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Abstract

This paper analyzes results on light-verb
construction identification, distinguishing
between known cases that could be di-
rectly learned from training data from un-
known cases that require an extra level of
semantic processing. We propose a simple
baseline that beats the best results of the
PARSEME 1.1 shared task (Savary et al.,
2018) for the known cases, and couple it
with another simple baseline to handle the
unknown cases. We additionally present
two other classifiers based on a richer set
of features, with results surpassing these
best results by 7 percentage points.

1 Introduction

Light-verb constructions (LVCs), such as the ex-
pression pay visit, are a linguistic phenomenon
coupling a verb and a stative or eventive noun,
in which the verb itself is only needed for mor-
phosyntactic purposes, its syntactic dependents
being semantically related to the noun. For in-
stance in the sentence John paid me a visit, the
subject and object of paid play the roles of the vis-
itor and the visited. The verb’s semantics is either
bleached or redundant with that of the noun (as in
commit crime) (Savary et al., 2018).
This mismatch between syntax and semantics has
to be taken care of for semantically-oriented tasks
to recover the full predicate-argument structure of
the noun, since at least one of its semantic argu-
ments of the noun is generally attached to the verb
in plain syntactic treebanks.1 Moreover, the fact

1For instance, Nivre and Vincze (2015) report that for the
majority of the 18 UD languages at that time, in a structure
like X takes a photo of Y in English, X is attached to the
verb, but the Y argument is attached to the noun. In some
annotation schemes, the Y would be attached to the verb too.
Note though that some treebanks do annotate the LVC status
(e.g. in Hungarian). Additional semantic annotation of LVC
can be found e.g. in propbank (Bonial and Palmer, 2016).

that the verb choice is conventionalized and se-
mantically bleached makes LVC identification an
important requirement in semantic tasks such as
machine translation (Cap et al., 2015).

Because of their syntactico-semantic charac-
teristics, LVCs are generally considered diffi-
cult to circumscribe and annotate consistently
(Bonial and Palmer, 2016). Yet recently, the
PARSEME 2018 shared-task has brought forth a
collection of corpora containing verbal multiword
expression (VMWE) annotations across 19 lan-
guages (Ramisch et al., 2018), including LVCs.
The reported inter-annotator agreement is variable
across languages, but the macro-averaged chance-
corrected kappa is overall 0.69, which is generally
considered to denote a good agreement. In the an-
notated corpora, the category of LVCs2 accounted
for a third of all expressions (Savary et al., 2018).
The annotation was performed in a separate layer,
largely independent from the underlying syntactic
framework, and relied on semantic properties of
the verb (bleached or redundant in the given con-
text) and both semantic and syntactic properties of
the noun: it should be stative or eventive and take
at least one semantic argument, and it should be
possible to have all the syntactic arguments of the
verb realized within a NP headed by the noun (for
instance out of John paid me a visit, one can create
the NP John’s visit to me).

A total of 13 systems participated in the
PARSEME shared-task, predicting VMWEs oc-
currence in the test corpora. Results for each sys-
tem varied across different systems and target lan-
guages, in which expressions that had been seen
in the test corpus were predicted with variable ac-
curacy. However, expressions that had never been
seen in the test corpus were hardly ever predicted
by most systems (the best F-score on unseen-

2Unless otherwise stated, this paper refers to the 1.1
edition of the PARSEME shared task, and to the category
LVC.full (as opposed to LVC.cause).



in-train expressions in the closed track is below
20%).

In this paper, we investigate the task of LVC
identification in running text. The main contribu-
tions of this paper are: (1) we propose handling
the task of LVC identification differently depend-
ing on whether it was seen in the training corpus;
(2) we present a simple baseline that surpasses all
systems for seen LVCs; (3) we propose and eval-
uate different techniques for the prediction of un-
seen LVCs, which we then compare to the state of
the art.

The remainder of this paper is structured as fol-
lows: Section 2 presents the related work; Sec-
tion 3 describes the methodology that will be em-
ployed; Section 4 describes the results; and finally,
Section 5 presents our conclusions.

2 Related Work

LVC identification may follow one of two strate-
gies: (a) LVC candidates are initially proposed
based on lexicosyntactic patterns, and are then
classified as LVC or non-LVC based on other cri-
teria; (b) a variant of the BIO scheme (Ramshaw
and Marcus, 1999) is employed so as to directly
classify each token as belonging or not to an LVC.
The former method allows the use of features that
encompass the LVC as a whole, while the latter
can be more easily implemented in the framework
of some machine learning algorithms.

