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1.  Introduction

Weak itinerant ferromagnets (wFM) and antiferromagnets 
(wAFM) are not very common and have raised a large and 
ongoing interest as they are near the onset of magnetism, 
present large spin-fluctuations and are often close to quantum 
critical point and even superconductivity [1–3]. Among the 
wFM, several studies have been performed on ZrZn2 [4, 5], 

Ni3Al [6–10], Fe2N [11, 12] and AsNCr3 [13]. wAFM are 
even less common than wFM and have been observed in some 
compounds like TiBe2 [14–16], TiAu [17–20] and UN [21]. 
Weak itinerant magnets are generally characterized by high 
transition temperatures and low magnetic moments related to 
their particular electronic properties.

Recently Singh [22] has compared wFM classical faced-
centered-cubic Ni substituted by Al forming the Ni3Al (75% 
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Abstract
The weak itinerant magnetic properties of A2Ni7 compounds with A  =  {Y, La} have been 
investigated using electronic band structure calculations in the relation with their polymorphic 
crystal structures. These compounds crystallizes in two structures resulting from the stacking 
of two and three blocks of [A2Ni4  +  2 ANi5] units for hexagonal 2H-La2Ni7 (Ce2Ni7 type) 
and rhombohedral 3R-Y2Ni7 (Gd2Co7 type) respectively. Experimentally, 2H-La2Ni7 is a 
weak itinerant antiferromagnet whereas 3R-Y2Ni7 is a weak itinerant ferromagnet. From 
the present first principles calculation within non-spin polarized state, both compounds 
present an electronic density of state with a sharp and narrow peak centered at the Fermi 
level corresponding to flat bands from 3d-Ni. This induces a magnetic instability and both 
compounds are more stable in a ferromagnetic (FM) order compared to a paramagnetic state 
(ΔE  ≈  −35 meV/f.u.). The magnetic moment of each of the five Ni sites varies with their 
positions relative to the [A2Ni4] and [ANi5] units: they are minimum in the [A2Ni4] unit and 
maximum at the interface between two [ANi5] units. For 2H-La2Ni7, an antiferromagnetic 
(AFM) structure has been proposed and found with an energy comparable to that of the 
FM state. This AFM structure is described by two FM unit blocks of opposite Ni spin sign 
separated by a non-magnetic layer at z  =  0 and ½. The Ni (2a) atoms belonging to this 
intermediate layer are located in the [La2Ni4] unit and are at a center of symmetry of the 
hexagonal cell (P63/mmc) where the resultant molecular field is cancelled. Further non-
collinear spin calculations have been performed to determine the Ni moment orientations 
which are found preferentially parallel to the c axis for both FM and AFM structures.

Keywords: intermetallic, electronic structure, weak itinerant magnetism, antiferromagnetism, 
first principle calculation
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Ni) with wFM Y2Ni7 which is also a Ni rich compound 
(78% Ni). Y2Ni7 is an interesting itinerant magnet which has 
deserved both detailed theoretical and experimental studies 
[23–25].

With the same stoichiometry than Y2Ni7, La2Ni7 has been 
the subject of many experimental studies revealing a weak 
itinerant antiferromagnetic ground state, whose origin has not 
been clearly solved until now. Due to the very few number 
of wAFM compounds, it appears of particular interest to 
describe the AFM structure of La2Ni7 and to understand the 
origin of its specific behavior.

La2Ni7 crystallizes preferentially in the hexagonal Ce2Ni7 
structure type and Y2Ni7 in the rhombohedral Gd2Co7 structure 
type. Hexagonal La2Ni7 is a wAFM with TN  =  50 K and under-
goes a metamagnetic transition toward a wFM state [26–30],  
whereas rhombohedral Y2Ni7 is a wFM with TC  =  53 K 
[22, 23, 25, 31, 32]. Both compounds have in common low 
value of the mean Ni moments (0.06 to 0.11 µB/Ni) [25, 30] 
and relatively large ordering temperatures, characteristic of 
the weak itinerant magnetism. They have also effective Ni 
moments around µeff  =  0.8–1 µB and positive paramagnetic 
Curie temperatures θp between 50 and 70 K derived from the 
analysis of their magnetic susceptibility in the paramagnetic 
range [23, 25, 27, 30]. This is rather surprising for La2Ni7, as 
a negative θp is expected for an antiferromagnetic compound.

