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Abstract. The Laplacian of an image is one of the simplest and useful
image processing tools which highlights regions of rapid intensity change
and therefore it is applied for edge detection and contrast enhancement.
This paper deals with the de�nition of the Laplacian operator on ul-
trametric spaces as well as its spectral representation in terms of the
corresponding eigenfunctions and eigenvalues. The theory reviewed here
provides the computational framework to process images or signals de-
�ned on a hierarchical representation associated to an ultrametric space.
In particular, image regularization by ultrametric heat kernel �ltering
and image enhancement by hierarchical Laplacian are illustrated.
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1 Introduction

The Laplace operator (or Laplacian) of an image is one of the simplest and useful
image processing tools, since it highlights regions of rapid intensity change and
therefore it is applied for edge detection (zero crossing edge detector [9]) and
contrast enhancement by subtraction from the original image.

The Laplace operator is de�ned as the divergence of the gradient. When
applied to a function f on Rn, the Laplacian produces a scalar function given

by L(f) = ∇ ◦ ∇f = ∆f =
∑n
i=1

∂2f
∂x2

i
. The second order di�erentiation be-

comes in the discrete counterpart a second order di�erence; i.e., in 1D, f ′(x) =
(f(x + h/2) − f(x − h/2))/h and f ′′(x) = (f(x + h) + f(x − h) − 2f(x))/h2.
Hence, the discrete Laplace operator of an image f is given by L(f)(x) =∑
z∈Ñ(x) f(z)− |Ñ |f(x), where Ñ(x) is the local neighbourhood of pixel x, ex-

cluding itself. This transformation can be calculated using a convolution �lter
with the corresponding kernels. The Laplace operator is also naturally de�ned on
Riemanian manifolds, the so-called Laplace�Beltrami operator, which has been
also widely used in image and shape processing [11]. In the litterature of math-
ematical morphology, the notion of morphological (�at) Laplacian is de�ned as
a second-order operator given by the di�erence between the gradient by dilation
and the gradient by erosion [10], and can be interpreted just as the ∞-Laplace
operator [8].



The goal of this paper is to consider the de�nition of the Laplacian opera-
tor on ultrametric spaces as well as its spectral representation in terms of the
corresponding eigenfunctions and eigenvalues. Indeed, the theory of the heat
semigroup and Laplacian operator in the case of ultrametric spaces has been
developed in a series of papers by Bendikov and collaborators [2,3,4]. Our pur-
pose here is just to review the main results of this theory and to bring it to the
context of ultrametric image processing.

Let us precise that ultrametric image or data processing means in our con-
text. The image domain can be considered as an ultrametric space, where the
pixels/vertices of the image are hierarchically organized into clusters at di�erent
aggregation levels. Interaction between image pixels or vertices is associated to
the ultrametric distance. This kind of representation is naturally used in im-
age segmentation, in the case of morphological image segmentation, hierarchical
representations are ubiquitous [12,13,6], and the algorithmic ingredients to con-
struct them are typically minimum spanning trees and quasi-�at zones. Once an
image has been endowed with a hierarchical structure (i.e., the image domain is
an ultrametric space), the image can be not only segmented, but also �ltered out,
enhanced and so on, according to such representation. In this context, we have
introduced the corresponding ultrametric morphological semigroups and scale-
spaces [1]. This paper is a step forwards in the program of revisiting classical
image/data processing on ultrametric representations.

The rest of the paper is organized as follows. Section 2 provides some back-
ground de�nitions on ultrametric spaces. The notion of heat semigroup on ul-
trametric spaces is brie�y reminded in Section 3, which is required to review the
notion of Laplacian on an ultrametric space in Section 4. Section 5 considers
in particular the case of the Laplacian on a discrete ultrametric space, which is
the relevant case for ultrametric image processing. Some illustrative examples of
ultrametric image Laplacian are discussed in Section 6. Finally, Section 7 closes
the paper with some conclusions and perspectives.

2 Preliminaries

Ultrametric space. Let (X, d) be a metric space. The metric d is called an ul-
trametric if it satis�es the ultrametric inequality, i.e., d(x, y) ≤max{d(x, z), d(z, y)},
that is obviously stronger than the usual triangle inequality. In this case (X, d)
is called an ultrametric space.