Most works in the literature concerning LVC
identification focus on annotations in a particu-
lar language, often with a language-specific under-
standing of LVCs. Vincze et al. (2013) adapt a de-
pendency parser so as to identify Hungarian LVC
candidates as a byproduct of parsing, which they
then evaluate on the Szeged Dependency Treebank
with LVC annotations. Nagy T. et al. (2013) ex-
tract English LVC candidates involving a verb and
a dependent noun with a specific dependency la-
bel. A J48 and an SVM classifier are then consid-
ered, using lexical and morphosyntactic features
from the corpus, as well as semantic features from
WordNet. The latter was found to contribute to
better results when compared to earlier works that
relied purely on morphosyntactic and statistical
features (Tu and Roth, 2011). Chen et al. (2015)
detect English LVCs in the BNC and OntoNotes
corpora, using the PropBank layer to select LVC
candidates composed of an eventive noun linked
one of 6 known light verbs. The candidates are

then filtered based on semantic features, including
WordNet synsets and hypernym relations.

More recently, the PARSEME shared-task saw
13 system submissions that tried to predict LVCs
along with other VMWEs for annotated corpora
in 19 languages (Ramisch et al., 2018). Over-
all, the best F1 scores across all languages in the
open track were obtained by the SHOMA system,
which employed a pipeline of CNNs, a Bi-LSTM,
and and optional CRF layer (Taslimipoor and Ro-
hanian, 2018). MWE prediction followed a variant
of the BIO scheme that allowed multiple tags per
token, with input features including a set of pre-
trained embeddings (leading the system to com-
pete in the open track category), POS tags, and a
set of word-shape features.

In the closed track, the TRAVERSAL system
obtained the best overall results for MWEs in gen-
eral as well as for LVCs. It uses a syntax-based ap-
proach, in which each node in the syntax tree was
classified as part of an MWE or not (Waszczuk,
2018). The classifier resembles a second-order
CRF, but rather than considering the previous 2 to-
kens at each point, it considers the parent and left-
sibling. Features included the lemma, POS tag and
dependency relation.

Rather than predicting each token as being part
of an LVC or not, the varIDE system use a Naive
Bayes classifier to tag LVC candidates (Pasquer
et al., 2018). These were extracted based on all
possible token combinations whole multi-set of
lemmas corresponded to an LVC that had been
seen in the training corpus (no attempts were made
at predicting unseen LVCs). Classifier features in-
cluded POS tags and morphological information.

Graph convolutional neural networks have also
been used in the identification of VMWE can-
didates for subsequent classification (Rohanian
et al., 2019). In this work, the network is com-
bined with an attention mechanism so as to im-
prove the accuracy of long-range predictions, and
a Bi-LSTM layer is used to classify these predic-
tions and produce the final output. The system
uses contextualized embeddings (ELMo) and out-
performs the state of the art for the four languages
for which results are reported.

3 Methods and materials

Our LVC identification technique consists of two
main stages: (1) extraction of LVC candidates
based on syntactic patterns; and (2) classification



of candidates based on a set of lexical, morpholog-
ical, syntactic and semantic features, concerning
both the candidate as a whole and its components.

3.1 Extraction of candidates

The first step of LVC identification in a target cor-
pus is to identify candidates. While LVCs are
commonly thought of as a combination of a verb
and noun acting as its direct object, other configu-
rations can be attested in the PARSEME corpora.
This may be due to morphosyntactic variations
(e.g. passive voice), the presence of more com-
plex noun phrases (instead of a single noun), non-
standard analyses (e.g. verbs that are tagged as ad-
jectives) or other language-specific idiosyncrasies.
A robust candidate extraction method should han-
dle this variation, and we do so by using the mor-
phosyntactic patterns of the LVCs in the training
corpora, using the provided UD parses.