Several experimental studies have confirmed the wAFM 
behavior of La2Ni7 at low field, but the attempts to perform 
neutron powder diffraction (NPD) experiments at low temper
ature [33] did not allow to determine its microscopic magnetic 
structure. The absence of magnetic peaks in the neutron pat-
terns below TN was attributed to the itinerant character of the 
antiferromagnetism and the low values of the Ni moments.

In order to solve the origin of the weak antiferromagnetic 
ground state of La2Ni7 as well as its metamagnetic trans
ition toward a ferromagnetic structure, we have performed 
first principle calculations using collinear and non-collinear 
spin polarized density-functional theory (DFT). Taking into 
account the particular geometry of the La2Ni7 crystal struc-
ture, we will propose an antiferromagnetic structure which 
can explain, for the first time, many of the magnetic exper
imental particularities of this compound.

The magnetic and electronic properties of La2Ni7 will be 
compared with those of Y2Ni7 all along this paper. A more 
general discussion on the specific itinerant magnetic behavior 
of La2Ni7 compared to other intermetallic compounds with 
large spin fluctuations will be introduced.

2.  Structural description and methodology

La2Ni7 and Y2Ni7 crystallize in a Ce2Ni7 type hexagonal struc-
ture (P63/mmc space group) and Gd2Co7-type rhombohedral 
structure (trigonal symmetry, R-3m space group) respectively 
as presented in figure 1. These phases result from the stacking 
of [A2B4] and [AB5] units according to the rule [A2B4  +  n · 
AB5], where n is an integer. If n  =  2, the stacking leads to 
the A2B7 formation in two polymorphic forms: the hexagonal 
Ce2Ni7 cell [2H] contains two blocks of [A2B4  +  2 AB5], 

whereas the rhombohedral Gd2Co7 cell [3R] contains three 
blocks of [A2B4  +  2 AB5] in the hexagonal description as 
shown in figure 1 [34]. For the sake of simplicity, the [A2B4] 
subunit will be renamed as [AB2] in the following. Both hex-
agonal and rhombohedral structures are strongly anisotropic, 
with large values of the c parameter compared to the a param
eter (a  =  5.062 Å, c  =  24.71 Å for 2H-La2Ni7; a  =  4.946 Å 
and c  =  36.26 Å for 3R-Y2Ni7). Both cell contains 2 A  =  {Y, 
La} and 5 B  =  Ni different Wyckoff sites (table 1) which are 
characterized by their positions along the c axis forming A 
and Ni layers. Each A site is located either in one [AB5] or 
one [AB2] units, whereas each Ni site is located either in one 
of these units or at the interface between 2 units. Regarding 
the Ce2Ni7 type structure, it displays a mirror inversion of the 
[AB2] units at z  =  0 and z  =  1/2.

The electronic structure was calculated for the ordered 
La2Ni7 and Y2Ni7 compounds in both hexagonal and rhombo-
hedral structures. In the frame of the DFT, the pseudo-poten-
tial approach using the VASP package [35, 36] was considered 
using projector-augmented wave [37] with a 600 eV cut-off 
energy and a high k-mesh density (at least 250 k-point in the 
irreducible Brillouin zone). Several exchange and correlation 
(XC) functionals have been considered, such as local density 
approximation (LDA) with parametrization from Perdew and 
Zunger [38], the generalized gradient approximation with 
the PBE functional [39, 40] and a meta-GGA functional, 
the strongly constrained and appropriately normed semi-
local density functional (SCAN) [41], including the second 
derivative of the electron density. In addition, an empirical 
coulomb interaction (Hubbard) was introduced (U  =  5eV, 
J  =  0) to test the influence of GGA  +  U calculation [42]. 
Preserving the original crystal symmetry, each structure has 
been fully relaxed within several magnetic ordering such 
as ferromagnetic and antiferromagnetic structure using the 
electronic collinear and non-collinear spin-polarization. For 
the latter, the most stable spin moments orientation has been 
investigated in GGA-PBE (several moment directions have 
been tested such as parallel and perpendicular to c axis). 
Final static calculation was done using the linear tetrahedron 
method with Blöchl corrections on relaxed structures [43]. 
The charge distribution on the atoms was investigated using 
Bader topological analysis within the ‘Bader’ code developed 
by Henkelman et al [44, 45].