Consider the metric balls Br(x) = {y ∈ X : d(x, y) ≤ r}. The ultrametric
inequality implies that any two metric balls are either disjoint or one contains
the other. In particular, every two balls of the same radius are disjoint or coincide.
Thus, every point inside a ball is its center. As a consequence of these properties,
the collection of all distinct balls of the same radius r forms a partition X; for
increasing values of r, the balls are also increasing, hence we obtain a family of
nested partitions of X which forms a hierarchy. This is a fundamental property
of ultrametric spaces.



Throughout the rest of the paper, we consider the triplet (X, d, µ), where
(X, d) is a compact separable ultrametric space; compactness involves that all
balls are compact and separability that the set of all values of metric d is at most
countable and all distinct balls of a given radius r > 0 form at most a countable
partition of X. The measure µ is a Radom measure on X with full support, such
that 0 < µ (Br (x)) <∞ for all x ∈ X and r > 0.

Discrete ultrametric space. An ultrametric space (X, d) is called discrete
if : i) the set X is countable, ii) all ultrametric balls Br(x) are �nite, and iii)
the distance function d takes only integer numbers. Given a discrete ultrametric
space (X, d), one can consider any measure µ on 2X such that 0 < µ(x) <∞ for
any x ∈ X and µ(X) =∞. For example, µ can be a counting measure.

Set of ultrametric balls B. Denote by B be the family (countable set) of all
balls C in X with positive radii, and thus positive measure µ (C) > 0. Using
the hierarchical interpretation of ultrametric balls, for any ball C ∈ B such that
C 6= X there is a unique parent (or predecessor) ball B which contains C. In this
case, C is called the child (or successor) of B. For any ball B with diam (B) > 0
the number deg (B) of its children satis�es 2 ≤ deg (B) < ∞. Moreover, all the
children of B are disjoint and their union is equal to B. Let us denote by C ≺ B
that C is a child of B. The functions {1C : C ≺ B} are linearly independent (i.e.,
orthogonal) and therefore we have

〈1C ,1C′〉 = 0, C ≺ B,C ′ ≺ B, and
∑
C≺B

1C = 1B . (1)

Intrinsic ultrametric d∗. Let us �rst note that di�erent ultrametric distances
on X can produce the same set B. In the case of (X, d), for any x, y ∈ X,
we denote B(x f y) the minimal ball containing both x and y. The intrinsic
ultrametric is de�ned as: d∗(x, y) = diam(B(xfy)) when x 6= y and d∗(x, y) = 0
when x = y. Note that the ultrametrics d and d∗ generates the same set of balls,
with a feasible change of their diameter function.

3 Heat semigroup and heat kernel on ultrametric spaces

We review in this section some background material on ultrametric heat semi-
groups from [2,3]. The �rst operator, the averaging one, is the building block for
the ultrametic heat kernel theory.

Averaging operator Qr. Let us de�ne the family {Qr}r>0 of averaging oper-
ators acting on non-negative (or bounded) Borel functions f : X → R by

Qrf(x) =
1

µ (Br(x))

∫
Br(x)

f dµ. (2)

As we can see, that corresponds to computing the mean value at each class of
the partition of radius r of the hierarchy associated to d∗. It is symmetric in x, y



because Br(x) = Br(y) for any y ∈ Br(x). We set Q0 := id. If µ (X) = ∞ then
Q∞ = 0, while in the case µ (X) < ∞ we have Q∞f = 1

µ(X)

∫
X
fdµ. We have

Qrf ≥ 0 if f ≥ 0 and Qr1 = 1.
Qr is a Markov operator on the space of bounded Borel functions on L2 (X,µ),

which satis�es the following (supremal) semigroup property [3]:

Qr Qs = QsQr = Qmax{r,s}, with QrQrf = Qrf. (3)

Ultrametric heat semigroup {Ptf}t≥0. Let us choose a distance probability
distribution function σ that satis�es the following assumptions: σ : [0,∞]→ [0, 1]
is a strictly monotone increasing left-continuous function such that σ (0+) = 0
and σ (∞) = 1. Typically, σ(r) = exp(−1/r). The operator P determined by the
triple (d, µ, σ)

Pf =

∫ ∞
0

Qrf dσ(r) (4)

is an isotropic Markov operator which determines a discrete time Markov chain
{Xn}n∈N onX with the following transition rule: Xn+1 is µ-uniformly distributed
in Br(Xn) where the radius r is chosen at random according to the probability
distribution σ.

