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Abstract. The Minkowski sum and di�erence of two ellipsoidal sets
are in general not ellipsoidal. However, in many applications, it is re-
quired to compute the ellipsoidal set which approximates the Minkowski
operations in a certain sense. In this study, an approach based on the
so-called ellipsoidal calculus, which provides parameterized families of
external and internal ellipsoids that tightly approximate the Minkowski
sum and di�erence of ellipsoids, is considered. Approximations are tight
along a direction l in the sense that the support functions on l of the
ellipsoids are equal to the support function on l of the sum and dif-
ference. External (resp. internal) support function-based approximation
can be then selected according to minimal (resp. maximal) measures of
volume or trace of the corresponding ellipsoid. The connection between
the volume-based approximations to the Minkowski sum and di�erence
of two positive de�nite matrices and their mean using their Euclidean
or Riemannian geometries is developed, which is also related to their
Bures-Wasserstein mean.
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1 Introduction

For any pair of sets X and Y , X,Y ⊂ Rn, their Minkowski sum (or addition) ⊕
and Minkowski di�erence (or subtraction) 	 are de�ned as follows:

X ⊕ Y =
⋃
y∈Y

Xy = {x+ y : x ∈ X, y ∈ Y } =
{
p ∈ E : X ∩ Y̌p 6= ∅

}
, (1)

X 	 Y =
⋂
y∈Y

X−y = {p ∈ E : Yp ⊂ X} =
{
x : ∀p ∈ Y̌ , x ∈ Xp

}
. (2)

These set operations are fundamental in mathematical morphology [5], since set
dilation and erosion of set X by structuring element B are just de�ned respec-
tively as δB(X) = X ⊕ B and εB(X) = X 	 B. The space of convex sets is
closed under Minkowski sum and di�erence. In this paper, we deal with the
particular covex case of ellipsoids and the Minkowski sum and di�erence of two
ellipsoidal sets are in general not ellipsoidal. However, in many applications, we



are interested in computing the ellipsoidal set which approximates in a certain
sense the Minkowski operations between them since the ellipsoids represent a
positive (semi-)de�nite symmetric, a matrix covariance matrix, a Riemannian
metric, etc. Indeed, ellipsoidal sets appear nowadays in di�erent imaging tech-
niques, e.g., structure tensor images or DTI. In data analysis, the dispersion of
a scatter set of points can be described by a multivariate Gaussian distribution
where the covariance matrix may be seen as an ellipsoidal shape centered at the
mean position. Ellipsoids are usually taken as canonical sets because they: i)
can be concisely described using matrices interpretable as covariance matrices;
ii) provide a satisfactory approximation of convex sets in most applications; iii)
are invariant under a�ne transformations.

A classical way to solve the problem will be to, �rstly, to compute convex
set S corresponding to the Minkowski sum (resp. di�erence) of two ellipsoids;
secondly, to compute the minimum volume ellipsoid that contains S, also called
the Löwner-John ellipsoid (resp. maximum volume ellipsoid that lies inside a
bounded convex set). Both constrained sets are convex semide�nite program-
ming problems which therefore can be solved using classical techniques from
convex optimization. Using this approach, little can be said about the set prop-
erties of such an approximation to Minkowski sum and di�erence. In this study,
a di�erent approach based on the so-called ellipsoidal calculus [4] is adopted,
which is a method for solving problems in control and estimation theory, having
unknown but bounded errors in terms of sets of approximating ellipsoidal-value
functions. From ellipsoidal calculus (explicit) parameterized families of exter-
nal and internal ellipsoids that tightly approximate the Minkowski sum and
di�erence of ellipsoids are well formulated. It is also possible to select optimal
approximations according to a given criterium. Here we focus in particular on
those optimal ellipsoids according to volume.

There are classical results on the topological equivalence between the space
of ellipsoids endowed with the Hausdor� metric and the space of their shape
matrices endowed with the spectral metric. The goal of this paper is to state
another more explicit connection between some particular approximations to
the Minkowski sum and di�erence of ellipsoids and some means between their
shape matrices.

2 Basic Notions on Elipsoidal Space

Let us assume that everything takes place in the Euclidean space Rn. Let P(n)
be the set of positive semide�nite (psd) matrices of size n×n. An ellipsoid, noted
by E(c,Q), in Rn, with center c ∈ Rn and shape matrix Q ∈ P(n) is the set

E(c,Q) =
{
x ∈ Rn : 〈(x− c), Q−1(x− c)〉 ≤ 1

}
.

Geometrically, an ellipsoid can also be de�ned as a translated and deformed ver-
sion of the unit sphere B1 of Rn, i.e., E(c,Q) = c+Q1/2B1. By this parametriza-
tion, it is obvious that there is a one-to-one correspondence between ellipsoids
and points of the product space (c,Q) ∈ Rn × P(n).