3.  Results and discussion

The non-spin polarized (NSP) density of state (DOS) of hexag-
onal La2Ni7 (2H-La2Ni7) and rhombohedral Y2Ni7 (3R-Y2Ni7) 
are compared in figure 2(left). The electronic DOS results in 
a large main structure dominated by the 3d states from Ni. A 
charge transfer from the A element to Ni is observed (1.2 e-per 
A atom according to the Bader method), but is not sufficient to 
completely fill the Ni-bands and both compounds present a DOS 
with a sharp and narrow peak centered at the Fermi level (EF). 
This result is in agreement with previous studies [22, 46, 47]  
and was also observed in wAFM orthorhombic TiAu [18, 19] 
and H3S superconductor [48]. This peak corresponds to the 
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flat d-bands in the electronic band structure as shown in fig-
ures  2(right, zoom scale) and S1(full scale) (stacks.iop.org/
JPhysCM/32/145802/mmedia) for 2H-La2Ni7. Such flat bands 
were also visible for the paramagnetic calculation of 3R-Y2Ni7 
in [22]. It can be noticed that the peak maximum is located at 
EF for Y2Ni7, while it is slightly shifted to higher energy for 

La2Ni7. The main contribution to this peak is thus due to the 
3d states of Ni and leads to a high DOS at EF; N(EF)  =  14.6 
states/eV per f.u. for 2H-La2Ni7, smaller than that calculated 
for 3R-Y2Ni7: N(EF)  =  21.7 states/eV per f.u. (close to the 24 
states/eV per f.u. from [22]). Both values are large enough 
to follow the Stoner criterion [49] (N(EF) * I  >  1 for I  ≈  0.8  

Figure 1.  Comparison of the rhombohedral and hexagonal structures of A2Ni7 compounds showing the stacking of [AB2] and [AB5] units 
and the A and Ni atom positions.

Table 1.  Calculated magnetic moments in hexagonal La2Ni7 (FM, AFM) and rhombohedral Y2Ni7 (FM). ΔE  =  E  −  E0 (NSP).

2H-La2Ni7 FM AFM

Atom Site Unit Neighbors m (µB/at.) m (µB/at.)

La1 4f 1 [AB2] 4 A  +  12 Ni −0.026 ±0.015
La2 4f 2 [AB5] 2 A  +  18 Ni −0.041 ±0.041
Ni1 12k [AB2/AB5] 5 A  +  7 Ni 0.102 ±0.095
Ni2 6h [AB5] 4 A  +  8 Ni 0.287 ±0.293
Ni3 4f 3 [AB5] 3 A  +  9 Ni 0.198 ±0.186
Ni4 4e [AB5] 3 A  +  9 Ni 0.197 ±0.197
Ni5 2a [AB2] 6 A  +  6 Ni 0.023 0

Mtotal (µB/f.u.) 1.08 0

ΔE (eV/f.u.) −0.035 −0.033
3R-Y2Ni7 FM
Atom Site Unit Neighbors m (µB/at.)
Y1 6c1 [AB5] 2 A  +  18 Ni −0.043
Y2 6c2 [AB2] 4 A  +  12 Ni −0.034
Ni1 18h [AB2/AB5] 5 A  +  7 Ni  0.153
Ni2 9e [AB5] 4 A  +  8 Ni  0.315
Ni3 6c3 [AB5] 3 A  +  9 Ni  0.208
Ni4 6c4 [AB5] 3 A  +  9 Ni  0.216
Ni5 3b [AB2] 6 A  +  6 Ni  0.071

Mtotal (µB/f.u.)  1.238

ΔE (eV/f.u.) −0.035
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eV/at usually taken for transition metals) and induce a low-
ering of the total energy by a shift of the minority and majority 
bands.

The calculated spin polarized DOS of 3R-Y2Ni7 and 
2H-La2Ni7, assuming a ferromagnetic ground state, are dis-
played in figures  3(a) and (b) respectively. The calculated 
moments for each atomic site as well as the magnetic energies 
(ΔE) are reported in table 1. The high density peak position is 
shifted to lower and higher energy for spin up and spin down 
bands respectively and N(EF) decreases due to its position 
located in a valley of the density of states. As a consequence 
the total energy of ferromagnetic state is lowered by 5 meV/Ni 
atom compared to NSP calculated value for both compounds. 
This magnetic energy corresponds to a temperature of 58 K, 
which is close to the experimental ordering temperature of 
Y2Ni7 (TC  =  53 K) [25].