So we start by extracting language-specific mor-
phosyntactic patterns from the training LVCs.
More specifically, for each LVC annotated in a
training corpus, we retain a representation involv-
ing the POS tag and the syntactic relation be-
tween components (henceforth referred to as a
“pattern”). If the LVC does not form a con-
nected tree (e.g. to give a series of lectures),
the pattern will additionally include the minimum
number of nodes that makes the tree connected
(if two nodes are only connected by the root
node, we discard the occurrence instead). In the
example above, the extracted pattern would be:
VERB1

obj−−→(NOUN2)
nmod−−→NOUN3 (the components of

the LVC being those not within brackets).
The number of extracted patterns ranges from

14 (Slovene) to 185 (Farsi), with an average of
90 patterns per language. We then sort the pat-
terns based on how many occurrences of LVCs
led to each pattern. As expected, the patterns fol-
low a Zipfian distribution. For example, for the
French training data, the most common pattern is
VERB1

obj−−→NOUN2 with 977 occurrences; the second
is NOUN1

acl−−→VERB2 with 150 occurrences (as in for
instance a picture taken yesterday); the third is

VERB1
nsubj:pass−−−−−−→NOUN2 with 58 occurrences (as in

this picture was taken yesterday); and so on3.
The most common patterns are then used to

identify LVC candidates in the train, development
3Note that the majority of LVCs has two components only,

but some do contain additional components, such as preposi-
tions when they are required to connect the verb and the noun.

and test data, using the Grew tool (Bonfante et al.,
2018). Obviously, using unlexicalized patterns
results in getting a vast majority of candidates
that are not LVCs, and this is even more true for
rare patterns. We experimented with two pat-
tern selecting stategies: topN, in which we take
the N most common patterns (we considered val-
ues of N ∈ {1, 5, 10, 20, 50} ); and atleastNoc-
curs, in which we take all patterns that originated
from at least N occurrences in the training cor-
pus (we considered N ∈ {2, 5, 10, 50}). More-
over, for each pattern p containing label−−−→NOUNi,
we add a pattern p′ replacing this subpattern by
label−−−→(NOUNj)

conj−−→NOUNi
4.

Using the selected patterns, we identify LVC
candidates in the development and test corpora,
but also in the training corpora, so as to obtain pos-
itive and negative LVC candidates to train a binary
classifier. For each identified candidate, we pro-
duce a set of features which may be related either
to the whole LVC, or to its components.5

3.2 Features

The PARSEME 1.1 data contains
test/development and training data for 19
languages. The training data contained an average
of 1171 LVCs per language (σ=948, ranging
from 78 for English to 2952 for Turkish). Most
corpora contain morphosyntactic information (in
most cases obtained by an external parser, and in
most cases representing data using the POS and
dependency tagsets recommended by UD).

For a given candidate c, we first extract the verb
component v and predicative noun component n.
This is in general trivial, but in order to cover all
cases, v is taken to be the leftmost token that has
POS tag VERB, or the leftmost AUX, or the leftmost
ADJ, or the leftmost token in c, while n is the left-
most NOUN, leftmost PROPN, or leftmost token that
is not v. In all the features, we use the lemmas of
v and n. We then extract the following features:

• F1: One-hot representing the pattern used to
predict the candidate (see Section 3.1).

• F2: Fraction of true LVCs among all candi-
4This alternative pattern would cover the expression make

adjustment in make an effort and an adjustment, for which
two occurrences of LVCs would be annotated according the
PARSEME guidelines.

5For the training data, we take the union of gold LVCs and
LVC candidates identified through syntactic patterns, since
the patterns do not cover all gold LVCs.



BG DE EL ES EU FA FR HE HR HU IT PL PT RO SL TR µAvg
%seen 60 26 50 48 86 61 68 45 29 75 71 66 74 90 57 44 62
Coverage (seen) 98 100 100 95 94 91 99 82 93 86 90 97 95 96 100 98 95
Coverage (unseen) 73 84 91 98 98 90 91 78 96 86 72 90 93 33 92 95 90

Table 1: Fraction of LVC annotations that were seen in train, and LVC candidate coverage (highest
recall achievable, if all candidates are predicted as LVC) — evaluated on the development sets.

dates in train that have the same pattern and
lexical items (lemma-wise comparison) as c
(-1 if unseen in train).

• F3: POS tag of v and n.

• F4: Dependency relation between v and n
(NONE if not directly connected).

• F5: One-hot for the number of components
of c (with the rationale that LVCs of length
higher than 2 may display more non-standard
behavior due to the additionally lexicalized
words).

• F6: One-hot for the number of gaps (extra-
neous words that do not belong to the LVC),
between the leftmost and rightmost compo-
nents of c, in the underlying sentence.