Hausdor� distance and support function of ellipsoids. The set of subsets
of Rn can be metrized by the Hausdor� distance. More precisely, given two non-
empty sets X,Y ⊂ Rn, their Hausdor� distance dH(X,Y ) can be de�ned by
means of the Minkowski sum as

dH(X,Y ) = inf{λ ≥ 0 : X ⊆ Y ⊕Bλ and Y ⊆ X ⊕Bλ},

where Br is the ball of radius r of Rn.
The support function hA is a tool for a dual representation of the set as the

intersection of half-spaces. The support function hA : Rn → R of a non-empty
closed convex set A ∈ Rn is given by

hA(x) = sup{〈x, a〉, a ∈ A}, x ∈ Rn,

and it is a real valued, continuous and convex function, satis�ying many relevant
properties. In particular, one has:

hαA+b(x) = αhA(x) + 〈x, b〉, α ≥ 0;x, b ∈ Rn.

The Hausdor� distance dH(A,B) of two nonempty compact convex sets A and
B can be expressed in terms of their support functions:

dH(A,B) = sup {|hA(x)− hB(x)| : ‖x‖ = 1} ,

which uses the uniform norm on the unit sphere.
For our particular case, the support function of an ellipsoid E(c,Q) is just

given by
hE(c,Q)(x) = 〈x, c〉+ 〈x,Qx〉1/2.

Therefore, given two ellipsoids, E(c1, Q1) and E(c2, Q2), the Hausdor� distance
between them is

dH(E(c1, Q1), E(c2, Q2)) = sup
‖x‖=1

{
|hE(c1,Q1)(x)− hE(c2,Q2)(x)|

}
= sup
‖x‖=1

{
|〈x, c1〉 − 〈x, c2〉+ 〈x,Q1x〉1/2 − 〈x,Q2x〉1/2|

}
.

It seems clear that for metric purposes, it will be su�cient to study ellipsoids
centered at the origin.

Remark on the topology of the space of ellipsoids. Let us review the
main result by Go�n and Ho�man [3] on the relationship between the Haus-
dor� distance and the matrix distance of ellipsoids. Firstly, in order to simplify
the notation and avoding the term 1/2 in later expressions, we introduce the fol-
lowing change of variable: Q 7→ P = Q1/2, P ∈ P(n). Let E(c1, P1) and E(c2, P2)
be two ellipsoids in Pn. Then, de�ne the so-called spectral distance as follows

dSpectral(E(0, P1), E(0, P2)) = ‖P1 − P2‖S ,



where ‖ · ‖S is the matrix spectral norm, i.e.,

‖A‖S = sup{‖Ax‖ : x ∈ Rn with ‖x‖ = 1} =
√
λmax(ATA).

As discussed above on Hausdor� distance, it is su�cient to study ellipsoids
centered at the origin. In that case, one has

dSpectral(E(0, P1), E(0, P2)) = sup
‖x‖=1

{‖(P1 − P2)x‖} ,

dHausdorff (E(0, P1), E(0, P2)) = sup
‖x‖=1

{| ‖P1x‖ − ‖P2x‖ |} .

Now, the fundamental result is as follows,

Theorem 1 (Go�n and Ho�man, 1983 [3]). Let E(0, P1) and E(0, P2) be

two centred ellipsoids in Rn, with P1, P2 ∈ P(n). Then

k−1n dS(E(0, P1), E(0, P2)) ≤ dH(E(0, P1), E(0, P2)) ≤ dS(E(0, P1), E(0, P2))

dH(E(0, P1), E(0, P2)) ≤ dS(E(0, P1), E(0, P2)) ≤ kndH(E(0, P1), E(0, P2))

where kn = 2
√

(2)n(n+ 2).

Inequalities from Theorem 1 imply that the two metrics de�ne the same
topology on the space of ellipsoids, but, more strongly, the rates of convergence
of a sequence of ellipsoids may be studied within a space of sets, or within a space
of matrices. In fact, both rates are identical. Additionally, that means that the
Hausdor� distance for ellipsoids is essentially a spectral matrix distance.

3 Ellipsoidal approximations to Minkowski sum and

di�erence of ellipsoids

Let parameter l be a direction in Rn, l ∈ Sn−1. Given two ellipsoids E(c1, Q1) and
E(c2, Q2), the external and internal ellipsoidal approximation to their Minkowski
sum according to direction l, noted respectively by E(c⊕, Q⊕,+l ) and E(c⊕, Q⊕,−l ),
are tight along the direction l in the sense that the value of support functions
at l are equal:

hE(c⊕,Q⊕,−
l )(±l) = hE(c1,Q1)⊕E(c2,Q2)(±l) = hE(c⊕,Q⊕,+

l )(±l).