The calculated moment for each atomic site in ferromagn
etic state are reported in table 1. The magnetic moments in 
Y2Ni7 are in good agreement with those calculated by Singh 
using a linear augmented plane-wave method [22]. It is 
noticeable, that the total calculated moments of 1.08 µB/f.u. 
for La2Ni7 and 1.24 µB for Y2Ni7 are larger than experimental 
values (0.77 µB/f.u. and 0.43 µB/f.u. measured at 4.2 K and 
extrapolated from high field for A  =  La and Y respectively) 
[25, 27]. This overestimation is due to the limit of our DFT 
calculations, which do not take into account the large spin 
fluctuations present in such compounds. The Ni moments con-
tribute mainly to the total magnetization, whereas the induced 
A moments remain weak and are, as expected, of opposite sign 
compared to Ni moments.

Further non-collinear spin calculations have been per-
formed to determine the preferential orientation of the Ni 
moments in the FM structure. The Ni moments are stabilized 
in the direction parallel to the c axis: the energy difference 
between moments parallel and perpendicular to the c axis is 
about  −30 meV/f.u..

The coordination polyhedra have been represented with 
their calculated magnetic vectors for the Ni1 to Ni4 sites in 
figure 4 and for the Ni5 site in figure 5(right) for hexagonal 
La2Ni7 in the ferromagnetic state. In a first approximation, the 

magnitude of Ni moments should depend on the number of 
Ni neighbors and of the site symmetry. Assuming that the Ni 
moments should be larger for atoms surrounded by a larger 
number of Ni neighbors, the Ni3 and Ni4 atoms, which have 
similar coordination environment with 9 Ni neighbors and 3 
A neighbors, are expected to have larger magnetic moments 

 
F 

Figure 2.  Non-spin polarized density of state of 3R-Y2Ni7 and 2H-La2Ni7 with a zoom near EF in the inset (left) and corresponding 
electronic band structure of 2H-La2Ni7 zoomed near EF (right) in GGA-PBE. The full scale of the latter is given in supplementary materials.

Figure 3.  Calculated spin polarized DOS with partial 3d-Ni 
contribution for (a) ferromagnetic 3R-Y2Ni7 (M  =  1.24 µB/f.u.), (b) 
ferromagnetic 2H-La2Ni7 (M  =  1.08 µB/f.u.) and  
(c) antiferromagnetic 2H-La2Ni7 (M  =  0 µB/f.u.).

J. Phys.: Condens. Matter 32 (2020) 145802
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than the Ni2 atom surrounded by only 8 Ni neighbors, but 
the calculation indicates that the Ni2 moment is the largest 
(table 1). In fact, a closer analysis of the Ni–Ni pair distances 
shows that each Ni3 (Ni4) atom is surrounded by three Ni2 at 

2.45  ±  0.5 Å, three Ni1 at 2.52  ±  0.5 Å and three Ni4 (Ni3) 
atoms distant of 2.92  ±  0.5 Å (at the same distance than the 
3 A neighbors). The larger Ni4–Ni3 distance corresponds to 
weaker Ni–Ni bonds and smaller exchange interaction with 

Ni1-12k atom surrounded
by 4 Ni1, 1 Ni5, 1 Ni3 and 1 Ni4

Ni2-6h atom surrounded by 4 
Ni2, 2 Ni3 and 2 Ni4 atoms

Ni3-4f (Ni4-4e) atom surrounded
by 3 Ni1 and 3 Ni2 atoms

Ni3-4f (Ni4-4e) atom surrounded by 
3 Ni1, 3 Ni2 atoms, 3 Ni3 and 3 La2

Figure 4.  Coordination polyhedra around the Ni1, Ni2 and Ni3 (Ni4) atoms. For the Ni3 (Ni4) atoms two types of polyhedra have been 
represented for interatomic distances below 2.65 Å (left) and below 2.95 Å (right) The magnetic vectors have been represented with length 
proportional to their magnetic moments.

