the projector of this displacement to the
space of polynomial functions [10]. In other words, DIC acts as a Savizky-Golay filter. The
validation of this filtering effect of the Local DIC is performed with synthetic data in [17].
We consider in the latter the empirical definition also used in [17] and recalled in Section 2
for the spatial resolution.

3.3 Global version

Contrary to the Local version of DIC, the Global version relies on advanced kinematics
defined over the entire RoI. First Global DIC implementations relied on FE shape functions,
see [20] and more recently e.g. [25, 55]. These general kinematics are well suited when
DIC is used for observation purposes. Polynomial functions [56] and more recently spline
functions [57, 58] have also been implemented with the same goal. Moreover, the global
framework of Global DIC make possible the tuning of its kinematics to match expected
physical phenomena. This is performed using analytical closed-form solutions such as
for fracture mechanics, e.g. [59–61], or using a Finite Element (FE) simulation of the
observed phenomena, e.g. [62–65]. Finally, the FE kinematic definition also enables local
enrichments, as in the case of fracture mechanics [40] or regularization corresponding to
the observed phenomenon [66].

This article focuses on a general Global version of DIC. This is the regular FE-based
version, which uses linear (3-noded) or quadratic (6-noded) triangular elements.

Let (ϕG
i

)1≤i≤N be the FE shape functions used to define the kinematics space required

for solving the DIC problem defined by Equation (5). (ωG,UG
ω ) is thus defined as follows{

ωG = RoI

UG
ω = UG

RoI = span
{

(ϕG
i

)1≤i≤N

} . (15)

For linear triangles, the FE shape functions are directly the barycentric coordinates η,

∀i ∈ {1, 2, 3} and k ∈ {1, 2}, ϕG
2(i−1)+k

(x) = ϕG
i (x)ek and ϕG

i (x) = ηi(x). (16)
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For quadratic triangles with the edge nodes located exactly at the center of the triangle
vertices, the quadratic shape functions read as follows

ϕG
1 (x) = η1(x)(2η1(x)− 1), ϕG

4 (x) = 4η1(x)η2(x),

ϕG
2 (x) = η2(x)(2η2(x)− 1), ϕG

5 (x) = 4η2(x)η3(x),

ϕG
3 (x) = η3(x)(2η3(x)− 1), ϕG

6 (x) = 4η3(x)η1(x).

(17)

The DIC operators MG and LG associated to the Global version are elaborated from
the shape functions given by Equations (16) and (17), which are plugged into Equations (8)
and (9).

With this formulation, DoFs dG correspond to the collection of the nodal displacements.
Contrary to Local DIC, the interpolation of the nodal displacement field to all the pixels
of the RoI is naturally defined by the shape functions, and there is no need for introducing
an arbitrary pixel interpolation. Consequently, the associated measurement resolution is
also connected to the shape functions. Let (ϕG

ek
)k={1,2} be the two NRoI×N matrices that

gather the pixel values of each shape function such that:

∀k = {1, 2},∀(i, j) ∈ {1, ..., NRoI} × {1, ..., N},
[
ϕG
ek

]
ij

= ϕG
j

(xi) · ek. (18)

At convergence, the displacement writes as follows

∀xi ∈ RoI, uRoI(xi) =
[
ϕG
e1
× dG

]
i
e1 +

[
ϕG
e2
× dG

]
i
e2, (19)

and the corresponding measurement resolution has the following upper bound [4, 23]

∀k ∈ {1, 2}, ∀xi ∈ RoI, σuGk
(xi) = σmaxf ×

√
2×

[
ϕG
ek
× (MG)

−1 × (ϕG
ek

)T
]
ii
. (20)

No closed-form expression exists for the estimation of the bias. Consequently, the empirical
estimation recalled in Section 2 will be applied.

Considering the test case defined in Section 2.3, the natural solution would be to gen-
erate a mesh with small elements on the left and large elements on the right to optimally
capture the kinematics in this case. In Global DIC, such mesh adaptations are generally
part of a learning process, starting with a regular mesh and iteratively improving it while
observing the residual fields. Moreover, adaptive approaches are available in the literature
[25, 58, 67]. They propose to increase the kinematic degree of FE shape functions or spline
functions in order to optimize the kinematics description according to detailed criteria.
Nevertheless, for this article, structured hexagonal grid meshes will be applied. The linear
or quadratic elements are all equilateral triangles, with an edge length h. This is done in
order to analyze for the spatial resolution analyzes of the method.

