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The Laplacian of an image is one of the simplest and useful image processing tools which highlights regions of rapid intensity change and therefore it is applied for edge detection and contrast enhancement. This paper deals with the denition of the Laplacian operator on ultrametric spaces as well as its spectral representation in terms of the corresponding eigenfunctions and eigenvalues. The theory reviewed here provides the computational framework to process images or signals dened on a hierarchical representation associated to an ultrametric space. In particular, image regularization by ultrametric heat kernel ltering and image enhancement by hierarchical Laplacian are illustrated.

Introduction

The Laplace operator (or Laplacian) of an image is one of the simplest and useful image processing tools, since it highlights regions of rapid intensity change and therefore it is applied for edge detection (zero crossing edge detector [START_REF] Marr | Theory of edge detection[END_REF]) and contrast enhancement by subtraction from the original image.

The Laplace operator is dened as the divergence of the gradient. When applied to a function f on R n , the Laplacian produces a scalar function given by L(f

) = ∇ • ∇f = ∆f = n i=1 ∂ 2 f ∂x 2 i
. The second order dierentiation becomes in the discrete counterpart a second order dierence; i.e., in 1D, f (x) = (f (x + h/2) -f (x -h/2))/h and f (x) = (f (x + h) + f (x -h) -2f (x))/h 2 . Hence, the discrete Laplace operator of an image f is given by L(f )(x) = z∈ N (x) f (z) -| N |f (x), where N (x) is the local neighbourhood of pixel x, excluding itself. This transformation can be calculated using a convolution lter with the corresponding kernels. The Laplace operator is also naturally dened on Riemanian manifolds, the so-called LaplaceBeltrami operator, which has been also widely used in image and shape processing [START_REF] Wetzler | The LaplaceBeltrami operator: a ubiquitous tool for image and shape processing[END_REF]. In the litterature of mathematical morphology, the notion of morphological (at) Laplacian is dened as a second-order operator given by the dierence between the gradient by dilation and the gradient by erosion [START_REF] Van Vliet | A Nonlinear Operator as Edge Detector in Noisy Images[END_REF], and can be interpreted just as the ∞-Laplace operator [START_REF] Lindqvist | Notes on the Innity Laplace Equation[END_REF].

The goal of this paper is to consider the denition of the Laplacian operator on ultrametric spaces as well as its spectral representation in terms of the corresponding eigenfunctions and eigenvalues. Indeed, the theory of the heat semigroup and Laplacian operator in the case of ultrametric spaces has been developed in a series of papers by Bendikov and collaborators [START_REF] Bendikov | On a Class of Markov Semigroups on Discrete Ultra-Metric Spaces[END_REF][START_REF] Bendikov | Isotropic Markov semigroups on ultrametric spaces[END_REF][START_REF] Bendikov | On the spectrum of the hierarchical Laplacian[END_REF]. Our purpose here is just to review the main results of this theory and to bring it to the context of ultrametric image processing.

Let us precise that ultrametric image or data processing means in our context. The image domain can be considered as an ultrametric space, where the pixels/vertices of the image are hierarchically organized into clusters at dierent aggregation levels. Interaction between image pixels or vertices is associated to the ultrametric distance. This kind of representation is naturally used in image segmentation, in the case of morphological image segmentation, hierarchical representations are ubiquitous [START_REF] Meyer | Hierarchies of Partitions and Morphological Segmentation[END_REF][START_REF] Meyer | Watersheds on weighted graphs[END_REF][START_REF] Cousty | Hierarchical segmentations with graphs: quasi-at zones, minimum spanning trees, and saliency maps[END_REF], and the algorithmic ingredients to construct them are typically minimum spanning trees and quasi-at zones. Once an image has been endowed with a hierarchical structure (i.e., the image domain is an ultrametric space), the image can be not only segmented, but also ltered out, enhanced and so on, according to such representation. In this context, we have introduced the corresponding ultrametric morphological semigroups and scalespaces [START_REF] Angulo | Morphological semigroups and scale-spaces on ultrametric spaces[END_REF]. This paper is a step forwards in the program of revisiting classical image/data processing on ultrametric representations.