Figure 5.  Coordination polyhedra of Ni5 atoms surrounded by Ni1 atoms with magnetic vectors in AFM and FM ordering perpendicular 
(top) and parallel (bottom) to the c axis.

J. Phys.: Condens. Matter 32 (2020) 145802
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Ni3 and Ni4 moments. On the other hand the Ni2 atoms are 
surrounded by 8 Ni at distances between 2.45 and 2.62 Å 
forming a more regular polyhedron with 4 Ni2 neighbors in 
the basal plane and 4 Ni3 (Ni4) neighbors in the equatorial 
plane. The Ni1 atoms are surrounded by 4 Ni1 in the basal 
plane, 1 Ni5, 1 Ni3 and 1 Ni4 with distances ranging between 
2.45 Å and 2.62 Å. The Ni5 atoms are surrounded by 6 Ni1 
atoms at 2.55 Å (figure 5(right)).

In a simple molecular field approximation, the Ni–Ni 
exchange interactions can be described by an internal field 
Hexch acting on the Ni site and resulting from the closest Ni 
neighbor moments (the influence of the Ni–La interactions 
can be neglected as they are much smaller):

Hexch = λNi–Ni · mTot� (1)

where λNi–Ni is the Ni–Ni molecular field coefficient and 
mtot =

∑
j zj · mj is the sum of the zj  Ni neighbor moments 

mj . Assuming that the Ni–Ni short range interaction is close 
for all Ni atoms and that the exchange integral are not very 
different for the Ni–Ni distances between 2.45 and 2.62 Å, 
it is possible to verify if there is any proportionality between 
the Ni moments on each site and the sum of its first neighbor 
moments. The variation of each Ni moment (mi) versus mTot 
shows two different behaviors for the Ni atoms related to the 
[AB2] units and those belonging to the [AB5] units (figure 
6(a)) with a dmi/dmTot slope of 0.58 and 0.125 respectively. 
To explain this difference of behavior, which cannot be only 
due to the variation of Ni–Ni distances as they are compa-
rable for Ni1 and Ni2 atoms and their next Ni neighbors, one 
should also consider the influence of the first La neighbors 
(2.93 Å  ⩽  dNi–La  ⩽  3.33 Å).

The electronic charge transfer CT from La to Ni atoms is 
calculated using the Bader method and is given as a function 

of mTot in figure 6(b). Similar to the mi individual moments, 
the CT presents two different behaviors for Ni in [AB2] and 
[AB5] units: a sharp decrease from Ni5 to Ni3,4 and an almost 
constant CT value for Ni3,4 and Ni2 atoms. The CT values are 
related to the number of La first neighbors (table 1). For Ni 
atoms with the largest CT values (Ni5 and Ni1) the additional 
electrons transferred from La atoms contribute to a progres-
sive filling of the d-Ni bands. It yields a reduction of their 
local magnetic moment compared to the values extrapolated 
from Ni3,4 or Ni2 moment versus mTot.

As a consequence, the magnitude of the Ni moments can 
be related to their positions relative to the [AB2] and [AB5] 
units. For both structure types, it appears that the Ni moment is 
maximum for the Ni2 atoms located between two [AB5] units 
and minimum for the Ni5 (2a) atoms belonging to the [AB2] 
units, at the z  =  1/2 plane containing the center of symmetry 
of the cell. This is illustrated in figure 7, where the hexagonal 
structure of La2Ni7 and the corresponding magnitude of the Ni 
moments along the c axis are presented. Similar Ni moment 
distribution can be obtained for 3R-Y2Ni7. It is also notice-
able that the distribution of Ni magnetic moments along half 
the hexagonal cell forms a triangle. This is repeated twice, 
because the stacking [A2B4  +  2 AB5] is repeated two times 
in this hexagonal lattice, whereas the same sequence appears 
three times in 3R-Y2Ni7. This emphasizes a kind of modula-
tion of the Ni moments along the c-axis.