For both Local and Global DIC versions, the metrological performance is not constant
over the subset or element. For the Local method, this complexity is alleviated by consid-
ering only the displacement obtained at the center of the subset. Indeed this is the point
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where the results feature the best measurement resolution is obtained [23]. However, for
global methods, the matching functions define the displacement everywhere in the domain.
Global DIC output maps are thus more consistent with the original cost function defined
in Equation (5). A consequence of this choice is that the global error, i.e. the sum of the
systematic and random errors, is minimized. However, it also means that the mapping of
this error is not constant, and that it is the highest at the nodes and the lowest at the
center of the elements [4, 23].

Figure 2: The mesh configurations that were analyzed. Here only a small section of the
mesh is drawn. The evaluation line is superimposed at the center of the test case.

Moreover, the metrological performance of the methods will be mostly evaluated along
the (horizontal) symmetric line, at the center of the test case. Since the positioning of
the nodes matters, three structured meshes are introduced, each with their nodes placed
differently with respect to this “evaluation line”, see Figure 2. Mesh #1 has a row of nodes
exactly on the evaluation line, Mesh #2 is positioned with the evaluation line centered
between two lines of nodes, while Mesh #3 has the pattern rotated by 90°with respect
to the preceding cases. It consequently has intermittently a node and an edge along the
evaluation line. The goal here is not to be exhaustive but instead to test three basic mesh
configurations, and use the one for which Global DIC behaves similarly than Local DIC.

3.4 Measuring the spatial resolution `λ

A necessary step in the analysis of both methods is to estimate their spatial resolution.
The applied test case is designed to facilitate this. The decreasing frequency of the verti-
cal displacement field will naturally test the capabilities of the kinematic descriptions to
correctly describe the test displacement field. For a given element/subset size, there will
be a portion on the left-hand side of the displacement field which will be poorly described,
while a portion on the right-hand side will be correctly described. The method used in
this article is to choose a threshold value of the displacement accuracy, and define the
wavelength at which this threshold is reached as the spatial resolution. This methodol-
ogy reflects the lowpass filtering effect of the measurement method. For Local DIC, this
method has been proven highly suitable. However, Global DIC is a bit more challenging
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Figure 3: Visualization of the ability of the matching functions to follow a sinusoidal
function. For Local DIC, only a few subsets are drawn, the finally obtained best fit is the
dashed (blue) line. For Global DIC, the obtained best fit is the mesh also shown by the
dashed (blue) line.

to cast in this framework.
Figure 3 schematically illustrates this issue. Local DIC subsets act like low pass filters

and thus will always underestimate the maxima. Indeed, as shown in Figure 3, although
the polynomial fit easily overestimated the maxima within a subset, only the conservative
part of the displacement, i.e. its value at the center of the subset, is kept. The result
is an additional smoothing effect, at the cost of introducing a bias. In Global DIC, the
entire support of the kinematic basis is used instead of only the centers of the subsets.
Consequently, the resulting displacement fields can either under- or overestimate the local
curvature of the sought fields. As a consequence, no bias is induced by these fluctuations
since the whole displacement field is considered to assess it. The price is to locally introduce
sharp features in the error, at the node locations. The fact that there is no bias in the
formulation does not mean there will be no bias. The observed errors are systematic and
thus a bias is introduced. However, this bias is strongly a consequence of the interplay
between the mesh and the underlying kinematics.

Figure 4a shows the obtained vertical displacement fields for Local and Global DIC for
the three mesh types, and for one element/subset size, namely h = 21 [px], using both
linear and quadratic matching functions for both methods. Roughly speaking, each of the
presented fields can be cut into three zones from left to right.

� Zone A) The matching functions are not able to follow the high frequencies present
in this zone. The obtained displacements are unreliable.

� Zone B) The matching functions have difficulties to describe this intermediate band
of frequencies. The obtained displacement fields resemble the real displacements but
show severe deviations. In the case of Local DIC the deviations are in the form of an
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amplitude reduction. For Global DIC the deviations are the consequence of interplays
with the structure of the mesh and the structure of the actual displacement field.