The center of both approximations is just the vector sum, i.e., c⊕ = c1 + c2.
In the case of the internal ellipsoid, the shape matrix is given by [4]:

Q⊕,−l =
(
Q

1/2
1 + SQ

1/2
2

)T (
Q

1/2
1 + SQ

1/2
2

)
,

with matrix S being orthogonal and vectors Q
1/2
1 l and SQ

1/2
2 l are parallel. The

shape matrix of the external ellipsoid is given by [4]

Q⊕,+l =
(
1 + p−1

)
Q1 + (1 + p)Q2, p > 0,



where p = 〈l, Q1l〉1/2/〈l, Q2l〉1/2.
Unlike the Minkowski sum, ellipsoidal approximations for the Minkowski dif-

ference do not exist for every direction l. Similar internal and external approxi-
mation for valid directions can be de�ned in the context of ellipsoidal calculus.
See [4] for the expressions.

3.1 Volume-based optimal approximations

From these expressions, it is possible to �nd the direction l such as the corre-
sponding ellipsoids will be optimal according to a given criterion, typically the
trace or the volume (i.e., related to the determinant), minimal for the external
or maximal for the internal approximations [4]. Let us focus in particular on
the approximations of optimal volume. There is a unique ellipsoid of maximal
volume contained in the Minkowski sum and its shape matrix is given by [4]

Q⊕,−max vol = Q1 +Q2 + 2Q
1/2
2

[
Q
−1/2
2 Q1Q

−1/2
2

]1/2
Q

1/2
2 . (3)

Similarly, there is a unique ellipsoid of minimal volume contained in the Minkowski
di�erence and its shape matrix is given by

Q	,+min vol = Q1 +Q2 − 2Q
1/2
2

[
Q
−1/2
2 Q1Q

−1/2
2

]1/2
Q

1/2
2 . (4)

4 Means on Space of P(n) and Minkowski Sum and

Di�erence

We discuss in this section an interpretation of the approximations to Minkowski
sum and di�erence in terms of the means of the corresponding shape matrices.

4.1 Means in two Riemannian Geometries on P(n)

The standard Riemannian metric distance for any A,B in P(n) is given by [1]

dRiemannian(A,B) =
∥∥∥log

(
A−1/2BA−1/2

)∥∥∥
2
.

Associated to this distance, the space
(
P(n), ds2Riem

)
is a Riemannian manifold

where the local metric is the natural metric in the cone:

ds2Riem = Tr
(
Q−1dQQ−1dQ

)
.

Any two points A,B ∈ P(n) can be joined by a unique geodesic with respect to
this metric:

γRiemA,B (t) = A1/2
(
A−1/2BA−1/2

)t
A1/2, 0 ≤ t ≤ 1.



The geometric mean MRiemannian(A,B) between matrices A and B is evidently
the midpoint of this geodesic, i.e.,

MRiemannian(A,B) = γRiemA,B (0.5) = A1/2
(
A−1/2BA−1/2

)1/2
A1/2. (5)

This geometry and the mean for the case of two covariance matrices are well
known in information geometry. It corresponds to that of the Fisher metric
for the case of Gaussian densities of zero-mean and covariance given by the psd
matrix. This mean is symmetric inA andB. In fact, it is a kind of symmetrization
of the equivalent geometric mean (ab)1/2 for matrices, since in general AB 6= BA.
In P(n), the matrix AB has positive eigenvalues and it has a unique square root
(AB)1/2 that has positive eigenvalues. The eigenvalues of AB are the same as

those of BA One hasMRiemannian(A,B) = A
(
A−1B

)1/2
=
(
AB−1

)1/2
B. Thus,

one also has [2]

(AB)1/2 = AMRiemannian(A−1, B) = A1/2
(
A1/2BA1/2

)1/2
A−1/2. (6)

Given A,B in P(n), the Bures metric distance (in quantum information) and
the Wasserstein metric distance (in optimal transport) is

dBures−Wasser(A,B) =

[
TrA+ TrB − 2 Tr

(
A1/2BA1/2

)1/2]1/2
.

If A and B are diagonal matrices (vectors), then dBures−Wasser(A,B) reduces
to the Hellinger distance between probability distributions. In quantum theory,
a density matrix (or state) is a psd matrix A with TrA = 1. Bures distance for
density matrices is the particular case of dBures−Wasser(A,B). It corresponds to
the 2−Wasserstein distance between two Borel probability measures µ and ν in
Rn, when µ and ν are zero-mean Gaussian measures with covariance matrices A
and B.

Bures�Wasserstein distance and the underlying Rieamannian geometry has
been recently studied in a deep and illuminating perspective in [2]. The geodesic
joining A and B in the Bures-Wassertein metric space is:

γB−WA,B (t) = (1− t)2A+ t2B + t(1− t)
[
(AB)1/2 + (BA)1/2

]
= A−1/2

[
(1− t)A+ t(A1/2BA1/2)1/2

]2
A−1/2, 0 ≤ t ≤ 1.