The dependence of the Ni magnetic moments versus their 
localization in [AB2] and [AB5] units in hexagonal La2Ni7 can 
be partly related to the difference of magnetic properties of the 
corresponding binary LaNi2 and LaNi5 compounds: LaNi2 is 
a Pauli paramagnet with a weak susceptibility (χ  =  1.5 10−4 
emu/mole) [33] whereas LaNi5 is an enhanced Pauli para-
magnet with χ  =  2.0 10−3 emu/mole [50]. In general, ANi5 
compounds are close to the onset of ferromagnetism, but the 
N(EF) is not large enough to stabilize a ferromagnetic state. 
The weak itinerant magnetism observed in A2Ni7 as well as 
ANi3 compounds has been attributed to the existence of the 
sharp and narrow peak near EF providing a large enough 
N(EF) contribution to stabilize a SP state [51].

However, all the experimental studies have shown that the 
magnetic ground state of 2H-La2Ni7 is characteristic of an 
AFM structure (TN  =  50 K). In addition, 2H-La2Ni7 undergoes 
a metamagnetic transition towards a FM state with a transition 
field of 4.6 T and a stabilization of a wFM behavior above 6 T 
at 4.2 K [27]. Up to now, all the studies performed on La2Ni7 
did not allow to propose an AFM structure filling these criteria. 
The only observation obtained from the DOS calculation was 
the smaller N(EF) value of La2Ni7 compared to Y2Ni7 [46].

Taking into account the symmetry of the hexagonal struc-
ture (2 blocks of [AB2  +  2 AB5]) and assuming that the Ni5 
moments, which belong to the [AB2] unit and are already very 
small in the calculated FM structure (mNi5  =  0.023 µB/Ni) are 
equal to zero, the AFM structure presented in figure  7 can 
be proposed. The spins of the Ni atoms are of same sign in 
the same block (between layers at z  =  0 and 1/2) whereas 
they have opposite sign in the next stacking (between z  =   
1/2 and 1), and they are all aligned parallel to the c axis. In 
other words, Ni atoms in the same block are ferromagnetically 

0.0
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Figure 6.  Ni moment and charge transfer CT from La to Ni versus 
the sum of the Ni moments in the first coordination sphere mTot for 
each Ni site in 2H-La2Ni7.
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aligned while the magnetic coupling between adjacent blocks 
is antiferromagnetic (table 1 and figure 7). The DFT calcul
ation converges to the proposed AFM structure with a net 
magnetization equal to zero on the Ni5 site and an antifer-
romagnetic coupling between the Ni1 atoms which are 
its nearest neighbors and belonging to the different blocks 
(z  <  ½ or z  >  ½). Due to the particular point symmetry of 
the Ni5 site (3̄m.), the molecular field generated by the six 
Ni1 neighbor atoms forming two tetrahedra with antiparallel 
spin cancels exactly at this 2a position (figure 5(left)). This 
can explain that these Ni5 atoms have no ordered moments in 
the AFM structure. On the contrary in the FM configuration, 
where all the Ni moments are parallel to the c axis a small 
Ni moment is induced on the 2a position by the magnetic 
moments of the 6 Ni1 neighbors as explained above (figure 
5(right)).

Similar geometric environment with a central atom sur-
rounded by six neighbors, which can be coupled ferromagn
etically or antiferromagnetically, depending on the presence 
of an ordered moment or not on the central atom position, 
has been observed in other Laves phase systems: C14 hexag-
onal TiFe2, Hf0.825Ta0.175Fe2 and monoclinic YFe2H4.2 derived 
from a C15 cubic parent compound [52–54].

In La2Ni7, the distance between two next Ni1 neighbors of 
different blocks connected via a Ni5 atom is 5.20 Å and these 
distances are large enough to favor negative JNi1–Ni1 interac-
tions in the absence of a moment on Ni5 site. Except for Ni5 
atoms, all the other Ni atoms carry Ni moments whose mag-
nitudes are close to those calculated in the wFM state (table 
1 and figure 4). As their environment remains similar in both 
FM and AFM structures, they are less affected by the magn
etic ordering contrary to the Ni5 atoms.

The DOS for this AFM structure shows that the narrow peak 
observed in NSP DOS is shifted below EF for the majority 
spin and N(EF) falls in a valley at EF (figure 3(c)). However, 
only from the energy calculated for the proposed AFM and the 
FM structures, it is not possible to distinguish the most stable 
state since the difference is negligible with less of 1 meV/at., 
whereas the DFT accuracy is known to be few meV/at.. Thus, 
whatever the XC functional or method, the DFT calculation 
indicates that both magnetic structures present the same sta-
bility at 0 K. In table 2, the total energy difference of A2Ni7 
compounds is compared in NSP, FM and AFM structures for 
both the rhombohedral and hexagonal symmetries. It shows 
that the most stable state is the magnetic state (AFM or FM) 
for both La2Ni7 and Y2Ni7 without a clear difference between 
both symmetries, as already discussed in previous paper about 
stacking phases [34].