The rest of the paper is organized as follows. Section 2 provides some background denitions on ultrametric spaces. The notion of heat semigroup on ultrametric spaces is briey reminded in Section 3, which is required to review the notion of Laplacian on an ultrametric space in Section 4. Section 5 considers in particular the case of the Laplacian on a discrete ultrametric space, which is the relevant case for ultrametric image processing. Some illustrative examples of ultrametric image Laplacian are discussed in Section 6. Finally, Section 7 closes the paper with some conclusions and perspectives.

Preliminaries

Ultrametric space. Let (X, d) be a metric space. The metric d is called an ultrametric if it satises the ultrametric inequality, i.e., d(x, y) ≤ max{d(x, z), d(z, y)}, that is obviously stronger than the usual triangle inequality. In this case (X, d) is called an ultrametric space.

Consider the metric balls B r (x) = {y ∈ X : d(x, y) ≤ r}. The ultrametric inequality implies that any two metric balls are either disjoint or one contains the other. In particular, every two balls of the same radius are disjoint or coincide. Thus, every point inside a ball is its center. As a consequence of these properties, the collection of all distinct balls of the same radius r forms a partition X; for increasing values of r, the balls are also increasing, hence we obtain a family of nested partitions of X which forms a hierarchy. This is a fundamental property of ultrametric spaces.

Throughout the rest of the paper, we consider the triplet (X, d, µ), where (X, d) is a compact separable ultrametric space; compactness involves that all balls are compact and separability that the set of all values of metric d is at most countable and all distinct balls of a given radius r > 0 form at most a countable partition of X. The measure µ is a Radom measure on X with full support, such that 0 < µ (B r (x)) < ∞ for all x ∈ X and r > 0.

Discrete ultrametric space. An ultrametric space (X, d) is called discrete if : i) the set X is countable, ii) all ultrametric balls B r (x) are nite, and iii) the distance function d takes only integer numbers. Given a discrete ultrametric space (X, d), one can consider any measure µ on 2 X such that 0 < µ(x) < ∞ for any x ∈ X and µ(X) = ∞. For example, µ can be a counting measure.

Set of ultrametric balls B. Denote by B be the family (countable set) of all balls C in X with positive radii, and thus positive measure µ (C) > 0. Using the hierarchical interpretation of ultrametric balls, for any ball C ∈ B such that C = X there is a unique parent (or predecessor) ball B which contains C. In this case, C is called the child (or successor) of B. 

1 C , 1 C = 0, C ≺ B, C ≺ B, and C≺B 1 C = 1 B . (1) 
Intrinsic ultrametric d * . Let us rst note that dierent ultrametric distances on X can produce the same set B. In the case of (X, d), for any x, y ∈ X, we denote B(x y) the minimal ball containing both x and y. The intrinsic ultrametric is dened as: d * (x, y) = diam(B(x y)) when x = y and d * (x, y) = 0 when x = y. Note that the ultrametrics d and d * generates the same set of balls, with a feasible change of their diameter function.

Heat semigroup and heat kernel on ultrametric spaces

We review in this section some background material on ultrametric heat semigroups from [START_REF] Bendikov | On a Class of Markov Semigroups on Discrete Ultra-Metric Spaces[END_REF][START_REF] Bendikov | Isotropic Markov semigroups on ultrametric spaces[END_REF]. The rst operator, the averaging one, is the building block for the ultrametic heat kernel theory.

Averaging operator Q r . Let us dene the family {Q r } r>0 of averaging operators acting on non-negative (or bounded) Borel functions f :

X → R by Q r f (x) = 1 µ (B r (x)) Br(x)
f dµ.