Therefore, using t = 0.5 in this geodesic and the equality (6), the Bures�
Wassertein mean of A and B is

MBures−Wasser(A,B) =
1

4

[
A+B + (AB)1/2 + (BA)1/2

]
=

1

2

[
MEuclidean(A,B) +

1

2

[
AMRiemannian(A−1, B) +BMRiemannian(A,B−1)

]]
(7)

where MEuclidean(A,B) = A+B
2 is just the Euclidean (Frobenious norm-based)

mean of two matrice in the �at space.



4.2 Optimal Approximations to Minkowski Sum and Di�erence in
terms of Means

Using the notation of the Euclidean and Riemannian means, it it obvious that
the internal approximation to the Minkowski sum of maximal volume (3) can be
just rewritten as:

Q⊕,−max vol = 2 [MEuclidean(Q1, Q2) +MRiemannian(Q1, Q2)] ,

and similarly for the external approximation to the Minkowski di�erence of min-
imal volume (4):

Q	,+min vol = 2 [MEuclidean(Q1, Q2)−MRiemannian(Q1, Q2)] .

Therefore, one has

MEuclidean(Q1, Q2) =
1

4

[
Q⊕,−max vol +Q	,+min vol

]
, (8)

MRiemannian(Q1, Q2) =
1

4

[
Q⊕,−max vol −Q

	,+
min vol

]
. (9)

Euclidean and Riemannian means of covariance matrices are consequently re-
lated to the Minkowski sum and di�erence of the corresponding ellipsoids. This
result is not surprising since as we have discussed, the topology of both spaces
are equivalent. However, we can observe that the relationship is straightforward
in this very particular case.

Furthermore, we can notice that in the case where the matrix product com-
mute, i.e., AB = BA, which involves (AB)1/2 = MRiemannian(A,B), one just
has

Q⊕,−max vol = 4MBures−Wasser(A,B).

A su�cient condition for product commutation is that two matrices are simulta-
neously diagonalizable. In the case of ellipsoids, it corresponds to the case when
they are aligned, i.e., they have the same orientation axis.

4.3 A Riemannian product space

For the sake of understanding, let us precise that Q⊕,−max vol does not correspond
to the midpoint on a geodesic space product of two copies of P(n) with the
Euclidean and Riemannian metrics. Let us consider the Riemannian manifolds(
P(n), ds2Euclid

)
and

(
P(n), ds2Riem

)
, where the �at metric is just ds2Euclid = dQ2.

Let us consider now the space P(2n), where, on the one hand, for each matrix
Q ∈ P(n), a map associates it to the matrix Q× ∈ P(2n) and, on the other
hand, the Riemannian metric g× = αgEuclid ⊗ βgRieman, α, β > 0, which are
respectively given by

Q 7→ Q× =

(
Q 0n×n

0n×n Q

)
g× =

(
αgEuclid 0

0 βgRieman

)
.



Note that one has ds2× = αds2Euclid + βds2Riem. Let A
× and B× be two di�erent

points in this product manifold
(
P(2n), ds2×

)
. In this manifold, the Riemannian

distance between two points A× and B× is given by

d×(A×, B×)2 = αdEuclidean(A,B)2 + βdRiemannian(A,B)2,

where dEuclidean(A,B)2 = ‖A−B‖22. In the product manifold, the geodesic from
A× and B× is given by

γ×A,B(t) = diag

(
γEuclidA,B

(
βdRiemannian(A,B)

d×(A,B)
t

)
, γRiemA,B

(
αdEuclidean(A,B)

d×(A,B)
t

))
,

the scaling of the arc lenght is evident since the lenght of both geodesics is dif-
ferent. In conclusion, the geometry of the space associtated to Q⊕,−max vol as the
midpoint of a geodesic is not the trivial product of Euclidean and Riemannian ge-
ometry. In any case, since the tangent space of the product manifold TQ×P(2n) =
TQ,EuclidP(2)⊗TQ,RiemanP(2), the exponential maps of the corresponding spaces
can be used to deal with the tangent spaces.

5 Conclusions and Perspectives

Ellipsoidal approximations to Minkowski sum and di�erence are based on the
approximation in terms of the support function, which is merely related to ap-
proximation in terms of Hausdor� distance. The corresponding metric space of
ellipsoids is equivalent to the spectral space of their shape matrices. For a very
particular case of optimal approximated ellipsoids in terms of their volume, this
equivalence leads to an explicit interpretation based on the mean of the two
ellipsoids in two di�erent geometries. Some questions about the underlying Rie-
mannian geometry are still open and deserves additional work. The interest of
these approximations to Minkowski sum and di�erence of ellipsoids in tensor-
valued image processing tasks, typically regularization and interpolation, will be
explored in ongoing work.
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