The Markov operator P is non-negative de�nite, which allows us to de�ne
Pt for all t ≥ 0 using the power t of distribution function σ. Then {Pt}t≥0 is a
symmetric strongly continuous Markov semigroup where Pt admits for t > 0 the
following representation:

Ptf(x) =

∫ ∞
0

Qrf(x) dσ
t(r) , (5)

which satis�es the following (additive) semigroup property

PsPt = Ps+t. (6)

The family {Pt}t≥0 is a strongly continuous symmetric Markov semigroup on
L2(X,µ).

Ultrametric heat kernel pt(x, y). For any t > 0, the operator Pt admits an
integral kernel pt(x, y), i.e., for all f ∈ Bb and f ∈ L2, one has

Ptf(x) =

∫
X

pt(x, y)f(y)dµ(y),

where pt (x, y) is given by

pt(x, y) =

∫
[d(x,y),∞)

dσt(r)

µ (Br(x))
.

The function pt (x, y) is called the heat kernel of the semigroup {P t}. For all
x, y ∈ X and t > 0, we have: i) pt (x, y) > 0; ii) pt (x, y) =pt (y, x); iii) pt(x, y) ≤



min{pt(x, x), pt(y, y)}. The function (x, y) 7→ 1
pt(x,y)

if x 6= y and 0 if x = y is

an ultrametric.

Let us introduce the intrinsic ultrametric distance associated to (d, µ, σ):

d∗(x, y) = [− log σ (d(x, y))]
−1
.

For any r ≥ 0, set

r 7→ s = [− log σ (r)]
−1
.

Using the fact that σ is strictly monotone increasing, the following identity holds
∀x ∈ X: B∗s (x) = Br (x). Consequently, the metrics d and d∗ determine the same
set of balls and the same topology.

Heat kernel and heat semigroup in ultrametric discrete space. For prac-
tical applications and in particular, in ultrametric image processing, we deal with
discrete spaces. In such a framework, the computation of the heat semigroup be-
comes very e�cient since the integral of ultrametric distance becomes a weighted
sum of averaging operators. The latter only involves an operator at each level of
the hierarchy.

Let (X, d, µ) be a discrete ultrametric space with a counting mesaure µ on
2X . The idea now is to replace the ultrametric distance distribution fucntion σ
by a discrete distribution of weighting values in (0, 1]. Namely, choose a sequence
{ck}∞k=0 of strictly positive reals such that

∑∞
k=0 ck = 1. Let us introduce sk =∑k

i=0 ci such that 0 < sk−1 < sk < 1, k = 0, 1, · · · and sk → 1 as k → ∞;
s−1 = 0.

Using the distribution of weights {sk}∞k=0, the ultrametric averaging operator,
heat semigroup and heat kernel acting on function f are respectively given:

Qkf(x) =
1

µ (Bk(x))

∑
y∈Bk(x)

f(y); (7)

Ptf(x) =

∞∑
k=0

stk (Qkf(x)−Qk+1f(x)) =

∞∑
k=0

(
stk − stk−1

)
Qkf(x); (8)

pt(x, y) =

∞∑
k=d(x,y)

(
stk − stk−1

) 1

µ (Bk(x))
. (9)

Note that the second equality in (8) is based on the Abel transformation (i.e.,
summation by parts of sequences) [2]. Since

{
stk − stk−1

}∞
k=0

, t > 0, is a stochastic
sequence, the operator Pt is Markov. The semigroup indentity here PtPs = Pt+s
follows from the functional calculus.

The equivalence of the continuous semigroup (5) and the discrete counter-
part (8) is obtained by taking density function: σk = 1 − sk =

∑
l>k cl, k ≥ 0.

Clearly {σk}∞k=0 can be any sequence of positive real that satis�es the conditions:
σk+1 < σk < 1, k = 0, 1, · · · , and σk → 0 as k →∞.



4 Laplacian on an ultrametric space

Laplace operator as a spectral decomposition on (d, µ, σ). Let the spectral
resolution {Eλ} be de�ned as:

Eλ =

{
Q1/λ, λ > 0,
0, λ ≤ 0,

for any λ ∈ R.