(

) 2 
As we can see, that corresponds to computing the mean value at each class of the partition of radius r of the hierarchy associated to d

* . It is symmetric in x, y because B r (x) = B r (y) for any y ∈ B r (x). We set Q 0 := id. If µ (X) = ∞ then Q ∞ = 0, while in the case µ (X) < ∞ we have Q ∞ f = 1 µ(X) X f dµ. We have Q r f ≥ 0 if f ≥ 0 and Q r 1 = 1.
Q r is a Markov operator on the space of bounded Borel functions on L 2 (X, µ), which satises the following (supremal) semigroup property [START_REF] Bendikov | Isotropic Markov semigroups on ultrametric spaces[END_REF]:

Q r Q s = Q s Q r = Q max{r,s} , with Q r Q r f = Q r f. (3) 
Ultrametric heat semigroup {P t f } t≥0 . Let us choose a distance probability distribution function σ that satises the following assumptions:

σ : [0, ∞] → [0, 1]
is a strictly monotone increasing left-continuous function such that σ (0+) = 0 and σ (∞) = 1. Typically, σ(r) = exp(-1/r). The operator P determined by the triple (d, µ, σ)

P f = ∞ 0 Q r f dσ(r) (4) 
is an isotropic Markov operator which determines a discrete time Markov chain {X n } n∈N on X with the following transition rule: X n+1 is µ-uniformly distributed in B r (X n ) where the radius r is chosen at random according to the probability distribution σ.

The Markov operator P is non-negative denite, which allows us to dene P t for all t ≥ 0 using the power t of distribution function σ. Then {P t } t≥0 is a symmetric strongly continuous Markov semigroup where P t admits for t > 0 the following representation:

P t f (x) = ∞ 0 Q r f (x) dσ t (r) , (5) 
which satises the following (additive) semigroup property

P s P t = P s+t . (6) 
The family {P t } t≥0 is a strongly continuous symmetric Markov semigroup on L 2 (X, µ).

Ultrametric heat kernel p t (x, y). For any t > 0, the operator P t admits an integral kernel p t (x, y), i.e., for all f ∈ B b and f ∈ L 2 , one has

P t f (x) = X p t (x, y)f (y)dµ(y),
where p t (x, y) is given by

p t (x, y) = [d(x,y),∞) dσ t (r) µ (B r (x))
.

The function p t (x, y) is called the heat kernel of the semigroup {P t }. For all x, y ∈ X and t > 0, we have: i) p t (x, y) > 0; ii) p t (x, y) =p t (y, x); iii) p t (x, y) ≤ min{p t (x, x), p t (y, y)}. The function (x, y) → 1 pt(x,y) if x = y and 0 if x = y is an ultrametric.

Let us introduce the intrinsic ultrametric distance associated to (d, µ, σ):

d * (x, y) = [-log σ (d(x, y))] -1 . For any r ≥ 0, set r → s = [-log σ (r)] -1 .
Using the fact that σ is strictly monotone increasing, the following identity holds ∀x ∈ X: B * s (x) = B r (x). Consequently, the metrics d and d * determine the same set of balls and the same topology.

Heat kernel and heat semigroup in ultrametric discrete space. For practical applications and in particular, in ultrametric image processing, we deal with discrete spaces. In such a framework, the computation of the heat semigroup becomes very ecient since the integral of ultrametric distance becomes a weighted sum of averaging operators. The latter only involves an operator at each level of the hierarchy.

Let (X, d, µ) be a discrete ultrametric space with a counting mesaure µ on 2 X . The idea now is to replace the ultrametric distance distribution fucntion σ by a discrete distribution of weighting values in (0, 1]. Namely, choose a sequence {c k } ∞ k=0 of strictly positive reals such that

∞ k=0 c k = 1. Let us introduce s k = k i=0 c i such that 0 < s k-1 < s k < 1, k = 0, 1, • • • and s k → 1 as k → ∞; s -1 = 0.
Using the distribution of weights {s k } ∞ k=0 , the ultrametric averaging operator, heat semigroup and heat kernel acting on function f are respectively given:

Q k f (x) = 1 µ (B k (x)) y∈B k (x) f (y); (7) 
P t f (x) = ∞ k=0 s t k (Q k f (x) -Q k+1 f (x)) = ∞ k=0 s t k -s t k-1 Q k f (x); (8) 
p t (x, y) = ∞ k=d(x,y) s t k -s t k-1 1 µ (B k (x)) . (9) 
Note that the second equality in ( 8) is based on the Abel transformation (i.e., summation by parts of sequences) [START_REF] Bendikov | On a Class of Markov Semigroups on Discrete Ultra-Metric Spaces[END_REF]. Since

s t k -s t k-1 ∞ k=0
, t > 0, is a stochastic sequence, the operator P t is Markov. The semigroup indentity here P t P s = P t+s follows from the functional calculus.