� Zone C) The matching functions are adequately able to follow these lower frequencies.

The difference between linear and quadratic matching functions is clearly emphasized by the
reduction of Zones A and B towards the high frequencies for the right-hand side column
of sub-figures compared to the left-hand side one. This improvement is almost entirely
due to the improved spatial resolution of the quadratic matching functions given at equal
element/subset size. However, the additional freedom also leads to an increased sensitivity
to sensor noise. The net advantage of the quadratic functions over the linear ones will be
discussed in Section 4.3 on using the metrological efficiency indicator.

The locations of the borders between the zones is abstract in this section but will be
evaluated quantitatively later on. However, they present an opportunity to discuss the
concept of the chosen bias λ. The spatial resolution of a method depends on how much
a loss of signal amplitude is acceptable to still reconstruct the displacement for a specific
frequency. Thereby, increasing λ will move the border between Zone B and Zone C to
the left. Thus, increasing the spatial resolution is possible at the price of accepting more
artifacts. The specific value of λ that is acceptable depends on the case. To fairly compare
two methods it suffices to compare them at the same value of λ. However, it should be
realized that low values of λ will put more emphasis on the measurement resolution and
high values of λ will put more emphasis on spatial resolution and bias.

Figure 4c shows the vertical displacements along the evaluation line for both methods
for a range of element/subset sizes. Elements and subsets are illustrated in Figure 4b. For
Local DIC, the obtained displacement maxima are systematically underestimated, ranging
from insignificant at low frequencies (right-hand side) to severe at high frequencies (left-
hand side). This bias is reduced when reducing the subset size at the price of obtaining
noisier displacement fields. This figure emphasizes the reduction in bias when going from
linear to quadratic matching functions at the cost of amplifying noise. For Global DIC,
the overall results are similar. Namely, for large element sizes, the error is dominated
by the limited kinematic freedom while for small elements, the error is dominated by the
propagation of image noise up to the displacement field. However, in contrast to the
Local DIC result, the three meshes show dramatically different behavior. Here, Mesh #2
shows similar behavior to the local DIC result. However, the displacement amplitude of
Mesh #1 increases with the wavelength, but then exceeds before ultimately approaching
the correct value from the top. Lastly, Mesh #3 intermittently under- and overestimates
the displacement amplitude. It should be emphasized that this test case is exactly chosen
to analyze the limits of the kinematic basis, and thus amplifies systematic errors that
should not be as severe in real applications of DIC. The behavior of Global DIC is due to
the interplay between the element edges and the underlying displacement fields. Deciding
which mesh performs at best is arbitrary and case-dependent. The overestimation for
Meshes #1&3 is troublesome as it complicates the definition of the chosen bias. Therefore,
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Figure 4: (a) the u2 displacement fields as obtained for Local DIC (top row) using a subset
of size 21 [px], and for Global DIC (rows 2 to 4) using an element length of 21 [px], for
all three meshes for both linear (left-hand side) and quadratic (right-hand side) matching
functions; (b) illustration of the elements/subsets chosen for the study. The scale used here
is the same as in Figure (a); (c) the u2 displacements along the evaluation line, as obtained
by Local DIC (top row) and for Global DIC (rows 2 to 4) with both linear (left-hand side)
and quadratic (right-hand side) matching functions. The subset size and element length
are mentioned on the top.
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it was chosen to consider the results of Mesh #2 in the following sections, since its behavior
is most comparable to the behavior of the Local DIC.

4 Results and discussion

We propose here to focus first on the two parameters characterizing the metrological perfor-
mance of Global and Local DIC, i.e. the measurement resolution and the spatial resolution
for a bias of λ = 10%. Then, the overall performances of both methods are compared for
a range of biases thanks to the use of the metrological performance efficiency indicator.

4.1 Spatial resolution `λ

The spatial resolution is empirically calculated using the displacement maps obtained by
DIC applied on the synthetic data described in Section 2.3. For this purpose, we consider
the middle line. The true displacement equals here exactly 0.5 [px] The relative bias
associated with the measurements can thus be easily computed. Figure 5a illustrates the
method used for the calculation of the spatial resolution:

� The raw DIC output is filtered using a moving average filter of width 100 [px], for
smoothing local effects of image noise. As a remark, the period change of the ground
truth displacement is about 5% within a window of width 100 [px].