Note that E0+ = Q∞. Using the change of variable s = 1/λ, the spectral de-
composition of L in the classical form becomes

L =

∫
[0,+∞)

λdEλ = −
∫
(0,∞)

1

s
dQs. (10)

The L2-spectrum of the Laplacian L. For any ball C ∈ B de�ne, on the one
hand, the function φC on X as

φC =
1

µ(C)
1C −

1

µ(B)
1B =

[
1

µ(C)
− 1

µ(B)

]
1C −

1

µ(B)
1B\C , (11)

where B is the parent ball of C, i.e., 1B = 1C+ 1B\C . On the other hand, for
any C ∈ B, set also

λ (C) =
1

diam (C)
. (12)

If C = X, then set φC ≡ 1 and λ (C) = 0. Using the linear independence of the
indicators of the child balls (1), one has that, for any parent B,

∑
C≺B µ(C)φC =

0.
The following result reveals the spectral nature of the pair (φC , λ(C)).

Proposition 1. We can see that φC is an eigenfunction of L with the eigenvalue

λ(C), i.e.,

LφC = λ(C)φC .

Proof. For C ∈ B of radius r = diam (C), where B is the parent one of radius
r′. Any ball of radius s < r′ either is disjoint with C or is contained in C, which
implies that 1C is constant in any such ball. It follows that, for any s < r′, we
have Qs1C = 1C and, similarly Qs1B = 1B , whence

QsφC = φC .

For s ≥ r′ any ball of radius s either contains both balls C,B or is disjoint from
B. Since the averages of the two functions 1

m(C)1C and 1
m(B)1B over any ball

containing C and B are equal, we obtain that in this case QsφC = 0. It follows
that

LφC = −
∫
(0,∞)

1

s
QsφC ds =

1

r′
φC = λ (C)φC .



More generaly, we have the following result on the complete representation
of Laplacian on an ultrametric space as a base of ball-based eigenfunctions.

Theorem 1 ((Bendikov et al., 2014) [3]). For any C ∈ B the function φC
is an eigenfunction of L with the eigenvalue λ (C). The family {φC : C ∈ K}
is complete in L2 (X,µ) . Consequently, the operator L has a complete sys-

tem of compactly supported eigenfunctions, called the Haar system associated

to (X, d, µ).

(a) (b) (c)

Fig. 1. Eigenfunction of an ultrametric ball : (a) and (b) depict two partitions of a
discrete ultrametric space, where the ball B is the father of ball C; (c) eigenfunction
of ball C, φC , in grey, the value of the function is 0, in white, it is a positive value and
in black, a negative one.

Theorem 2 ((Benkikov et al., 2014) [3]). The spectrum specL of the Lapla-

cian L is given by

specL =

{
1

r
: r ∈ Λ

}
∪ {0} , where {0} is for λ(X) = 0.

The hierarchical Laplacian L on a function. Given the ultrametric mea-
surable set (X, d, µ), starting from (10), one de�nes (pointwise) the Laplacian
on a function f ∈ F as [3]:

L f(x) =
∑

C∈B: x∈B
κ(C)

(
f(x)− 1

µ(C)

∫
C

f dµ

)
, (13)

with the positive scaling function given typically by κ(C) = diam(C)−1−diam(B)−1,
where B is the parent ball of C.

The operator (L,F) acts in L2(X,µ), is symmetric, self-adjoint and admits
a complete system of eigenfunctions {φC} given by (11), where C ⊂ B run over
all nearest neighboring balls in B [3]. For any two distinct balls C and C ′, the
functions φC and φC′ are orthogonal in L

2(X,µ). The corresponding eigenvalue



is given by λ(C) = diam(C)−1. Note that one does not need to specify the ul-
trametric d for the function κ(C) and the corresponding eigenvalue λ(C). One
only requires the family of balls B, or in other words, the intrinsic ultrametric
distance d∗(x, y) = diam(C). However, the practical computation of the hierar-
chical Laplacian (13) requires a sum over all the balls of B.

5 Laplace operator on a discrete ultrametric space

Let us now focus on a discrete ultrametric space (X, d). Using the following
functional identity (see Introduction) P = exp(L), whence L = log 1

P , and taking
t = 1 in the discrete heat kernel expression (9), it holds [2]:

L =
∞∑
k=0

(
log

1

sk

)
(Qk −Qk+1) =

∞∑
k=0

lk (Qk −Qk+1) ,

with lk = − log sk, where the series converges in the strong operator topology
of L2(X,m). Consequently, L is a bounded, non-negative de�nite, self-adjoint
operator in L2(X,m), and the discrete spectrum of L is given by

specL2L = {lk}∞k=0 ∪ {0}.