The DFT calculation allows to propose an hexagonal AFM 
structure, whereas it become more challenging to propose an 
AFM structure for the rhombohedral cell. In fact, the AFM 
ordering requires an even number of blocks to cancel the total 
magnetic moment, as observed in the Ce2Ni7 type structure. 
As the Gd2Co7 type structure contains three blocks, it will 
require a doubling of the unit cell along the c axis to obtain 
a comparable AFM order. As the c parameter of 3R-Y2Ni7 is 
already 36.19 Å, this will generate a very anisotropic magnetic 
cell with c/a  ≈  15, compared to only c/a  ≈  5 for 2H-La2Ni7. 
Although we have not calculated such large magnetic cell, it 
was observed experimentally that 3R-La2Ni7 should have a 
ferromagnetic ground state. Indeed, the magnetization curves 
of La2Ni7 sample annealed at 873 K and containing a mixture 
of hexagonal and rhombohedral phases, were analyzed by a 
superposition of FM and AFM states [27].

Figure 7.  Antiferromagnetic structure of La2Ni7 and Ni moment distribution along the c axis in both antiferromagnetic (red) and 
ferromagnetic (blue) structures of La2Ni7. (Color online).
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This proposed AFM structure for 2H-La2Ni7 allows 
explaining several experimental features of the literature as 
detailed below:

	 (i)	�it confirms the high uniaxial anisotropy determined from 
the magnetization curves of 2H-La2Ni7 by Parker et  al 
[27]. They calculated an anisotropy field of at least 12 T 
and an uniaxial anisotropy energy greater than 160 kJ 
m−3.

	(ii)	�It can explain the positive value of θP above TN [26, 27, 
30, 33], as locally the FM interactions remain larger than 
the AFM ones. Parker et al [27], already suggested that 
the large value of θP was characteristic of a metamagnetic 
behavior of a compound which has uniaxial anisotropy 
and with ferromagnetic intralayer and antiferromagnetic 
interlayer exchange interactions.

	(iii)	�The study of 2H-La2Ni7 by NPD did not allow to observe 
magnetic lines at low temperature [33]. A simulation of 
the NPD pattern was therefore done for FM and AFM 
structures assuming a wavelength of 2.43 Å, typical of a 
spectrometer dedicated for magnetic structure determina-
tion (figure S2). This reveals how it will be difficult to 
observe the magnetic structures experimentally. As the 
magnetic cell has a [0 0 0] propagation vector, it would 
only increase very weakly few nuclear line intensities. The 
most intense AFM magnetic line will contribute to only 
1.2% of the (1 0 0) Bragg peak and even less considering 
the experimental moments and not the calculated one.

Although the DFT calculations cannot observe a clear dif-
ference of stability between the AFM and FM structures, all 

the experimental magnetic studies clearly indicates that the 
ground state of 2H-La2Ni7 is AFM. But the difference of 
stability between the two types of magnetic order is clearly 
small: it was observed experimentally that the substitution of 
only 3 at% of Cu for Ni stabilizes a FM state, whereas the 
AFM ground state is maintained up to 10 at% Co [29]. This 
difference was attributed to a critical number of d electrons 
as the total number of d-electron increases upon Cu substitu-
tion and decreases upon Co substitution. It confirms that we 
are very close to the limit of stability of the AFM structure, 
which can be favored by the existence of spin-fluctuations. 
The low value of the saturation moment and the large Rhodes-
Wohlfarth ratio observed for both 2H-La2Ni7 [27, 29, 30, 33] 
and 3R-Y2Ni7 compounds [25] as well as other experimental 
results confirms their weak itinerant character and the exist-
ence of large spin fluctuations in both compounds. In addi-
tion, the metamagnetic behavior of the magnetization curves 
of La2Ni7 was analyzed within the Moriya and Usami theory 
using a Landau-type free energy equation, used in the frame 
of systems with large spin fluctuations [30, 55, 56].