• FC : Binary contextual features from the un-
derlying UD parses. Features are defined for
every observed 〈key, value〉 pair in the mor-
phological CoNLLU column (e.g. 〈Tense,
Past〉), as well as every observed 〈column,
value〉 pair for the UD columns FORM,
LEMMA, XPOS, UPOS and DEPREL (e.g.
〈FORM, took〉, 〈LEMMA, picture〉, 〈POS,
NOUN〉). These features are binary in value,
and indicate whether the 〈key, value〉 pair is
present for c. A feature is considered present
if it appears in at least one of the direct de-
pendents of n or v. We consider only the top
t features with the highest mutual informa-
tion and whose underlying pairs appear in at
least ` LVCs.

While it is clear that LVC identification would
greatly benefit from fine-grained semantic clues
such as noun predicativeness, such information
is not readily available for most languages under
study. We consider instead on a set of unsuper-
vised features that can be constructed for all lan-
guages based on distributional semantic models.
In particular, we consider the fasttext (Bojanowski
et al., 2017) set of pretrained word embeddings

(which is also used by the SHOMA system) as a
basis for semantic features.

• FE : Word embeddings for the lemma of the
verb and noun (300 dimensions each).

• F1
k : k-nearest neighbors of the underlying

noun n. Considered neighbors are all nouns
that are paired up with the underlying verb
v in at least one LVC candidate in the train-
ing set, whether true LVC or not. We select
the top k neighbors whose embedding has
highest cosine against n’s embedding. Each
neighbor is either seen-in-LVC (it is part of at
least one true LVC) or an unseen-in-LVC (it
is part of false positives only). The final value
of the feature is the sum of the scores of the
k neighbors, where a seen-in-LVC neighbor
has score +1 and an unseen-in-LVC neigh-
bor has score −1.

• Fck: Same as F1
k, but each neighbor’s score

that is being summed up is additionally
weighted by the underlying cosine.

3.3 LVC classifiers

We present below two LVC candidate binary clas-
sifiers based on the features above: SVM and FFN.
We compare them against two simple baselines:
Majority, which only predicts LVCs seen in train,
and kNN, which we use either for all LVCs or for
those unseen in train, in combination with Major-
ity for the seen LVCs. Note we consider a pre-
dicted or gold LVC to be seen in train when the
training corpus contains at least one gold LVC
with same lemmas, in whatever order and with
whatever syntactic pattern.

• Majority baseline: Predict a candidate as
LVC if and only if it has been annotated more
often than not in the training corpus (i.e. the
value of feature F2 is greater than 0.5).

• kNN baseline: Predict a candidate as LVC if
and only if the value of feature Fck is positive,



Configuration BG DE EL ES EU FA FR HE HR HU IT PL PT RO SL TR µAvg
Maj (seen) 72 84 76 89 81 83 93 68 91 91 87 92 86 90 70 38 81
kNN (seen) 62 84 76 89 79 81 92 66 91 91 83 89 82 37 60 46 78
FFN (seen) 74 78 82 94 87 87 94 67 92 92 86 90 88 87 68 71 85
SVM (seen) 70 74 84 86 86 89 93 64 91 91 84 89 90 72 76 57 84
kNN (unseen) 08 08 24 22 32 30 30 04 13 13 11 20 32 00 04 24 22
FFN (unseen) 15 18 27 29 22 55 31 05 21 33 12 22 25 00 08 27 28
SVM (unseen) 15 15 33 20 42 63 37 02 24 46 10 31 45 00 10 34 34

Table 2: F1 scores on Majority and kNN baselines (Fck with k = 2) , along with the best configuration
for the SVM and FFN classifiers — on the development sets.

meaning that within the k nominal neigh-
bors of the noun n of the candidate, the total
cosine of seen-in-LVC surpasses that of the
unseen-in-LVC neighbors.

• SVM: Support vector machine with RBF ker-
nel. Positive and negative examples are bal-
anced through compensating class weights.
We use a 3-fold grid-search to select for
the best combination of classifier hyperpa-
rameters for each language; we consider the
values C ∈ {1, 10, 20, 50, 100} and γ ∈
{0.5, 0.1, 0.05, 0.01}.

• FFN: Feed-forward network with a 100-
neuron hidden layer, using tanh as an acti-
vation function and 50% dropout. The net-
work uses an SGD optimizer6 and negative
log-likelihood loss. Positive training exam-
ples are duplicated as much as needed so
as to be balanced against negative examples.
The final list of examples is shuffled, and
fed into the classifier in batches of size B ∈
{1, 2, 4, 8, 16}. Training is performed for a
number e of epochs, such that epoch e+1
would have had higher loss on the valida-
tion set (10% of train). One-hot features are
implemented as a layer of trainable embed-
dings instead (300 dimensions for lemmas; 5
dimensions for dependency relations, for F5

and F6).