Thus each lk is an eigenvalue of L.In particular, the point 0 of specL∞L is an
eigenvalue of multiplicity 1.

Applied to any f ∈ L2(X), we have now

L f =

∞∑
k=0

lk (Qkf −Qk+1f) = l0f −
∞∑
k=1

(lk−1 − lk)Qkf. (14)

Here also the pratical interest of this expression of Laplacian of f is obvious,
since the basic ingredient is the set of averaging operators Qk on f .

Considering the counting measure for Qk, discrete ultrametric Laplacian (14)
can be written as:

L f(x) = α

f(x)− 1

α

∞∑
k=1

βk
|Bk(x)|

∑
z∈Bk(x)

f(z)

 , (15)

with α = log 1
s0
> 0 and βk = log sk

sk−1
= log

∑k
j=0 cj∑k−1
j=0 cj

> 0. Up to the minus sign

of L = −∆, this form (15) can be compared with the discrete Laplacian on Zn
(see Introduction):

∆f(x) = −|Ñ |

f(x)− 1

|Ñ |

∑
z∈Ñ(x)

f(z)

 .

If f is a non-negative function on X such that Lf ≡ 0, then f = const.



Deformation of Laplace operator. Let L be the Laplace operator of the
semigroup {Pt}t≥0. Let ξ : [0,∞) → [0,∞) be a continuous, strictly monotone
increasing function with ξ(0) = 0. Then, the operator ξ (L) is the Laplace oper-
ator of the semigroup

{
P ξt

}
t≥0

, de�ned by [2]

P ξ =

∞∑
k=0

cξkQk,

where the stochastic sequence of cξk is given by cξ0 = e−ξ(l0); cξk = e−ξ(lk) −
e−ξ(lk−1); k ≥ 1.

Example. Taking the deformation ξ(t) = 1− e−αt, we have:

Lξ = ξ (L) =
∞∑
k=0

ξ(lk) (Qkf −Qk+1f)

∞∑
k=0

(1− sαk ) (Qkf −Qk+1f) = id− Pα.

Thus, the residue between f and the heat operator at scale α, Pαf , can be seen
as a Laplacian, �deformation� of the standard one by 1− e−αLf .

Ultrametric in�nity Laplace operator. Let us �rst consider the following
result.

Theorem 3 ((Benkikov et al., 2012) [2]). For any p ∈ [1,+∞], the operator
L can be extended as a bounded operator acting on Lp = Lp(X,µ). Moreover,

we have

specLpL = specL2L, for any p ∈ [1,+∞].

Thus, the spectrum of the ultrametric discrete Lp Laplacian is the same
for any p, including the ultrametric in�nity Laplacian. This is an important
di�erence with respect to the Euclidean and metric-space cases, where the in-
�nity Laplacian is a very particular operator [8]. Indeed, the in�nity Laplacian
is a 2nd-order partial di�erential operator, which in the discrete case of a graph
with edges E is de�ned as [14]:∆∞u(x) = supy : (x,y)∈E u(y)+ infy : (x,y)∈E u(y)−
2u(x), which corresponds just to the de�ntion of the morphological Laplacian [10]
on the graph of edges E; i.e., dilation + erosion - 2 function. Inspired by this
equivalence, we can propose a morphological inspired in�nity Laplacian which
mimics the discrete one on a graph by using the notion of (discrete) ultrametric
dilation Dt and erosion Et introduced in [1]:

L∞t f(x) = 2f(x)− (Dtf(x) + Etf(x))

= 2f(x)−

(
sup

0≤k≤∞

{
sup

y∈Bk(x)

f(y) ∧ bk,t

}
+ inf

0≤k≤∞

{
inf

y∈Bk(x)
f(y) ∨ (M − bk,t)

})
,

where bk,t = M − t−1ck is the so-called discrete structuring function a scale t,
with M just the maximum value of f(x). Note that the change of sign between
∆∞ and L∞t is only a convention to be consistent with the ultrametric Laplacian
Lf . This morphological operator can be compared to (15). Note also that the
spectral representation of such ultrametric operators requires naturally the study
of the eigenvalues and eigenfunctions of morphological operators.