� The intersection between the horizontal line of desired bias gives the minimum wave-
length that the method can retrieve with this bias. This directly defines the spatial
resolution. This calculation is performed here for a bias of 10%. The choice of 10%
bias ensures that all approaches correctly behave, or, in other words, that the border
between Zones B and C discussed in Section 3.4 is located in a region where the
interplay between DIC kinematics and ground truth displacement is reduced.

This method is applied to Global and Local DIC measurements. The obtained results
are given in Figure 5b. Several remarks can be drawn from these results:

� First, for both DIC versions as implemented in this paper, the spatial resolution for
elements and subsets of equal length/size is very similar. This is surprising since the
edge length of a triangle element has little relation with the edge length of a square
subset. It means that the connectivity of the triangles generates a support similar to
the support of a square subset.

� Second, as demonstrated in [10], second-degree matching functions show better per-
formance than first-degree ones. Considering the same element or subset size, the
spatial resolution of first-degree approaches is about three times the one of the second-
degree matching functions.
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Figure 5: Spatial resolution computation and results. (a) Computation for the Local DIC
case, in the case of a subset width of 19 [px]: (i) the relative bias is computed along
the middle line, where the true displacement is equal to 0.5 [px], (ii) the raw DIC bias
is smoothened with a median filter and (iii) the smallest wavelength with a bias equal
to 10% corresponds to the spatial resolution. (b) spatial resolution as a function of the
element/subset size, for first and second-degree matching functions. LDIC and GDIC
respectively refer to the Local and Global versions of DIC, k = {1, 2} corresponds to the
degree of the matching functions.
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� Finally, the spatial resolution appears to linearly increase with respect to the support
width h used for DIC calculations. This property is also demonstrated for another
full-field measurement technique that is the Localized Spectrum Analysis [68]. The
quadratic results start deviating from this linear behavior for h < 19 [px]. It is
assumed this is because the spatial resolution reaches its limit with this kind of
speckle.

4.2 Measurement resolution σu

The measurement resolution is directly derived from the formulas available in the litera-
ture [4, 23]. Employing them avoids performing numerous DIC calculations with different
copies of the same noise to assess the measurement resolution. They are recalled here in
Equation (14) for the Local version of DIC and Equation (20) for the Global version. These
formulas allow the calculation of the standard deviation of the obtained displacement maps
when affected by camera sensor noise. The standard deviations of the displacement noise
are calculated for each pixel of the RoI. Nevertheless, the framework of Global DIC im-
pacts measurement resolution in a non-homogeneous manner. Pixel gray levels are indeed
weighted by their distance to the mesh nodes. Camera sensor noise does not propagate in
a similar manner on the kinematics for pixels that are localized in boundary elements, or
even within a single element, cf. [4, 23]. To avoid such localization effects, the square root
of the average variance is considered over a central area Ω, defined as the middle horizontal
band of 201 pixels width. Finally, only the second component of the displacement is con-
sidered, i.e. σu = 〈σu2〉Ω, where 〈·〉Ω is the averaging operator over Ω. The same quantity
is computed for Local DIC. This measurement resolution indicator is given in Figure 6 as
a function of element and subset sizes. Several remarks can be drawn from these results:

� First, and as expected, the support width h drives the measurement resolution: for
both DIC versions, the smaller the support width, the higher the measurement reso-
lution. The curves follow power laws, as emphasized in Figure 6. Moreover, the first
and second degree kinematics feature the same slope.

� Second, for fixed support width h, low degree kinematics feature better measurement
resolution. Indeed, as stated in the literature, DIC methods relying on high degree
matching functions are more sensitive to noise.

� Finally, the measurement resolution of both the Local and the Global versions of DIC
is similar. Indeed, for equivalent support width h, i.e. element or subset sizes, these
Global and Local versions feature the same measurement resolution.

4.3 Metrological efficiency indicator αλ

Figures 7a represents the measurement resolution as a function of the spatial resolution.
This plot illustrates the compromise between spatial and measurement resolutions: an
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Figure 6: Measurement resolution as a function of the element/subset size. LDIC and
GDIC respectively refer to the Local and Global version of DIC and k = {1, 2} correspond
to the degree of the matching functions.

improvement of spatial resolution may be obtained at the price of increasing sensitivity
to noise, and vice versa. Moreover, this figure shows the power law relation between
measurement and spatial resolution. An interesting property is that the slopes of the
curves are the same, for both DIC versions and both kinematics degrees.