The equivalence of the continuous semigroup (5) and the discrete counterpart ( 8) is obtained by taking density function:

σ k = 1 -s k = l>k c l , k ≥ 0.
Clearly {σ k } ∞ k=0 can be any sequence of positive real that satises the conditions:

σ k+1 < σ k < 1, k = 0, 1, • • • , and σ k → 0 as k → ∞.

Laplacian on an ultrametric space

Laplace operator as a spectral decomposition on (d, µ, σ). Let the spectral resolution {E λ } be dened as:

E λ = Q 1/λ , λ > 0, 0, λ ≤ 0, for any λ ∈ R.
Note that E 0+ = Q ∞ . Using the change of variable s = 1/λ, the spectral decomposition of L in the classical form becomes

L = [0,+∞) λdE λ = - (0,∞) 1 s dQ s . ( 10 
)
The L 2 -spectrum of the Laplacian L. For any ball C ∈ B dene, on the one hand, the function φ C on X as

φ C = 1 µ(C) 1 C - 1 µ(B) 1 B = 1 µ(C) - 1 µ(B) 1 C - 1 µ(B) 1 B\C , (11) 
where B is the parent ball of C, i.e., 1 B = 1 C + 1 B\C . On the other hand, for any C ∈ B, set also

λ (C) = 1 diam (C) . (12) 
If C = X, then set φ C ≡ 1 and λ (C) = 0. Using the linear independence of the indicators of the child balls (1), one has that, for any parent B, C≺B µ(C)φ C = 0.

The following result reveals the spectral nature of the pair (φ C , λ(C)).

Proposition 1. We can see that φ C is an eigenfunction of L with the eigenvalue λ(C), i.e., Lφ C = λ(C)φ C .

Proof. For C ∈ B of radius r = diam (C), where B is the parent one of radius r . Any ball of radius s < r either is disjoint with C or is contained in C, which implies that 1 C is constant in any such ball. It follows that, for any s < r , we have

Q s 1 C = 1 C and, similarly Q s 1 B = 1 B , whence Q s φ C = φ C .
For s ≥ r any ball of radius s either contains both balls C, B or is disjoint from B. Since the averages of the two functions 1 m(C) 1 C and 1 m(B) 1 B over any ball containing C and B are equal, we obtain that in this case

Q s φ C = 0. It follows that Lφ C = - (0,∞) 1 s Q s φ C ds = 1 r φ C = λ (C) φ C .
More generaly, we have the following result on the complete representation of Laplacian on an ultrametric space as a base of ball-based eigenfunctions. 

spec L = 1 r : r ∈ Λ ∪ {0} , where {0} is for λ(X) = 0.
The hierarchical Laplacian L on a function. Given the ultrametric measurable set (X, d, µ), starting from [START_REF] Van Vliet | A Nonlinear Operator as Edge Detector in Noisy Images[END_REF], one denes (pointwise) the Laplacian on a function f ∈ F as [START_REF] Bendikov | Isotropic Markov semigroups on ultrametric spaces[END_REF]:

L f (x) = C∈B: x∈B κ(C) f (x) - 1 µ(C) C f dµ , (13) 
with the positive scaling function given typically by κ(C) = diam(C ) -1 -diam(B) -1 , where B is the parent ball of C.

The operator (L, F) acts in L 2 (X, µ), is symmetric, self-adjoint and admits a complete system of eigenfunctions {φ C } given by [START_REF] Wetzler | The LaplaceBeltrami operator: a ubiquitous tool for image and shape processing[END_REF], where C ⊂ B run over all nearest neighboring balls in B [START_REF] Bendikov | Isotropic Markov semigroups on ultrametric spaces[END_REF]. For any two distinct balls C and C , the functions φ C and φ C are orthogonal in L 2 (X, µ). The corresponding eigenvalue is given by λ(C) = diam(C ) -1 . Note that one does not need to specify the ultrametric d for the function κ(C) and the corresponding eigenvalue λ(C). One only requires the family of balls B, or in other words, the intrinsic ultrametric distance d * (x, y) = diam(C ). However, the practical computation of the hierarchical Laplacian (13) requires a sum over all the balls of B.