3.4 Evaluation
We explore hyperparameters on the 16 languages
that contained a development set, and evaluate the
final systems on the test set for all 19 languages
(using both training and development set for train-
ing). Evaluation of LVC predictions for each lan-
guage uses the MWE-based F1 score from of the
PARSEME shared task (Ramisch et al., 2018). We
modified its evaluation script so as to output scores

6Basic tuning of the learning rate led us to use 0.01.

for seen and unseen LVCs: it first labels a LVC
(whether gold or predicted) as "seen" if there ex-
ists at least one gold LVC occurrence with the
same set of lemmas in the training set, and unseen
otherwise. The two labels are then evaluated sep-
arately.

We also present a micro-average score (µAvg),
in which the F1 scores of all languages are av-
eraged with a weight that is proportional to the
number of LVCs in that languages test (or devel-
opment) set.7 On test sets, we compare our results
with SHOMA and TRAVERSAL, the two highest-
scoring systems in the shared-task.8

4 Results

Table 1 presents the fraction of LVCs in the de-
velopment set that can also be seen in the training
set. In the lower end, German dev LVCs were only
seen in train 26% of the time, mostly due to the
small training set in this language. In the higher
end, 90% of Romanian LVCs had a counterpart in
the training set, suggesting that a simple baseline
focusing on seen LVCs should already yield good
results for this language.

The last two rows in Table 1 present the cov-
erage (i.e. recall) in the initial step of LVC can-
didate extraction, for the strategy atleastNoccurs
with N = 2. This strategy was found to yield the
best results in both SVM and FFN settings dur-
ing early experiments. It can be seen that, despite
variation across languages, mainly due to training
corpus size differences, the micro-averaged cover-
age is 95% for dev LVCs seen in train, and slightly

7We chose to use micro-average, since the test sets across
languages don’t have the same number of sentences, for rea-
sons that are independent of the linguistic properties of each.

8We used the predicted test sets of all participat-
ing systems (made available by the shared task organiz-
ers at https://gitlab.com/parseme/sharedtask-data/
tree/master/1.1/system-results), filtering them to con-
sider LVCs only. The best systems in open and closed tracks
(SHOMA and TRAVERSAL) are the same when considering
all verbal MWEs or LVCs only.

https://gitlab.com/parseme/sharedtask-data/tree/master/1.1/system-results
https://gitlab.com/parseme/sharedtask-data/tree/master/1.1/system-results


Configuration BG DE EL EN ES EU FA FR HE HI HR HU IT LT PL PT RO SL TR µAvg
Maj (seen) 74 67 85 64 60 87 84 85 70 90 87 94 82 48 87 89 81 75 53 80
kNN (seen) 71 67 78 64 61 83 84 87 64 89 89 92 80 47 88 87 38 62 58 78
SVM (seen) 75 67 80 65 60 86 87 89 66 94 80 94 83 38 89 91 67 79 77 81
FFN (seen) 82 69 79 67 64 87 86 89 69 92 85 94 82 48 88 93 74 69 87 83
SHOMA (seen) 64 00 79 00 39 88 88 66 73 88 43 78 66 49 69 87 93 52 79 76
TRAV (seen) 62 53 66 34 44 82 81 70 58 81 64 87 64 45 76 78 83 63 66 72
kNN (unseen) 14 09 23 23 17 16 21 34 05 44 18 24 13 08 19 28 00 05 36 22
SVM (unseen) 17 24 34 19 07 17 57 29 07 61 17 36 06 07 39 39 67 13 43 31
FFN (unseen) 20 18 18 33 20 19 45 25 06 64 16 29 12 15 33 31 00 07 34 29
SHOMA (unseen) 21 00 36 03 13 35 62 37 19 53 19 14 04 08 22 35 29 00 50 31
TRAV (unseen) 08 00 18 14 10 11 41 31 05 42 21 23 00 01 20 24 00 00 23 20
Maj + kNN 53 26 62 31 36 81 64 62 30 68 45 77 63 28 60 74 69 34 44 57
kNN 56 26 59 32 37 77 65 64 29 67 46 76 62 28 61 72 28 31 49 57
SVM 61 40 66 26 35 79 77 65 41 77 44 81 70 28 71 78 67 63 61 63
FFN 53 26 43 40 36 74 74 51 21 78 42 75 44 30 60 68 57 26 56 56
SHOMA 50 00 60 02 22 79 78 51 43 72 24 59 46 29 51 70 86 28 64 56
TRAVERSAL 44 15 47 18 26 70 65 52 30 62 32 68 51 23 52 62 73 38 44 50