For weak itinerant magnetic systems, the existence of 
large spin fluctuations was able to explain the difference 
between results obtained by DFT calculations and those 
observed experimentally. For example, Ni3Ga is a strongly 
renormalized paramagnet, but the DFT calculation predicts 
a weak ferromagnetic ground state similar to isostructural 
Ni3Al, with even larger Ni moment [9]. This difference has 
been explained by taking into account the low-frequency spin 
fluctuations present in this compound which is close to a fer-
romagnetic quantum critical point. The theoretical study of 

Table 2.  Heat of formation of A2Ni7 compounds in both allotropic hexagonal and rhombohedral structures in different magnetic states. For 
hexagonal La2Ni7 the calculations were done with different functionals and method as described in the text.

Compound XC- method Structure Magnetic state
ΔE  =  E(i)  −  E(NSP) 
(meV/f.u.)

Y2Ni7 GGA Rhombohedral NSP 0
FM −35

Hexagonal NSP 0
FM −35
AFM −33

La2Ni7 GGA Rhombohedral NSP 0
FM −31

Hexagonal NSP 0
FM −35
AFM −33

Non-colinear M parallel to z FM −34
AFM −33

Non-colinear M parallel to x, y  FM −3
LDA Hexagonal NSP 0

FM −22
AFM −20

SCAN Hexagonal NSP 0
FM −75
AFM −72

GGA  +  U Hexagonal NSP 0
FM −35
AFM −32
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TiAu confirmed also the influence of spin fluctuations for 
the stabilization of the weak antiferromagnetic state, as well 
as the overestimation of the Ti moment determined by DFT 
calculations [19]. Such overestimation of magnetic moment 
is often observed for compounds which lies close to quantum 
critical point.

In the case of 2H-La2Ni7 the magnetic order is driven 
by the magnitude of the Ni5 moment which is predicted by 
DFT calculation to be 0.023 µB in the FM structure and 0 in 
the AFM structure. But it was found, that the total magnetic 
moment of 2H-La2Ni7 in FM state is overestimated of at least 
30% compared to the experimental value. In this case, the 
influence of spin fluctuations on the particular Ni5 site should 
be large enough to stabilize a geometric environment with the 
next Ni1 neighbors adopting an antiparallel coupling.

4.  Conclusions

In this work, we have proposed for hexagonal La2Ni7 an AFM 
structure with a stability comparable to that of the FM struc-
ture. This AFM structure of 2H-La2Ni7 results from the geo-
metric conditions presented by its stacked hexagonal structure: 
the molecular field is canceled on the Ni5-2a site at z  =  0 and 
z  =  1/2 which belong to the [AB2] units and acts as in inver-
sion center for the first neighbors Ni at the interface between 
the [AB2] and [AB5] units (Ni1-12k). These nearest Ni atoms 
adopt an AFM coupling and the symmetry of the structure on 
this position allows an inversion of the sign of the other Ni 
spin orientation belonging to different blocks. This generates 
a modulated AFM structure with two ferromagnetic slabs of 
opposite directions separated by a non-magnetic layer. Such 
magnetic structure type was already observed in some AFe2 
Laves phases or their hydrides. The metamagnetic transition 
from AFM towards a FM structure is explained by a non-zero 
Ni moment on the Ni5 site induced by the application of a 
magnetic field.

The stabilization of this AFM structure, observed exper
imentally, should be explained by the existence of large spin 
fluctuations, not taken into account by simple DFT calcul
ation, as observed for other weak itinerant magnets as Ni3Ga 
or TiAu. Further works using Moriya and Usami theory of spin 
fluctuation, could be very interesting to consider for La2Ni7.

Further experimental and theoretical studies will be per-
formed on pseudo-binary La2−xYxNi7 compounds to observe 
the evolution from wAFM 2H-La2Ni7 towards wFM 3R-Y2Ni7, 
and verify what the critical geometric and electronic param
eters are. First principles calculations of other compounds 
with stacking structures like ANi3 or A5Ni19 compounds from 
[A2Ni4  +  n · ANi5] with n  =  1 and 3 respectively, could be 
also very interesting in order to analyze the relation between 
their crystal structures and magnetic properties.
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