Laplace operator on a discrete ultrametric space

Let us now focus on a discrete ultrametric space (X, d). Using the following functional identity (see Introduction) P = exp(L), whence L = log 1 P , and taking t = 1 in the discrete heat kernel expression [START_REF] Marr | Theory of edge detection[END_REF], it holds [START_REF] Bendikov | On a Class of Markov Semigroups on Discrete Ultra-Metric Spaces[END_REF]:

L = ∞ k=0 log 1 s k (Q k -Q k+1 ) = ∞ k=0 l k (Q k -Q k+1 ) ,
with l k = -log s k , where the series converges in the strong operator topology of L 2 (X, m). Consequently, L is a bounded, non-negative denite, self-adjoint operator in L 2 (X, m), and the discrete spectrum of L is given by

spec L 2 L = {l k } ∞ k=0 ∪ {0}.
Thus each l k is an eigenvalue of L.In particular, the point 0 of spec L ∞ L is an eigenvalue of multiplicity 1.

Applied to any f ∈ L 2 (X), we have now

L f = ∞ k=0 l k (Q k f -Q k+1 f ) = l 0 f - ∞ k=1 (l k-1 -l k ) Q k f. (14) 
Here also the pratical interest of this expression of Laplacian of f is obvious, since the basic ingredient is the set of averaging operators Q k on f . Considering the counting measure for Q k , discrete ultrametric Laplacian [START_REF] Peres | Tug-of-war and the Innity Laplacian[END_REF] can be written as:

L f (x) = α   f (x) - 1 α ∞ k=1 β k |B k (x)| z∈B k (x) f (z)   , (15) with α = log 1 s0 > 0 and β k = log s k s k-1 = log k j=0 cj k-1 j=0 cj > 0.
Up to the minus sign of L = -∆, this form (15) can be compared with the discrete Laplacian on Z n

(see Introduction): ∆f (x) = -| N |   f (x) - 1 | N | z∈ N (x) f (z)   . If f is a non-negative function on X such that Lf ≡ 0, then f = const.
Deformation of Laplace operator. Let L be the Laplace operator of the semigroup {P t } t≥0 . Let ξ : [0, ∞) → [0, ∞) be a continuous, strictly monotone increasing function with ξ(0) = 0. Then, the operator ξ (L) is the Laplace operator of the semigroup P ξ t t≥0 , dened by [START_REF] Bendikov | On a Class of Markov Semigroups on Discrete Ultra-Metric Spaces[END_REF] 

P ξ = ∞ k=0 c ξ k Q k ,
where the stochastic sequence of c ξ k is given by c ξ 0 = e -ξ(l0) ; c ξ k = e -ξ(l k )e -ξ(l k-1 ) ; k ≥ 1.

Example. Taking the deformation ξ(t) = 1 -e -αt , we have:

L ξ = ξ (L) = ∞ k=0 ξ(l k ) (Q k f -Q k+1 f ) ∞ k=0 (1 -s α k ) (Q k f -Q k+1 f ) = id -P α .
Thus, the residue between f and the heat operator at scale α, P α f , can be seen as a Laplacian, deformation of the standard one by 1 -e -αLf .

Ultrametric innity Laplace operator. Let us rst consider the following result.