The metrological efficiency indicator as defined by Equation (1) combines both the
spatial and the measurement resolutions to form one indicator only. The hypothesis is
that this indicator is independent from the chosen element/subset size. Figure 7b shows
this indicator for both the Local and the Global DIC versions, for linear and quadratic
matching functions. They allow for a few observations:

� First, the indicator is nearly constant for larger element/subset sizes but deviates for
small element/subset sizes. This is expected as the spatial resolution of the underlying
speckle pattern will come into play for small elements/subsets, thereby increasing the
indicator.

� Second, the difference between Local and Global DIC is small. This result explains
the contradictory results found in the literature [23, 24] when approaching the prob-
lem more mathematically. When both methods are correctly applied, their perfor-
mance is similar.

� Quadratic matching functions drastically improve the metrological efficiency indica-
tor over linear ones.
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Figure 7: Metrological performance of Global and Local DIC: (a) measurement resolution
as a function of the spatial resolution; (b) metrological efficiency indicator as a function of
the support width, i.e. the element or the subset size. LDIC and GDIC respectively refer
to the Local and Global version of DIC, and k = {1, 2} correspond to the degree of the
matching functions. Local and Global DIC feature the same performance. Higher degree
kinematics are characterized by a lower indicator, which means that they exhibit a better
compromise between measurement and spatial resolutions.
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4.4 Influence of the bias λ

It is worth noting that the results and conclusions presented above only rely on calculations
performed assuming a 10% bias. Since this choice impacts the spatial resolution, and thus
the position of the border between Zones B and C in Figure 4a, it is of interest to study
how it impacts the metrological efficiency indicator. This is presented in Figure 8, for
biases ranging from 5% to 50%. For a low bias, for instance below 10%, the border
between Zones B and C is located on the right-hand side in Figure 4a. This zone features
low frequency displacements. Consequently, each of the DIC versions are applied in their
region of confidence. The measured displacement will thus be close to the ground truth.
In this case, Global DIC features a better metrological performance. This observation is
emphasized when considering the second degree matching functions. The higher values
reached by Local DIC are explained by its low pass filter behavior. On the contrary,
for higher biases, above 30% for instance, the border between Zones B and C is in a
more challenging region, namely the left-hand side of Figure 4a. In that case, the low
pass filtering effect of Local DIC enhances the measurement robustness. Interestingly,
the degree of the matching functions has less impact in this case. This can be observed
in Figure 8, where the metrological efficiency indicators of both first and second degrees
matching functions approach each other for Local DIC. These results also explain the
opposing conclusions about the metrological performance of Local and Global DIC found in
the literature when approaching the problem for a fixed bias. In other words, the presented
results only represent the two specific versions of the Local and Global implementations
used in this article, and are not generalizable to any DIC method. The crossing points,
where one method starts outperforming the other can easily shift depending on specific
implementations.

5 Conclusions

This paper first recalled a versatile method for the characterization of the metrological
performance of full-field measurement techniques. The measurement resolution corresponds
to the random error, the bias to the systematic error and the spatial resolution reflects
the cut-off wavelength, when considering full-field measurement techniques as a lowpass
filtering method. The fact that this method does not rely on extrinsic parameters, which
are technique- or user-dependent, enables fair comparisons between different measurement
techniques. The method relies on synthetic images. Other experimental sources of error
are thus not taken into account. They are however expected to impact all the full-field
measurement techniques studied here in the same manner.

Thanks to this methodology, the assessment of the metrological performance of two
specific versions of DIC, namely Local and Global DIC, has been carried out. For both
methods an optimal setting is found in order to compare them. For Local DIC, this
resulted in using a “dense” formulation by using a DIC calculation for every pixel, thus
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Figure 8: Metrological efficiency indicator as a function of the bias used for the spatial
resolution calculation. LDIC and GDIC respectively refer to the Local and Global version
of DIC and k = {1, 2} corresponds to the degree of the matching functions. The lower the
metrology efficiency indicator, the better the metrological performances.

avoiding extra interpolation between the subsets. For Global DIC, all meshes were made of
equilateral triangles, creating hexagonal grids. However, the location of the grid lines with
respect to the underlying kinematics matters. Therefore, three different configurations
were analyzed and the one that behaves in a similar manner to Local DIC was used.