6 Application to ultrametric image processing

For the examples that we consider here, the ultrametric space (X, d) is built from
a minimum spanning tree (MST). First, let G be an edge-weighted undirected
neighbor graph with points x ∈ X as vertices and all edge weights as nonnegative
values. An MST of G is a spanning tree that connects all the vertices together
with the minimal total weighting for its edges, and let d(x, y) be the largest edge
weight in the path of the MST between x and y. Then the vertices of the graph
G, with distance measured by d form an ultrametric space. By thresholding the
corresponding MST at k, 0 ≤ k ≤ K, a set of partitions is obtained which
produces all balls Bk(x). In particular, for the case of the discrete images used
in the examples, G is a 4-connected pixel neighbor graph and the edge weights
are the grey-level di�erence.

In addition, the sequence used in the examples is just ck = k/20, with k =
1, · · · , 20 (ultrametric distances are quanti�ed into K = 20 levels).

(a)

(b) (d) (f)

(c) (e) (g)

Fig. 2. Discrete ultrametric Laplace operator: (a) original image f(x), (b) negative
of Laplacian -Lf(x), (c) enhanced image by adding the Laplacian f(x) + Lf(x), (d)
classical image ∆f(x), (e) enhanced image by f(x) − ∆f(x), (f) negative ultramet-
ric morphological Laplacian −L∞t f(x), with t = 0.01 (g) enhanced image by adding
morphological Laplacian f(x) + L∞t=0.01f(x).

Figure 2 provides an example of the application of discrete Laplace opera-
tor on an image endowed with its intrinsic ultrametric distance, which is com-
pared with the standard image Laplacian and with the morphological ultrametric
Laplacian, as well as the corresponding enhanced images obtained by adding the
Laplacian. From this illustration it can be noted that the enhancement obtained



(a)

(b) (d) (f)

(c) (e) (g)

Fig. 3. Discrete ultrametric Laplace operator and heat kernel: (a) original image f(x),
(b) enhanced image by adding the ultrametric Laplacian f(x)+Lf(x), (c) correspond-
ing negative of Laplacian −Lf(x), (d) and (f) ultrametric heat kernel Ptf(x), with
respectively t = 0.01 and t = 0.1, (e) and (g) deformation of Laplace operator corre-
sponding to heat kernel -Lξ(t)f(x), with respectively t = 0.01 and t = 0.1. In residues
(e) and (g) the intensities has been stretched.

by the hierarchical Laplace operator is more �regional� than the one by the
classical Laplacian. This is expected by the fact that the classical Laplacian is
just a second derivative in local neighborhoods. We have observed in similar re-
sults from other images that the ultrametric Laplacian improves image dynamics
without introducing artifacts. The morphological inspired in�nity Laplacian pro-
vides a stronger detection of contrasted bright/dark classes of the hierarchy and
consequently, the corresponding enhancement is stronger than the ultrametric
Laplacian. Note that in the case of the morphological Laplacian, there is a scale
parameter t, used for the ultrametric multiscale dilation and erosion.

Another comparison is depicted in Figure 3. This time, besides the ultramet-
ric Laplacian and corresponding enhanced image, two examples of the ultramet-
ric heat kernel operator applied on the image are included, with di�erent values
of scale parameter t. This heat kernel operator provided a smoothing, or ultra-
metric regularization of the image, similar to a Gaussian �ltering, but without
any e�ect of blurring since the underlying ultrametric space contains the hier-
archical organization of images zones. The associated deformation of Laplacian
(see Section 5) for the heat kernel images are also given, where obviously, the
parameter t allows a control of the zones to be detected.



7 Conclusions and Perspectives

The theory reviewed in this paper provides the computational framework to
process images or signals de�ned on a hierarchical representation associated to
an ultrametric distance space. In particular, image regularization by ultrametric
heat kernel �ltering and image enhancement by hierarchical Laplacian have been
illustrated. The spectrum of the corresponding Laplacian is just related to the
evolution of the size of nested classes along the hierarchy. Our ongoing work
will study, on the one hand, the interest of the associated ultrametric pseudo-
di�erential equations [7] in the context of ultrametric images/data processing
and on the other hand, the applicative interest of the spectrum of the hierarchical
Laplacian to describe shapes and point clouds endowed with an ultrametric
structure.
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