Theorem 3 ((Benkikov et al., 2012) [START_REF] Bendikov | On a Class of Markov Semigroups on Discrete Ultra-Metric Spaces[END_REF]). For any p ∈ [1, +∞], the operator L can be extended as a bounded operator acting on L p = L p (X, µ). Moreover, we have

spec L p L = spec L 2 L, for any p ∈ [1, +∞].
Thus, the spectrum of the ultrametric discrete L p Laplacian is the same for any p, including the ultrametric innity Laplacian. This is an important dierence with respect to the Euclidean and metric-space cases, where the innity Laplacian is a very particular operator [START_REF] Lindqvist | Notes on the Innity Laplace Equation[END_REF]. Indeed, the innity Laplacian is a 2nd-order partial dierential operator, which in the discrete case of a graph with edges E is dened as [START_REF] Peres | Tug-of-war and the Innity Laplacian[END_REF]: ∆ ∞ u(x) = sup y : (x,y)∈E u(y)+ inf y : (x,y)∈E u(y)-2u(x), which corresponds just to the dention of the morphological Laplacian [START_REF] Van Vliet | A Nonlinear Operator as Edge Detector in Noisy Images[END_REF] on the graph of edges E; i.e., dilation + erosion -2 function. Inspired by this equivalence, we can propose a morphological inspired innity Laplacian which mimics the discrete one on a graph by using the notion of (discrete) ultrametric dilation D t and erosion E t introduced in [START_REF] Angulo | Morphological semigroups and scale-spaces on ultrametric spaces[END_REF]:

L ∞ t f (x) = 2f (x) -(Dtf (x) + Etf (x)) = 2f (x) - sup 0≤k≤∞ sup y∈B k (x) f (y) ∧ b k,t + inf 0≤k≤∞ inf y∈B k (x) f (y) ∨ (M -b k,t ) ,
where b k,t = M -t -1 c k is the so-called discrete structuring function a scale t, with M just the maximum value of f (x). Note that the change of sign between ∆ ∞ and L ∞ t is only a convention to be consistent with the ultrametric Laplacian

Lf . This morphological operator can be compared to (15). Note also that the spectral representation of such ultrametric operators requires naturally the study of the eigenvalues and eigenfunctions of morphological operators.

For the examples that we consider here, the ultrametric space (X, d) is built from a minimum spanning tree (MST). First, let G be an edge-weighted undirected neighbor graph with points x ∈ X as vertices and all edge weights as nonnegative values. An MST of G is a spanning tree that connects all the vertices together with the minimal total weighting for its edges, and let d(x, y) be the largest edge weight in the path of the MST between x and y. 

  For any ball B with diam (B) > 0 the number deg (B) of its children satises 2 ≤ deg (B) < ∞. Moreover, all the children of B are disjoint and their union is equal to B. Let us denote by C ≺ B that C is a child of B. The functions {1 C : C ≺ B} are linearly independent (i.e., orthogonal) and therefore we have

Theorem 1 (Fig. 1 .

 11 Fig. 1. Eigenfunction of an ultrametric ball : (a) and (b) depict two partitions of a discrete ultrametric space, where the ball B is the father of ball C; (c) eigenfunction of ball C, φC , in grey, the value of the function is 0, in white, it is a positive value and in black, a negative one.

  Then the vertices of the graph G, with distance measured by d form an ultrametric space. By thresholding the corresponding MST at k, 0 ≤ k ≤ K, a set of partitions is obtained which produces all balls B k (x). In particular, for the case of the discrete images used in the examples, G is a 4-connected pixel neighbor graph and the edge weights are the grey-level dierence. In addition, the sequence used in the examples is just c k = k/20, with k = 1, • • • , 20 (ultrametric distances are quantied into K = 20 levels).

Fig. 2 .

 2 Fig. 2. Discrete ultrametric Laplace operator: (a) original image f (x), (b) negative of Laplacian -Lf (x), (c) enhanced image by adding the Laplacian f (x) + Lf (x), (d) classical image ∆f (x), (e) enhanced image by f (x) -∆f (x), (f) negative ultrametric morphological Laplacian -L ∞ t f (x), with t = 0.01 (g) enhanced image by adding morphological Laplacian f (x) + L ∞ t=0.01 f (x).
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 23 Figure 2 provides an example of the application of discrete Laplace opera-tor on an image endowed with its intrinsic ultrametric distance, which is compared with the standard image Laplacian and with the morphological ultrametric Laplacian, as well as the corresponding enhanced images obtained by adding the Laplacian. From this illustration it can be noted that the enhancement obtained