A first conclusion is that both methods feature metrological efficiency indicators of the
same order of magnitude, which means that they exhibit similar metrological performance.
An interesting point is the equivalence between the spatial resolution for subsets/elements
with the same edge length. Although the triangles used in the Global DIC implementation
have a significantly smaller area, their respective connectivity to neighboring elements
increases their support size. It becomes equivalent to the square subsets with the same
edge length.

Given the similarity of both techniques, the relative performance can switch depending
on the choice of the bias λ. Every choice of a kinematic description has a range of spatial
frequencies, where it works well, which naturally has its limits beyond which it can not
correctly represent the sought displacement. One way of looking at λ is to consider how
far the kinematic solution is allowed to push this limit. For very small values of λ, it corre-
sponds to displacement frequencies that are far from the limits of the methods. Conversely,
for larger values of λ, say λ = 20%, it corresponds to displacement frequencies that can
only be poorly represented by the kinematics. The proposed metrological efficiency indi-
cator αλ can be used to study the relative performance of the two methods as a function
of the chosen bias. It was shown in this article that for larger biases (i.e. λ > 30%) Local
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DIC method outperforms Global method. In practice, this comes from a filtering effect
within the Local method that allows the method to give more conservative results when
the underlying wavelength becomes too challenging to be described for the chosen subset
size. Conversely, the absence of this filtering effect in the Global method allows it to both
under- and over-estimate the curvature in the real kinematics. This becomes unstable in
cases for which the element size is too large for the underlying kinematics, but this is an
advantage for stricter choices for the bias. Consequently, it outperforms the Local method
for small values of the bias (i.e. λ < 10%).

Finally, this study confirms that DIC users should always implement second-degree
DIC versions, to take benefit of the associated outstanding gain in terms of metrological
performance.
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A Appendix: vocabulary and definitions

Three metrological parameters are discussed in this paper, namely the measurement reso-
lution, the bias and the spatial resolution. Their definition, already given in [17, 69] , are
recalled below for the sake of complitness:

� Measurement resolution: in Ref. [70], the measurement resolution is defined by the
smallest change in a quantity being measured that causes a perceptible change in the
corresponding indication. More precisely, it is proposed in [71] to define it as the
change in quantity being measured that causes a change in the corresponding indica-
tion greater than one standard deviation of the measurement noise, which enables us
to quantify the measurement resolution. This definition is quite arbitrary, any other
(reasonable) multiple of the standard deviation being also potentially acceptable, but
the idea is that the resolution quantifies the smallest change not likely to be caused
by measurement noise [71].

� Spatial resolution: the spatial resolution denoted by `λ is defined here by the lowest
period of a sinusoidal deformation that the technique is able to reproduce before losing
a certain percentage λ of amplitude, this quantity being chosen a priori [25]. The
advantage of this definition is that it is not based on an arbitrary value for the subset
size in Local DIC or for the elements size in Global DIC. This makes it possible to
compare the spatial resolution between these two techniques.

� Bias: a systematic error generally occurs when a given technique returns actual details
in displacement and strain maps. It is due to the fact that the amplitude of such
apparent details is generally lower than the amplitude of the actual detail. This
apparent “damping” is a bias, which can be quantified by considering a sinusoidal
reference displacement field, and measuring the relative loss of amplitude exhibited
by the displacement field returned by the technique under study, as suggested in
Refs. [25, 44, 72, 73]. Of course, the loss of amplitude depends on the frequency f of
the sine function. This loss of amplitude is denoted here by l(f). In this context, the
spatial resolution defined above is defined for a given bias λ, the relation between `λ
and λ being that `λ is the smallest value such that l(1/`λ) = λ. We call here λ the
bias of the method. This is a slight abuse of language since fixing λ does not mean
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that the damping of any displacement or strain field is actually equal to this λ value.
Note finally that for DIC, the effect quantified here by λ is often referred to as the
“matching bias”, because it occurs when there is a mismatch between the matching
function used to describe the displacement within subsets on the one hand, and the
degree of the actual displacement if the latter is described by a polynomial on the
other hand.
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