Table 3: F1 scores (split for seen LVCs, unseen LVCs and overall) for the Majority and kNN baselines,
the best configuration of our SVM and FFN classifiers, and the highest-scoring systems in the shared-task
(SHOMA and TRAV(ERSAL)) — evaluated on the test sets.

lower (90%) for unseen ones.
We tuned the hyperparameters on the develop-

ment sets. For every system, the same configura-
tion is used for all languages. The best kNN con-
figuration is Fck with k=2; the best SVM and FFN
configurations are both F1..6, FC (t=30, `=30), FE .

Table 2 presents the scores obtained by these
best configurations on the development sets.
Across seen LVCs, both the Majority and kNN
baselines have considerably high scores (F1=81
and 78 respectively, but the highest results are ob-
tained by FFN and SVM (F1=85 and 84). For the
unseen LVCs, results are quite lower, and there is
a bigger gap between the kNN baseline (F1=0.22)
and the best system on unseen, namely the SVM
(F1=0.34).

Table 3 presents system results for the same
configurations when evaluated against the test sets.
On seen LVCs here again, the Majority baseline
is slightly higher than the kNN baseline. How-
ever, both baselines beat the best systems from the
shared-task (that we recomputed for LVCs only).
Results for SVM (F1=81) are comparable to the
Majority baseline (F1=81) while FFN obtains the
highest score (F1=83).

When we consider LVCs that were not seen
in training data, results are much lower. The
kNN baseline obtains an F1=0.22, while SHOMA
obtains F1=0.31, as does our SVM, while re-
sults for FFN are slightly weaker. When predic-
tions for both seen and unseen LVCs are taken
together, FFN and SHOMA have comparable
scores (F1=56), while the baselines (either Major-

ity+kNN or kNN alone) is slightly higher. The
best system overall is the SVM (F1=63).

5 Conclusion

In this paper, we considered the task of iden-
tifying LVCs in running text. We propose to
use data-driven language-specific syntactic pat-
terns for the extraction of LVC candidates out of
syntactic parses, followed by a binary classifica-
tion of the candidates into LVC or not.

We proposed a strong baseline combining dif-
ferent methods for LVC candidates depending on
whether they were seen in the training set or not
(“seen” meaning a LVC with same lemmas is an-
notated at least once in the training set). The base-
line for seen cases tags a candidate as LVC if the
training occurrences with same lemmas are more
often tagged as LVC than not. The baseline for
unseen cases uses the similarity of the predicative
noun with the nouns of the training candidates, in
a distributional semantic model. We also proposed
supervised classifiers (a SVM and a feed-forward
neural network) trained using internal and contex-
tual morphosyntactic and semantic features, and
working independently of the seen/unseen status.

Overall the SVM system is our best one, sur-
passing the best shared task system on LVCs
(SHOMA, (Taslimipoor and Rohanian, 2018)) by
7 percentage points. When evaluating perfor-
mance separately on seen and unseen LVCs, the
feed-forward network performs a little better on
seen LVCs, but less well on unseen ones. It



also appears that our results for seen LVCs sur-
pass the best shared-task results even in the case
of the baseline, in spite of a much simpler tech-
nique of supervised learning. For unseen LVCs,
results are globally quite lower. The best perfor-
mance is F1=31%, achieved both by the SHOMA
system and our SVM. Our kNN-inspired baseline
achieves F1=22% only, a performance that would
rank second for unseen LVCs in the shared task.

Given the quality of predictions for seen LVCs,
future works should focus on improving predic-
tion for the unseen expressions. Such task could
be achieved through an evaluation of different
types of neural network. Other semantically-
motivated language-independent features should
also be considered, so as to estimate the candi-
date noun’s abstractness and predicativeness, as
well as the level of semantic bleaching in the use
of the verb. Finally, future works should investi-
gate using a model for contextualized word em-
beddings such as BERT (Devlin et al., 2018)), de-
spite the difficulty of covering the 19 languages of
the PARSEME datasets.
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